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Introduction

Nowadays, electronics can be found in mostly any application. The main function
for these electronics is signal processing, i.e. amplification, filtering, ...etc.

Taking as an example the filter that can be found preceding an analog-to-
digital converter, its function is to suppress signals outside the nyquist band (half
the sampling frequency) to prevent the converter from folding those relatively high-
frequency signals into the base band. An other example is a filter that is used in a
class-F power amplifier for mobile applications. Class-F power amplifiers are based
on switching a power source on and off. The rate of switching is determined by
the input signal. In combination with a resonant circuit (filter) the block-wave like
signal is changed into a sine-wave like signal. This to prevent a lot of additional
harmonics to be transmitted.

The task for an electronic designer is to design for a given set of specification,
which are set by the application, the electronic solution that is able to perform
the required signal processing function. Electronic design has been for a long time
a kind of art of electronics. One needed to have a mental catalogue of a lot of
circuit diagrams and their basic performance, such that in the case of a design
task, one could select the known circuit diagram that was closest to the solution.
In order to make it fulfill the specifications completely, it often needed to be tuned
(or tweaked). Luckily, more systematic design approaches are developed which do
not rely on this kind of expertise knowledge (heuristics). In contrast, those design
methodologies rely on a synthesis type of approach. For this, one must know the
behavior of the basic building blocks (electronic components) and the procedure
for synthesizing the specific function. No a-priori knowledge of complete circuit
solutions is required.

In these lecture notes a design methodology is presented to synthesize elec-
tronic filters. The intention of the methodology is that for a given filter function,
expressed as differential equation, one is able to synthesize (design) an electronic
implementation that can perform that function. The methodology is hierarchical,
i.e. starting with ideal building blocks and subsequently implementing them grad-
ually. The first three chapters pay attention to the block diagram level, whereas
the last three chapters pay attention to the actual implementation at transistor
level.
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2 CONTENTS

Chapter 1 starts with describing the history of filter design. As many types
of filters exist, subsequently, a classification is developed that puts all these filter
types in an overall structure. It enables the designer to select the correct class of
filter for his/her application. These lectures notes focus on the design of analog
active time-continuous filters. This chapter describes the first step of the design
methodology: transforming the differential equation describing the required filter
function into a block diagram comprising ideal basic building blocks (integrators
and scalers).

Chapter 2 addresses the quality of the filter implementation. The quality of a
filter is mainly determined by its dynamic range (DR). This chapter describes how
the filter topology relates to the DR and how the DR can me maximized. For this,
the noise and distortion of filters is treated.

Chapter 3 focusses on the effect parameter spread and the choice of a certain
level of model complexity has on the accuracy of filters. Design solutions are treated
to be able to design accurate filters with relative inaccurate components.

Chapter 4 continues with the implementation of the filter. In chapter 1 it is
concluded that one of the basic building blocks is the integrator. In this chapter
the design of basic integrator implementations is treated. For this the small-signal
models of the transistors (amplifying stages), that are to be used to design the
active part (opamp) of the integrator, are treated. These small-signal models are
required to analyze the performance of a designed active part.

Chapter 5, subsequently, describes how an active part can be synthesized by
using transistors in such a way that maximum quality is obtained.

Chapter 6 describes how the performance of a feedback loop comprising an
active part can be analyzed. In this way the performance of a designed integrator
can be determined.



Chapter 1

From differential equation to
block diagram

1.1 Introduction

The first filters ever made consisted of coils, capacitors and resistors. However,
coils cannot be applied in integrated filters, thus the “conventional” design of
continuous time filters does not fully cover the necessary design theory, especially
not for active inductorless filters. Still, as a starting point of the design of active
integrated filters we give an historical introduction (section 1.2 in order to highlight
the development of 20th century filter design, because design theory developed for
passive filters can be partially used for active filters.

For nowadays high-performance of electronics, designing filters without a well-
defined design trajectory is not easy. A lot of design aspects may pose additional
conditions on the design and when it is not clear at what level of hierarchy this
should be taken into account, it becomes difficult to end up with an optimal filter.
Therefore, section 1.3 shows in short a possible design trajectory for filter design.

One of the key issues in filter design is to obtain the required dynamic range,
i.e. what minimum and maximum signal the filter can handle at the same time.
The dynamic range is therefore an important quality aspect for filters. Section 1.4
shows how dynamic range relates to signal-processing theory by which it can be
shown that it indeed is a fundamental quality aspect.

From the historical overview but also when scanning the modern literature on
filter design, one probably notices that a huge amount of different filter implemen-
tations and structures are used. To get insight in this field, section 1.5 describes
a classification of filter implementations. This helps the designer in structuring
the design from specification to realization, i.e. what would be the optimal filter
type/implementation for my application.

Section 1.6 shows that the state-space description is well suited to describe

3



4CHAPTER 1. FROM DIFFERENTIAL EQUATION TO BLOCK DIAGRAM

the filter to be designed. The description should comprise on the one hand the
information about the filter transfer and on the other hand the information about
the topology. Topology information is important, as will be seen in next chapters,
because of the dependency of the dynamic range on the topology for a given
transfer.

Finally, section 1.7 shows how from a transfer function a block diagram can be
derived for a filter.

1.2 History of filter design

Around 1890, several people were involved in improving the quality of transmis-
sion lines by adding coils. Only in 1899, did M.I. Pupin succeeded in improving
the attenuation characteristic of telephone and telegraph wires by inserting coils.
His success resulted in a world-wide use of “Pupin Lines”, see figure 1.1. The

Figure 1.1: Adding coils in a transmission line to improve the performance.
.

behavior of these lines was more elaborately researched by G.A. Campbell, who,
in 1903, published an article which described the frequency behavior of the lines.
He invented the low-pass characteristic of the cable. He also realized the use of the
cable as a band-pass filter, by replacing the coils by a combination of coils and ca-
pacitors. The problem of making filters with bulky cables led Campbell and K.W.
Wagner to the simulation of the cable by a ladder construction of impedances.
This was also indirectly suggested by Pupin, and the resulting filter was called the
“electrical wave filter”. The year 1915 may be considered the day of birth of the
first electrical filter.

Design methods were invented by many people, amongst others by O.J. Zo-
bel. The design method he developed was the beginning of the transmission line
theory, that spoke in terms of characteristic impedance and wave propagation to
describe the attenuation of the filter. He introduced a method to design filters
with an infinite number of coils and capacitors. More filter theory was developed
by S. Darlington and S. Butterworth. Butterworth made fourth-order filter sec-
tions, that were intercoupled by amplifiers (realized by tubes). Thus he was the
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first person to design active filters. Also from his hand are the well-known Max-
imally Flat Magnitude (MFM) attenuation characteristics (1930). Around the
same time, W.R. Bennett solved the problem of realizing passive maximally flat
transfer functions for filters of any order. W. Cauer also designed passive filters,
but he used Tchebysheff approximations to describe the transfer function. Be-
tween 1930 and 1940, Cauer published several articles on the design of filters with
some desired attenuation curve. In 1939, Darlington published an article in which
he used Tchebysheff approximations to design transfer functions. The impact of
Darlington’s and Cauer’s work was great, although the computing power in those
days was too small to make full use of the theory.

