Problem 1	
	A balanced three-phase load is supplied to a balanced three-phase voltage source with a phase voltage of $120 V_{eff}$
10 points	The load draws a total load of 10 kW at a power factor of 0.9.
	Assuming a wye-connected load, calculate:
	1) the rms value of the phase current,
	2) the per-phase load impedance,
	3) draw a phasor diagram showing all three voltages and currents.
	Repeat this calculations for a delta-connection load.
	4) the rms value of the phase current,
	5) the per-phase load impedance,
	6) draw a phasor diagram showing all three voltages and currents.

Problem 2	1	Transformer: $NI/N2 = 3$
	$i_{I}(t)$	Neglecting the winding resistances, leakage inductances and core
10 points		loss.
	- 1 ())	For winding 1:
		V = 220 V, $f = 50 Hz$, the magnetizing current is 1.0 A (rms).
	+6	For winding 2 :
		The load exist of a resistor of 0.953 Ω and an inductor of 0.55 Ω in series.
		Calculate:
		1. the amplitude and phase of \bar{I}_2
		2. the amplitude and phase of \bar{I}_1

Duchlom 2	Consider a permanent magnet do motor with the following peremeters:		
Problem 5	Consider a permanent-magnet de-motor with the following parameters:		
	$R_a = 0.35 \Omega$, $L_a = 1.5 \text{ mH}$, $k_T = 0.5 \text{ Nm/A}$, $k_E = 0.5$, V/(rad/s), $J_m = 0.02 \text{ kgm}^2$		
10 points	Problem 1:		
	The rated torque of this motor is 4 Nm.		
	Plot the steady state torque-speed characteristics for $V_a = 100$ V en $V_a = 60$ V.		
	Problem 2:		
	The same motor is operating in steady state with a speed of 300 rad/s. the load is purely inertial with an inertia of 0,04 kg.m ² . at some instant, its speed is to decrease linearly and reverse to 100 rad/s in a total of 4 s. Neglect L_a and friction.		
	Calculate and plot the required current and the resulting voltage v_a that should be e applied to armature terminals of this machine.		
	As intermediate steps, calculate and plot e_a , the required electromagnetic torque T_{em} from the motor, and the current I_a .		

The questions:

Question 1 2 points	 What are the names of the different powers and what are there quantities? What is the power triangle?
Question 2	1. Draw a 'converter pole'
2 points	2. In how many quadrants does is work and with one.
Question 3	A Crops on the board of the ship is driven by a DC motor
2 points	1 In how many quadrants operates the grane?
2 points	2. In which quadrant can a thyristor rectifier operate?
	3. Draw the scheme for a converter for more quadrant operation based on thyristor technology
	and supplied from a one phase network.
	4. How are converters connected to achieve four quadrant operation.
Question 4	
	1. Describe the operating of a single-phase-power-factor corrected circuit.
2 points	2. What is the relation between the supply voltage and dc-bus voltage?
	3. Plot the switching current in the inductor (i_L) .
Question 5	
2 points	An single phase rectifier with diodes is connected to a source of 230 V / 50 Hz, the load is a resistor.
	 What is the average value output voltage without a capacitor? [in V] What is the average value output voltage with an very large capacitor? [in V]