Current monolithic technology does not allow the use of coils. The drawback of
the generation of only poles on the real axis when making filters with only resistors
and capacitors can be circumvented by using active components. Sallen and Key
delivered a general design method to construct active R-C filters. It was based on
cascading second-order stages. This method was not very popular in those days,
because of the use of tubes. The emerging silicon technology, though, made it very
attractive.

In 1977, the first switched-capacitor filter was applied. These filters still use
a continuous signal amplitude, but process the signal at discrete time events. In
1979, Tan and Gray found solutions to tuning filters by placing automatic tuning
circuits on chip. Tunability was realized by applying JFETs. Further important
research was carried out by Moulding, Voorman, Tsividis, Nauta and Groenewold
(tuning method, use of Gilbert Gain Cell for constructing integrators, MOSFET-C
filters, high-frequency filters and dynamic range optimization, respectively).

In the nineties, dynamic translinear circuits and filters were introduced. These
filters, making efficient use of the exponential behavior of bipolar transistors, were
a generalization of the first translinear filter introduced by adams in 1979. The
dynamic translinear filters are based on the principle depicted in figure 1.2. For this

C

icap ic

+

-
vcap

+

-
vbe

Figure 1.2: The basic circuit in a dynamic translinear filter.
.

circuit the relation between the capacitor current (icap) and the collector current
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(ic) is given by:

CVT
dic
dt

= icicap (1.1)

in which VT is the thermal voltage (kT/q).

1.3 Overview of filter design trajectory

Filter design consists of several steps. The trajectory from specification to circuit
is here discussed. Some of the steps will only be mentioned, because they are
treated more thoroughly in following sections, others are merely mentioned to give
a complete overview, but are actually beyond the scope of this book.

1.3.1 Application

Filters are used in many applications. Roughly speaking the applications can be
divided into two groups:

• selection;

• shaping.

The main difference between selection and shaping is that selection acts on wanted
and unwanted signals in the frequency domain, whereas shaping is used for the
wanted signals only.

Selection by means of a filter is depicted in figure 1.3. A well-known example

Figure 1.3: A filter used for selection.

of a filter used for selection is the radio receiver in its basic function. From a large
number of radio stations broadcasting at different channels the radio receivers
selects one of them. Roughly speaking the filter selects which part of the frequency
spectrum is passed and which part is rejected. Passing a channel should be done
with no losses, ideally, and rejection should be done such that 100% of the power
is dissipated or reflected by the filter (ideally).

Shaping by means of a filter is depicted in figure 1.4. Shaping is used when
the power level in the spectrum of interest is changed in order to adapt the signal
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Figure 1.4: A filter used for shaping.

for further processing. An example of shaping can be found in a tape deck. When
retrieving signals from a tape, the signal will be contaminated by noise. This
noise is, besides due to the electronics, due to the principal of magnetic recording
itself. This noise of the tape is mainly found in the higher part of the frequency
spectrum. Directly recording the signal on the tape would deteriorate the signal
for the higher frequencies. By first amplifying the higher frequencies of the signal
to be recorded, the relative effect of the high frequency noise of the tape is reduced.

1.3.2 Specification

For filters in general specification can be derived for from the application. The
specification of the filter are several, for example: attenuation curve, dynamic
range requirements, power consumption and supply voltage. The highest level
specification must be handled first, which is the attenuation curve. In many ap-
plications, this attenuation behavior is given as depicted in fig.1.5. A filter curve

transfer

frequency

0

1

Figure 1.5: Example of attenuation curve

must be designed such that the required attenuation curve is reached. It is usu-
ally attractive to use “standard” filter transfer functions. Well-known types are:
Butterworth, Chebyshev and elliptic or Cauer. The design of these filter types is
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usually based on a frequency normalized low-pass filter curve. Transformations
are applied to the low-pass curve to turn it into, for example, a bandpass filter.

1.3.3 Mapping onto topologies

When the filter polynomial is known, or the pole and zero positions, which is
actually the same, a topology should be found to map these information on. A
topology is an idealization of a filter. It consists of ideal integrators (branches
valued 1/s) and an interconnection circuit. There are many ways to realize a filter
function. Some possible topologies are shown in one of the following sections. The
choice of a topology is mostly based on experience of “good behavior” in stead
of on clear and objective methods. There are some topologies that are known for
their low sensitivity and good dynamic range behavior.

1.3.4 Implementation

The steps discussed so far only resulted in abstract filter structures. The structures
consist of ideal integrators and interconnection circuitry. They are still implemen-
tation independent. The last step is to find an implementation of the integrators,
in bipolar, MOS or BiMOS technology.

1.4 Quality versus Costs

The design of a filter can be visualized, on a high level of abstraction, as depicted
in figure 1.6. From the specification the filter function can be derived which the

H(s)

Quality

C
osts

Figure 1.6: The design of a filter on a high level of abstraction.

circuit should implement in the end. At specification level the filter function
is still a mathematical expression, i.e. a differential equation. Of course, this
mathematical expression is ideal: it does not consume power, it has not a limited
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bandwidth or noise production. Of course, the final design which is a real physical
implementation will consume power and generate noise and will have a limited
bandwidth. Thus as soon as a physical implementation is the goal one should
consider how well the circuit implements the differential equation, i.e. the quality.

To reach a certain quality, a certain price has to be paid, i.e. power consump-
tion, chip area et cetera. For a designer a key issue is to have insight in the relation
between cost and quality. When this relation is known fast evaluation can be done
what the cost will be for a certain quality or the other way around when for in-
stance the power budget is limited, what quality can be reached for that power
budget.

Technical merits (quality) of an electronic circuit are valued from the way it
performs its function. Of course there are more factors involved than just the
technical ones, like the costs to produce the circuit and so on. When only the pure
technical merits are evaluated, it is found what can be ultimately achieved; thus
when all freedom is given to the designer. When due to other constraints some
options are not allowed, it can easily be found how much the decrease of perfor-
mance (quality) will be. It depends on the circumstances whether a manufacturer
is willing to pay the price for extra performance or not, but it is at least known
how much improvement can be expected and what price has to be paid to get
it. In some cases it can save the manufacturer from paying a price for finding an
improvement that is fundamentally not feasible. For example migrating to a more
complex and extended technology for getting a higher performance is only useful
when the extra options play a role in the optimization of the particular circuit.

1.4.1 Fundamental specifications

There are many ways to specify the performance of electronic circuits, but there
are only three fundamental aspects of the performance:

• Noise (N)

• Signal Power (S)

• Bandwidth (B)

related to each other via Shannons equation:

C = B 2 log
S + N

N
(1.2)

C is the signal-handling capacity of the circuit. It is a measure for the information
the circuit can process per second. The ultimate goal of a designer is to maximize
the signal-handling capacity within the constraints given by the environment. It
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can be seen from equation (1.2) that the bandwidth is linear in the expression
and the signal to noise ratio is in the logarithm, so an increase of the bandwidth
yields more improvement than a comparable increase of the signal to noise ratio.
Circuits that “are good at bandwidth” together with signals that are properly
coded—so they have little dynamic range and much bandwidth—are therefore
likely to be favored when a large signal-handling capacity is required. Digital
circuits and signals perfectly match to these requirements and they are indeed by
far the “dominant species” in the signal processing world.

However, in areas where bandwidth is a problem, like it is under low-power
conditions or at very high frequencies, or when there is no freedom to code the
information properly the signal-handling capacity has to be optimized via the
signal to noise ratio. In this area high performance analog circuits have to do the
job.

1.4.2 Additional Specifications

The three fundamental aspects described above are sufficient to specify the per-
formance of a circuit, but they are not the only specifications that are given in
practice. Temperature operating range, EMC specifications and so on are of course
also of great importance. These specifications can however be seen as a different
appearance of the three fundamental criteria or as additional physical criteria.
For instance, the disturbances introduced by EM interference (EMI) are com-
prised within the Noise (N) of equation (1.2), whereas supply voltage is a physical
criterion and is not a quality criterion in the sense of Shannon.

These additional physical criteria limit the freedom in the design and thus
limit the performance. In practice it is important to know the effect of a physical
limitation on the performance. Then it can be evaluated if it is desired or justifiable
to, for example, change a supply voltage or increase a supply current in order to
improve the performance of a circuit. It can become clear what the influence of
the supply voltage on the performance of a circuit is and what voltage becomes
“critical”, and marks the limit beyond which degradation becomes dramatic. This
approach gives much more insight in the behavior of circuits than for example the
blink design of 1V circuits because it is a fashion today.

1.4.3 Costs

To realize the performance indicated by the complete set of specifications, a certain
price needs to be paid, i.e. the costs. Examples are: power consumption, chip
area et cetera. It is usually not too complicated to show for example the relation
between power consumption and noise behavior. From this it can be found what
the power costs are for optimum noise behavior or what the noise behavior will be
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at a given power consumption.

1.5 Classification of filter implementations

Classification is a powerful method for ordering information. It can be applied
to all kinds of engineering problems. It can help the designer to find suitable
solutions for his/her design problem in a fast way. A classification presents the
existing knowledge in a structured way. It differs from an encyclopedia in the way
the relation between the several classes is presented. An encyclopedia presents the
solutions sequential, whereas a classification also gives hierarchy.

Classifying existing knowledge implicitly shows the location where a lack of
knowledge is, i.e. empty classes. For instance, we need to design a signal processing
function: y = f(x). Assume that for coding the signals two methods exist, M1

and M2. Further, assume that also for the implementation step two different
possibilities exist, P1 and P2. Then four different solutions can be found, see figure
1.7. When the classification is obtained, then, for instance, existing solutions from

M1 M2

P1

P2

?

Figure 1.7: An example of finding new solutions via classification

literature can be placed in the classification. The ”solutions” which remain empty
afterwards, (P1M2, in figure 1.7) indicate a new solution. In contrast, if an existing
solution does not fit in the classification, then the classification in not complete.

In this section classification is applied to filter implementations in order to
structure existing filter implementations which may be helpful in selecting what
filter implementation to use to obtain for a given application acceptable perfor-
mance for the lowest price.

Classification starts with a precise definition of what to classify. This definition
strongly determines the structure of the classification. Subsequently, the criteria
used in the classification need to be chosen.

When classifying filter implementations, criteria can be:

• time behavior (continuous (C) or discrete (D));

• amplitude behavior (continuous (C) or discrete(D));
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• type of elements (active (A) or passive (P));

• type of realization (discrete (D) or integrated (Dutch: geintegreerd (G))).

When using these criteria, the classification of figure 1.8 is obtained. From this

Filter

D G D G D G D G D G D G D G D G

A P A P A P A P

C DD C

C DTime

Amplitude

Elements

Realisation

Figure 1.8: Classification of filter implementations

classification three branches can be ignored:

• CDPX

• DCPX

• DDPX

All these options combine passive integration and a time and / or amplitude dis-
crete behavior. As for discrete time or discrete amplitude active devices are re-
quired, i.e. switches for discretizing, these options are not possible. From this
classification five main types of filter implementations can be distinguished:

• CCAX : analog active time-continuous filters;

• CCPX : passive time-continuous filters;

• CDAX : asynchronous digital filters;

• DCAX : sampled-data filters;

• DDAX : synchronous digital filters.
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1.5.1 Analog active time-continuous filters

For these filters all the possible signal values at all time instants are important,
i.e. analog. Active elements are used to implement filters without inductors.
Passive realization of the same filter transfer would need capacitors and inductors.
Analog active filters are often integrated on chip and used in consumer electronics.
Because of the active elements these filters can be tuned electronically which is
favorable for many applications. Of course, due to the active components in the
filter, distortion is introduced, i.e. the output signal of those components is limited
by the power supply. On top of that, also additional noise is introduced. Thus
compared, for instance, with the passive filters, these filters have less dynamic
range.

1.5.2 Passive time-continuous filters

Passive time-continuous filters are realized with passive elements only, i.e. R,L,C,
striplines, et cetera. These filters can have an extremely high dynamic range, i.e.
signal amplitudes in the filter are not limited by a power supply. Of course, in the
end physical limitations set a maximum on the signal amplitudes. For instance,
capacitor voltages are limited by the breakdown voltage of the corresponding ca-
pacitors. The noise level of these filters can also be low as only the resistive
elements introduce noise. Again, because of the absence of active elements no
corresponding noise degradation is found.

The bandwidth performance of those filters is limited by the bandwidth of
the passive elements only. Therefore, for extremely high frequency filters, e.g.
micro-wave filters, passive filters are used.

With respect to analog active time-continuous filters, these filters can be tuned
less easily. It requires tuning of capacitor values or inductor values, for instance.
Very often this requires mechanical tuning of those elements.

1.5.3 Asynchronous digital filters

When the signal is discretized in the amplitude but not in the time, the class of
asynchronous digital filters is found. Asynchronous digital circuits are not governed
by a clock signal. Triggering events is based on the information arrived locally so
far. For instance, two digital words are added when both have arrived at the adder.
In this way no clock-skew problems are found in these circuits. In modern digital
systems a big challenge is to minimize the skew in the high speed clock all over
the chip.

To the knowledge of the author, no filter implementations are found in this
class. An explanation can be that for filtering (in the frequency domain) relative
timing information is required. When the mutual timing relation of the digital
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words is not determined, it is difficult (may be impossible) to use these digital
words to do filtering in the time (frequency) domain. Of course, when the sampling
of the (analog) input signal is synchronous, this objection is not valid.

1.5.4 Sampled-date filters

These filters have continuous amplitude behavior and a discrete time behavior.
The filter reacts on the signal at fixed points in time only. Examples of these
filters are for instance the switched-capacitor filters. In these filters the resistors
are replaced by switched capacitors. These filters show the same dynamic range
as the analog time-continuous filters for switching frequencies being minimally the
double of the maximum signal frequency. This is explained by the fact that the
switched capacitor is an exact replica of a resistor for signals with a frequency
up to the half of the switching frequency. Of course, due to the switching action
additional noise is introduced in the filters.

Thanks to the time discrete behavior these filters are able to implement transfer
functions which are not possible for time-continuous filters. An example are the
FIR filters (Finite Input Response). Also tuning of these filters is easily realized
by changing the switching frequency.

1.5.5 Synchronous digital filters

This class of filters exhibit a time discrete and amplitude discrete behavior. Fil-
tering is obtained by doing numerical processing on the data, for instance by a
computer. The subsequent samples have a predefined time relation. With this
class reconfigurable filters can easily be implemented, i.e. filter curve is changed
when an other algorithm is used on the data stream.

1.6 Filter transfer and topology

The most convenient way of designing continuous time filters is to use the known
filter theory of passive filters. The design path followed uses standard filter tables
to determine component values in order to attain the desired transfer function.
The dynamic range –defined as the maximal signal with respect to the noise level
that the filter is able to handle at the same time– is in the case of passive filters
(only L and C used) not limited by noise, because reactive components do not
introduce noise. The maximally possible signal levels at the capacitors and induc-
tors are (almost) infinite; they are limited by the dissipation in the resistors and
the breakdown in the capacitors and saturation of the inductors. Noise of the (also
parasitic) resistors puts a lower limit on the smallest signals to be handled.
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In active integrated filters, the poles and zeros are determined by resistors and
capacitors, as well as by the active components. The use of resistors introduces
noise, as does the use of active components. The active components are also
assumed to operate within a certain supply voltage, thus limiting the maximal
output signal. Hence, a translation is necessary to use the conventional filter
theory for constructing active continuous time filters.

1.6.1 The state space description

The state space description is used to combine the transfer function and the topol-
ogy of a filter in one description. As the filter can be viewed as a linear differential
equation, the state space must be able to represent this. The variable s is the
Laplace variable, which determines the poles and zeros of the filter. Suppose a
transfer function of two polynomials (the order of the denominator is n, which
is greater than or equal to the order of the numerator). This transfer function
can be represented in a signal flow graph as a connection of n integrators or dif-
ferentiators. From this point, it is assumed that only integrators are used, as
differentiators appear to be difficult to implement because of the critical stability
considerations. This does not imply restrictions on the quality aspects of the fil-
ter or design freedom. The connection of the integrators can be described in the
following equations:

sX = AX + BU (1.3)

Y = CX + DU (1.4)

Thus, the new inputs of the integrators (sX) are a function of the old output
signals of the integrators (X) and of the input signals (U). The output of the
filter (Y) is a combination of the output of the integrators and some fraction D
of the input signal. The factor D can always be neglected in DR calculations, as
this signal through this branch does not interfere with the internal structure of the
filter.

A,B,C and D are matrices, which look like:

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann


 (1.5)

B =




b1
...
bn


 (1.6)
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C =
(

c1 · · · cn

)
(1.7)

D = (d) (1.8)

The resulting (scalar) transfer function is:

H(s) =
Y

U
= C(sI−A)−1B + D (1.9)

This is rendered schematically in figure 1.9.

(sI-A)-1B C Y  U 

X

D

Figure 1.9: Scheme of state-space description

1.6.2 Signal-flow diagram

Signal-flow diagrams are widely used to represent the filter topology and the trans-
fer functions of the comprising elements in a graphical way. In figure 1.10 the basic
element is depicted. This diagram should be read as follows. Signal U is trans-

HU Y

Figure 1.10: Basic element of a signal-flow diagram.

ferred via transfer H into signal Y . The signal U and Y can be either voltage, or
current, or charge, etc. So, the signal-flow diagram makes visible what the relation
is between two signals. A complete signal flow diagram can comprise several of
these branches but also nodes where several signals are added or subtracted.

In figure 1.11 an example is given of the use of a signal-flow diagram of a
first-order low-pass filter. Figure 1.11A depicts the circuit diagram of a first-order
low-pass filter. The input voltage is Ui and the output voltage is Uo. In order
to end up with a signal-flow diagram, the signals and transfers have to be made
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R

Cui uo

+

-

+

-

+ R-1 (sC)-1Ui Uo

+

-

Ui Uo1 1

-1

(sRC)-1

A)

B)

C)

UR IR

Figure 1.11: A signal-flow diagram used to describe a first-order low-pass filter. A)
Circuit diagram B) An intermediate block diagram C) Signal-flow dia-
gram.

explicit. As intermediate step, for the sake of clarity, a block diagram is derived.
In the filter of figure 1.11 the following signals and transfers can be found:

UR = Ui − Uo (1.10)

IR = UR/R

Uo = IR/(sC)

This equations can be found by starting at the input signal (Ui) and via the
circuit follow the signal to the output signal (Uo). These three expressions are
represented by the block diagram of figure 1.11B. The first equation is giving by
the subtractor, i.e. UR = Ui−Uo whereas the other two equations are represented
by the two blocks. This diagram is already close to the signal-flow diagram which
is illustrated in figure 1.11C. When calculating from this signal-flow diagram the
following transfer is found:

H(s) =
Uo

Ui

=
1

1 + sRC
(1.11)
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1.6.3 Filter realizations

There are some known methods to determine a topology and to realize a transfer
function electronically. Here three ways are shown.

• Ladder realization from passive ladder filter

• Cascade realization

• Direct realization

1.6.4 Ladder realization from passive filter

One method is to derive the state-space description from a passive filter, after
which an active implementations is constructed. For a given transfer function
the passive filter circuit can be found easily from standard tables. Subsequently,
the active implementation can be derived as depicted in figure 1.12. Starting
point is a passive realization of a filter. This passive realization is subsequently
depicted as a block diagram (like figure 1.11B). Then easily a signal-flow diagram
is found; the 3rd step. Subsequently an implementation is depicted by using active
aii (transconductances) and passive intergrators. The fifth diagram in figure 1.12
depicts the same filter function but now with passive aii and active integrators.

1.6.5 Cascade Realization

The cascade realization can be directly found by splitting the denominator of the
transfer function into first- and second-order transfer functions. Applying this
method, a third-order Butterworth filter (normalized) is written as:

H(s) =
1
2

(s + 1)(s2 + s + 1)
(1.12)

The corresponding signal flow graph shown in figure 1.13. How to derive a signal
flow diagram for a filter when the transfer function is given is described further on.
By implementing the 1/s branches by active integrators, an active filter results and
the scale factors by for instance resistors and active implementation of the filter is
obtained.

1.6.6 Direct realization

The direct realization extracts the signal flow graph directly from the transfer
function without factorization of the denominator. Taking for this example a
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Figure 1.12: Transformation from passive filter to active filter
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1/2 1/s 1/s 1/s1 1 1

-1 -1/2-1/2

-3/4

in out

Figure 1.13: Signal flow graph of cascade realization

general expression for a Butterworth characteristic:

H(s) =
ω3

c

2

s3 + 2ωcs2 + 2ω2
cs + ω3

c

. (1.13)

in which ωc is the bandwidth of the filter. The corresponding signal flow graph is
shown in figure 1.14. Again by implementing the 1/s-terms by, for instance, active
integrators and the scale factor by resistors an active filter is obtained.

1/s 1/s 1/s

-ωc
3

-2ωc
2

-2ωc

1ωc
3/2in out

Figure 1.14: Signal flow graph of direct realization

The former examples of the implementation of the transfer functions show that
it is possible to use several topologies to realize the same transfer function. This,
however, does not imply that the various topologies behave the same. Various
topologies, for example, appear to show different dynamic range behavior, but
also different sensitivity behavior.

This dependency on the topology necessitate the use of the state space de-
scription as described in section 1.6.1. It not only describes the desired transfer
function, but also the topology of the filter. Thus the use of the state-space de-
scription enables the optimization of filter topology in order to end up with the
maximum dynamic range.

1.7 Construction of time-continuous filters

Roughly speaking, the design of filter can be split into two steps:

• determine optimal topology;
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• implement topology.

In this section it is shown how a transfer function can be converted, via a state-
space description, to a topology with ideal building blocks. In the next chapters
guidelines are given for deriving an optimal topology, i.e. to attain the highest
dynamic range.

Starting point is the required filter transfer function. It might also happen that
the specification are in terms of attenuation and so on. Then it is also up to the
designer to determine what filter transfer is required to reach those specifications.
Here we assume that a filter transfer is already given and we take again the general
third-order low-pass Butterworth transfer:

H(s) =
Y (s)

U(s)

ω3
c

2

s3 + 2ωcs2 + 2ω2
cs + ω3

c

. (1.14)

The state-space description is matrix description of a coupled set of n first-order
differential equations (see equations (1.3) and (1.4)). Therefore, a straight-forward
way is to write down the filter transfer as a nth-order differential equation and
subsequently convert it to a coupled set of n first-order differential equations.
Then the state-space description is readily obtained as well as the corresponding
topology.

Transfer function equation (1.14) described as differential equation is given by:

ω−3
c

...
y (t) + 2ω−2

c ÿ(t) + 2ω−1
c ẏ(t) + y(t) =

1

2
u(t) (1.15)

Next step is to write this 3rd-order differential equation as 3 coupled first-order
differential equations. This is easily achieved by just defining three states (x1, x2

and x3) which are ”coupled” in cascade.

x1(t) = y(t) (1.16)

x2(t) = ẋ1(t) = ẏ(t)

x3(t) = ẋ2(t) = ẍ1(t) = ÿ(t)

In order to obtain a complete state-space description, matrices A, B, C, and D
should be determined. The new states relate to the old states and the input via
matrix A and B:

ẋ = Ax + Bu (1.17)

The expression for matrix A is easily derived from equation (1.16) as:




ẋ1

ẋ2

ẋ3


 =




0 1 0
0 0 1
−ω3

c −2ω2
c −2ωc







x1

x2

x3


 +




0
0

1
2
ω3

c


 u(t) (1.18)
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The output signal of the filter is related via matrix C and D to, respectively, the
old states and the input signal, according to:

y = Cx + Du (1.19)

In equation (1.16) an explicit expression for y(t) is already given and thus the
matrix notation is given by:

y(t) =
(

1 0 0
)



x1

x2

x3


 +

(
0

)
u(t) (1.20)

Given this state-space description, a signal-flow diagram is easily obtained. As
said, the state-space description is a set of first-order differential equations. Each
of these equations should be represented by means of one or more branches and
nodes in the signal flow diagram. Drawing the signal-flow diagram related to the
example of this section, we’ll start with the first line in the matrix equation (1.18),
i.e. ẋ1 = x2. In the signal-low diagram derivatives of states should not appear.
Thus the expression to be represented should be either (in frequency domain):

sX1 = X2 (1.21)

or
X1 = X2/s (1.22)

in which s is the complex variable. For the first case a differentiator is used, whereas
in the second case an integrator is used. For now we choose for using integrators.
Further on, it is argued that implementations based on integrators are more easily
to implement practically than those based on differentiators. Figure 1.15 shows
the signal-flow representation of equation (1.22). Subsequently, the second line of

X1X2 1/s

Figure 1.15: Signal-flow representation of X1 = X2/s

the matrix equation ẋ2 = x3 is rewritten in terms of an integration,

X2 = X3/s (1.23)

This expression is analogous to expression (1.22) represented as a signal flow dia-
gram. The result is added to figure 1.15 and figure 1.16 is the results. The third
line of the matrix equation (1.18) yields:

ẋ3 = −ω3
cx1 − 2ω2

cx2 − 2ωcx3 +
1

2
uω3

c (1.24)
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X1X2 1/s1/sX3

Figure 1.16: Signal-flow representation of X2 = X3/s added to figure 1.15

This expression states the the time-derivative of state x3 is equal to a sum of the
stated plus a term proportional to the input signal u. In figure 1.16 the three
states x1, x2 and x3 have already been indicated. However, only two integrators
are used and thus can never yield a third order system. This third integrator is
introduced by equation (1.24). That equations is in terms of ẋ3 and in the signal-
flow graph of figure 1.16 no ẋ3 is found. To make this signal available an additional
integrator needs to be added as indicated in figure 1.17. At the input of the most

X1X3

1/s1/s

X2

U ωc
3/2

-2ωc

1/s

-2ωc
2

-ωc
3

X3/s

Figure 1.17: Signal-flow representation of matrix equation (1.18)

left integrator signal ẋ3 is found as its output signal was defined as x3. Adding
the signals arriving at the node representing ẋ3 yields expression (1.24). Finally,
to obtain a complete signal-flow representation of the state-space description, also
equation (1.20) should be taken into account. That equation determines how
output signal y is obtained from the states and the input signal. In this case y
equals x1. This illustrated in figure 1.18.

X1X3

1/s1/s

X2

U
ωc

3/2

-2ωc

1/s

-2ωc
2

-ωc
3

Y
1

Figure 1.18: Signal-flow representation of state-space description equations (1.18) and
(1.20)



24CHAPTER 1. FROM DIFFERENTIAL EQUATION TO BLOCK DIAGRAM

1.8 Exercises

1. Give a summary of the history of filter design. What key developments can
you indicate.

2. Derive the basic equation for the dynamic translinear filter:

CVT
dic
dt

= icicap (1.25)

3. What is the main difference between a filter used for selection and a filter used
for shaping?

4.

(a) What quality aspects do you know in the context of integrated circuit design?

(b) What cost aspects do you know in the context of integrated circuit design?

(c) How would you define quality and cost?

5. To which classes belong the following filters, explain your choice:

(a) A filter realized by combining several taps of a charge-coupled device (CCD)?

(b) A wave guide on a chip which has transmission zeros for certain frequencies?

(c) A filter to do picture enhancement in a digital camera?

6. Given the following applications. From which class of filter should you select
a solution, motivate your choice?

(a) Separation of Low and High-frequencies from an audio signal to drive a
woofer and tweeter of a loud speaker, respectively.

(b) To implement an RIAA correction in a tape-deck?

(c) A channel selection filter in a GSM telephone?

7. Given the filter of figure 1.19.

(a) To what class belongs this filter?

(b) Explain whether the filter has low-pass, band-pass or high-pass behavior.
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Figure 1.19: Circuit diagram of a RC filter

(c) Derive the signal-flow diagram for this filter.

8. Given the following transfer function:

H(s) =
s2 − 2s + 2

s2 + 2s + 2
(1.26)

(a) Draw the bode plots of this filter.

(b) For what application can this filter be used?

(c) Design this filter using integrators and gain blocks.

9. Given the filter transfer function according to:

H(s) =
s2

s2 + 1.4 · 107s + 107
(1.27)

This filter function is to be implemented by means of ideal integrators and scalers.

(a) Give the derivation of the state-space description.

(b) Draw the block diagram with ideal integrators and scalers. Do not forget to
indicate the input and output of the filter.

10. Given the filter transfer function:

H(s) =
(s2 − s + 1)(s− 1)

(s2 + s + 1)(s + 1)
(1.28)

(a) What is the type of filter transfer (All pass, Band pass, High pass, Low pass),
motivate your choice?

(b) Derive the state-space description.

(c) Draw the block diagram of this filter.
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11. Given the following high-pass filter with the poles in a Bessel-Thomson
configuration:

H(s) =
s3

s3 + 6s2 + 15s + 15
(1.29)

(a) Derive the state-space description

(b) Draw a block diagram with ideal integrators and scalers.



Chapter 2

DR optimization of filters

2.1 Introduction

The use of coils and large capacitances has the disadvantage of not being inte-
gratable. The advantage of using coils and capacitors for realizing filters is that
coils and capacitors have considerable signal-handling capabilities. The dynamic
range of passive filters can in theory be infinite, because only coils and capacitors
determine the location of the poles and zeros. The terminating resistors at the
input and the output of the filter introduce some thermal noise, but this is very
little.

The dynamic range of active filters is not infinite. Limitations arise at the
two sides of the dynamic range. The output capability is limited by the supply
voltage. No signals appear that go beyond the supply voltage. The noise level is
introduced by the use of resistors to determine the filter transfer. The amount of
noise becomes worse when active devices are used; this gives rise to a noise factor.

Although not evident, the dynamic range appears to be dependent on the
topology of the filter. It can be proven that to every filter transfer there is some
corresponding maximal dynamic range together with a given supply voltage, total
capacitance and noise factor of the active devices. Only for one topology can it be
proven that this maximum dynamic range can be reached. No attention is paid
here to the exact calculations, we address only some clarification of the principles.

In this chapter first, in section 2.2, the dynamic range of a filter is introduced.
To maximize the dynamic range, the noise level should be minimized and the
maximum possible output signal without distortion, ideally, should be maximized.
Section 2.3 treats some basic concepts of noise, i.e ,modelling and how to determine
an equivalent noise source for a simple circuit. Subsequently, section 2.4 describes
what types of distortion can be distinguished and how they are caused. Finally,
section 2.5 treats the maximization of the dynamic range of a filter.

27
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2.2 Dynamic Range

In chapter 1 the quality of a filter (or in general of an electronic circuit) was related
to the signal-handling capacity C as defined by Shannon:

C = B 2 log

(
1 +

S

N

)
(2.1)

Besides a linear dependence on the bandwidth, the signal-handling capacity also
depends via a logarithm on the ratio of the signal power (S) and noise (N). Clearly,
C is the largest (for a given bandwidth) when the ration S/N is the largest. The
dynamic range is defined as:

The dynamic range (DR) is defined as the ratio of the largest and
smallest signal that can be processed at the same time:

DR =
Maximum signal

Minimum signal

∣∣
at the same time (2.2)

This definition implicitly states that on the one hand the small signal is not con-
taminated by noise such that the information on that signal is lost and on the
other hand the the information that is on the large signal is not destroyed by dis-
tortion. This is illustrated in figure 2.1 The adjectives ”too large” and ”too small”
need some explanations. A signal is called ”too small” when it gets lost in the
noise. Of course, when lowering a signal level it will gradually be contaminated by
noise and there will not be a very distinct (sharp) moment at which you can say
”Now the signal is lost in the noise”. To have an objective criterion, often for the
minimum signal level, the signal is used that has the same power content as the
power of the relevant noise. Section 2.3 will go into more detail about the power
of the relevant noise. For defining a signal to be too large, a somewhat different
approach is used. When a signal becomes large, an electronic circuit will produce
distortion as a result of its non-linear behavior. Due those this distortion higher
harmonics will arise. Often the power content of these higher harmonics is used
to a criterion to say that a signal is too large. A criterion could be that the power
content of the higher harmonics is equal to the noise power present in the system.
Section 2.4 describes in more detail the distortion behavior of electronic circuits.

2.3 Noise

Noise is one of the phenomena that is ubiquitously present throughout physical
mechanisms and physical systems. Such systems obey the well-predictable, deter-
ministic rules only to a certain extend; the noise introduces slight non-predictable
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Figure 2.1: The dynamic range depicted as the window between ”too large” signals
and ”too small” signals

perturbations from it. The hissing sounds produced e.g. by radios, televisions, and
telephones between messages is perhaps the most widely known example of noise.
In engineering, however, the term noise is used to refer to a much wider class of
very diverse random phenomena. As you may have expected already, electronic
components are subjected to noise as well; their behaviour is also impaired by
slight non-predictable perturbations.

In noise analysis of electronic circuits the noise sources have to be obtained from
the noise models of the various circuit components. In addition, these models
reveal the origin of the noise processes, and their mutual correlations. In this
section the noise model for resistors is discussed.

2.3.1 General Characteristics of Electronic Circuit Noise

Although several different types of electronic circuit noise, with slightly different
causes can be identified, all of them are fundamentally due to the quantized nature
of electric charge on a microscopic scale. As a result of this quantized nature,
electric current is not a continuous flow of charge, as it is modeled in circuit
theory, but a stream of charged particles moving on average in one direction.
Due to several (microscopic) mechanisms, their actual path of motion can be very
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irregular and very different from this average direction. As a consequence, the
instantaneous current flowing through electronic components will slightly fluctuate
in a random manner: it contains noise.

Due to this common cause, the statistical characteristics of electronic noise
processes are very similar. All these processes are due to random movements
of large numbers of equally charged particles. From stochastics is known that
the probability density function of such processes approaches a normal/Gaussian
density function. For this reason, all electrical noise processes considered in this
book possess an (approximately) Gaussian probability function p (en):

p (en) =
exp

[
− (en−µn)2

2σ2
n

]

σn

√
2π

. (2.3)

The parameters µn and σn in this expression represent the average (expected) value
and the standard deviation (the square root of the variance) of the process respec-
tively. Since electrical noise is generally defined as the fluctuations of currents and
voltages with respect to their average value, the average value of electrical noise
processes equals zero:

µn ≡ 0. (2.4)

The value of the variance differs among the types of noise processes, and is de-
termined by circuit and component parameters. In the sequel, the variance for
the noise process in a resistor will be specified in terms of the mean square value
associated to a frequency band ∆f .

2.3.2 Resistor Noise Model

Resistors produce a type of circuit noise that is called thermal noise. It is caused by
(thermal) kinetic energy gained by free charge carriers when the temperature rises
(thermal agitation). If the temperature is the same everywhere in the resistance
material, this thermal motion of the charge carriers has no preference for any
direction. As a result, thermal energy causes carriers to move randomly, uniformly
distributed among all directions, which generates a random current/voltage.

In addition to the thermal agitation, an external applied source gives the motion
of the charge carriers a drift component, in the same (or opposite) direction of
the external current. The total external noticeable current/voltage equals the
superposition of both effects, and therefore contains a random component: thermal
noise.

Nyquist showed that the voltage fluctuations (voltage noise) observed at the
terminals of a resistor with value R due to thermal agitation possesses a mean-
square value associated to a frequency band ∆f equal to:

v2
n (f, ∆f) = 4kTR∆f, f ≥ 0, (2.5)
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where k = 1.38 · 10−23 (J/K) denotes Boltzmann’s constant, and T the absolute
temperature in Kelvin. Thus, resistors produce white noise, i.e. noise that is
frequency independent1. Figure 2.2 depicts the Thevenin and Norton equivalents
of the resistor with thermal noise voltage source vn and noise current source in,
respectively. The resistor depicted in the figure is an ideal one, i.e. the resistor

R

R

vn

in

Figure 2.2: Noise model of a resistor.

defined in circuit theory by Ohm’s law. So, it is noise free. The noise present in a
physical resistor is modelled by the separate noise source.

Using the Thevenin-Norton transform and equation (2.5), we find that the
mean square value of the noise current in the Norton equivalent equals:

i2n (f, ∆f) =
4kT∆f

R
, f ≥ 0. (2.6)

This is explained any further in the next sections.
In resistors made of materials with a very irregular internal structure, another

type of noise, so called 1/f noise or flicker noise, may yield a non-negligible con-
tribution to the resistor noise production. This is sometimes the case for resistors
made of compressed coal powder. The variance of this flicker noise can be written
as:

v2
n (f, ∆f) = 4kTR

fl

f
∆f, f ≥ 0, (2.7)

where fl denotes the frequency above which the white thermal noise dominates. For
frequencies below fl, the flicker noise dominates. The flicker noise is uncorrelated
with the thermal white noise.

2.3.3 Power versus Power-Density Spectrum

From an information theoretical point of view, only the noise that cannot be distin-
guished from the information signal fundamentally limits the information handling

1In reality, the thermal noise of the resistor has an extremely large, but finite bandwidth. Its
power spectral density, however, remains white up to frequencies far beyond the range of interest
to electronic circuit design.
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capacity. In figure 2.3, this is the noise located inside the same frequency band Binf

as the information signal. Any noise located outside this bandwidth can in prin-
ciple be removed by means of frequency filtering. Consequently, the noise power
located in the information bandwidth is a lower bound, and the corresponding
dynamic range an upper bound on the dynamic range that can exist within the
filter.

Figure 2.3: Schematic representation of the noise- and signal power spectral densities.

The most important observation, which is generally true, to be made from
figure 2.3 is that the noise is spread over a much wider frequency range than the
information signal, which is bound to the information bandwidth Binf as shown.

For this reason, we define the noise power Pn to be part of the power produced
by the noise source that resides in the same frequency range as the information
signal. Power equals the area under the power density spectrum, such that:

Pn
def
=

∫

Binf

Sn(f)df. (2.8)

2.3.4 Equivalent noise source

Within an electronic circuit mostly various noise sources are present. So determine
the dynamic range, the effect of all these noise sources on the signal present in the
circuit needs to be analyzed. As one of the first steps in this noise analysis, we have
to determine the so called equivalent (output or input) noise source. This source
models the noise experienced at the filter output (or input), due to internal circuit
noise production. It concentrates the entire circuit noise production into one circuit
branch, and thereby provides straight-forward calculation of the experienced noise
power.
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To determine the contributions of all internal noise sources to the equivalent
noise sources, a combination of various transformations, originating from circuit
theory, can be used. In contrast, no use of any statistical property of the noise
sources is required to obtain the equivalent noise source; these are required only
to determine the equivalent noise power.

The equivalent noise source replaces all other noise sources in the filter circuit.
Determination of this source may therefore be viewed as ‘wiping’ all circuit noise
to the filter output (or input), resulting in one noise source, and a noise-free filter.

This ‘wiping’ or transformation of circuit noise to the input is schematically
represented by figure 2.4. The circuit noise processes are distributed all over the

Noise free

H1 H2

H3 H4

in2 vn2

vn1
in1

ineq

Figure 2.4: Representation of the filter circuit as a noise-free multi-port network, con-
nected to multiple noise sources.

filter circuit, and can each be represented by independent current (in1, in2) or
voltage sources (vn1, vn2). These sources can be considered as external inputs to
the otherwise noise-free filter, which is represented as a multi-port network.

The figure shows that in order to obtain the equivalent noise source (ineq),
we basically have to determine the transfer functions H1(s) − H4(s), with s the
Laplace variable. We can do this in a straight-forward way, by evaluating the
circuit equations of the filter or by using some network transformation. This is to
be discussed further on.

2.3.5 Power of the equivalent source

In the calculation of the power of an equivalent noise source we only have to express
the power spectral density of the equivalent noise in terms of the spectral densities
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of the various noise processes. From signal theory can be derived that the power
spectral density of the equivalent source, Seq(f) is related to the power spectral
density Si(f), in the case they are uncorrelated, through:

Seq(f) =
4∑

i=1

|Hi(s)|2 Si(f), (2.9)

in which s is the Laplace variable (based on the Wiener-Kintchine theorem). The
power spectral densities Si(f) are often easily to determine. For instance, for a re-
sistor the power spectral density is given by either equation (2.5) or equation (2.6),
depending on the type of noise source used, voltage or current source, respectively.
The transfer function Hi(s) can be determined also relatively easily.

2.3.6 Network transformations

Determining the equivalent noise source could be done in a straight-forward way,
by evaluating the circuit equations of the filter. As will be shown, for the state-
space filters this can be a good method to use as all the circuit equation are
comprised in the state-space description.

However, this straightforward method is not suited in general. Instead of such a
‘global’ one-step transform, it is also possible to break the transformation of a noise
source to the equivalent input noise into several consecutive steps. In this way,
the approach exploits knowledge about the topology of the network, which is very
similar for the various circuit types, and in general shows the dominant factors and
key parameters determining the circuit noise behavior. Here four different types
of transformations are separately discussed.

Transform-I: Voltage Source Shift

The voltage source shift (V-shift) is a transform that enables to move (noise)
voltage sources through the network. Generally, it is used to shift these sources to
the network input, the output, or a branch where it can be subjected to another
type of transform.

The major constraint to be posed on any source transform is that the trans-
form itself does not change the noise current/voltage experienced at the circuit
input (or output); it should not be noticeable to an observer measuring the noise
voltage/current at these points whether or not noise sources have been trans-
formed/shifted internally in the network. For the V-shift, this means that it must
not change the Kirchhoff Voltage Law (KVL) of any mesh in the circuit.

The V-shift obeying this constraint is visualized in figure 2.5. The original
(noise) source vn is shifted out of the branch between the nodes 1,4 into the two
other branches connected to node 4; the ones between 2,4 and 3,4. In order
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Figure 2.5: V-shift transform.

to guarantee that the KVLs of the meshes I,II,III, associated to node 4 remain
unchanged, the new sources vn1 and vn2 have to be exactly equal to each other
and to the original source vn.

This means that the stochastic processes vn, vn1 and vn2 are fully correlated,
and possess identical stochastic properties. Observe what happens with the V-
shift in the general case, when node 4 is connected to n branches (n > 2). Then,
shifting vn through node 4 from its original branch to the n − 1 other branches
yields n − 1 identical sources, instead of just 2. Further, note that the V-shift
allows to move vn around mesh I and II, but not out of it; this would change the
KVL.

Transform-II: Blakesley transform

The dual transform of the V-shift is the Blakesley transform, which allows to move
current (noise) sources through the network. It is generally used to move these
sources to the network input port, output port, or intermediate nodes that allow
another type of transform.

Whereas the V-shift is not allowed to affect the KVL of any circuit mesh, the
Blakesley transform is not allowed to change the Kirchhoff Current Law (KCL) of
any circuit node, for the same reason. The transform obeying this constraint is
depicted in figure 2.6. The original (noise) current source in is redirected from the
branch between nodes 1,2 through the sources in,1 and in,2 between nodes 1,3 and
2,3. In order to keep the KCLs of the nodes 1,2, and 3 unchanged, in,1 and in,2

have to be exactly equal to each other and to in, and also have be be directed as
illustrated.

Similar to the V-shift, this means that the original source in and the trans-
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Figure 2.6: The Blakesley transform.

formed sources in,1 and in,2 have to be fully correlated and possess identical sta-
tistical properties. We further notice that, similar to the V-shift, the I-shift allows
to move a current source around the network, but cannot be used to disconnect it
from the original nodes; this would change the KCL.

Transform-III: Norton-Thevenin Transform

The equivalence of the well-known theorems of Norton and Thevenin can be used
to transform a (noise) current source into a (noise) voltage source and vice versa.
This type of transform does essentially not move sources through the filter network,
but is used to switch between the V-shift and Blakesley transform.

The Norton-Thevenin transform, which automatically obeys the constraint that
it does not affect the observed output noise (why ?), is depicted in figure 2.7.

+

-
in vn=Z in1/G

Z=1/G

Figure 2.7: Norton-Thevenin transform.

The current source in and the voltage source vn have a one to one correspon-
dence through the impedance Z. The stochastic processes in and vn are therefore
fully correlated, and possess similar, though not identical stochastic properties.
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Note that this transformation does change the KVLs and KCLs of the circuit; it
exchanges a circuit branch for a circuit node, and vice versa. For this reason, the
Norton-Thevenin transform, in combination with the V-shift and Blakesley trans-
form can be used to eliminate a voltage source from a mesh, or a current source
from a node.

Transform-IV: Shift through twoports

The three transformations we have considered so far are all concerned with two-
terminal elements (one-ports) only. If a network consists entirely of such elements
these three transforms are all we need to determine the equivalent input noise.

Many circuits, however, also contain elementary twoports, controlled sources
(included in transistor models) or a nullor, that cannot be replaced by any com-
bination of one-ports. For such networks, we need an additional transform: the
twoport shift. This transformation is illustrated by 2.8. The output voltage vo and
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Figure 2.8: Transformation of noise sources through a twoport.

the output current io of the twoport are mutilated by a noise voltage vn and noise
current in respectively, as depicted in the upper part of the figure. The purpose
of the twoport shift transform is to obtain the equivalent input noise sources that
yields this output noise. The result depicted in the lower part of the figure is easily
obtained from the chain matrix equation for the twoport:

(
vit

iit

)
=

(
A B
C D

)(
vot

iot

)
(2.10)

and substitution of vi, ii, vo, io, vn and in. Observe that the output noise voltage
source vn is transformed into an input noise voltage source Avn and a noise current
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source Cvn that are fully correlated. Likewise, the output noise current source in
transforms into an input noise voltage source Bin and an input noise current source
Din.

2.3.7 Correlated noise sources

Via the transforms discussed in the previous section, an expression is found for the
equivalent noise in terms of the comprising noise sources. For circuit design, the
important property of the noise source is its spectral power density or its power
content. Equation (2.9) shows how the spectral power density of the equivalent
sources relates to the spectral power densities of the comprising noise sources.
An important constraint for using this equation is that the noise sources are un-
correlated. It is easily demonstrated that by using the transforms fully correlated
sources arise. So, care has to be taken when determining the spectral power density
or power of the equivalent source.

How to proceed when fully correlated sources are obtained can also be found
from equation (2.9). The equation use for each original noise source in the circuit
a transfer function describing the transfer from the original noise source to the
equivalent noise source. Thus, when fully correlated noise sources are obtained,
i.e. originating from the same noise source, the corresponding transfer functions
should be added to a new transfer function. By doing this for all the fully correlated
noise sources, the remaining sources will be uncorrelated and the expression (2.9)
can be used.

Assume that after some transformations, a series connection of three noise-
voltage sources is obtained as illustrated in figure 2.9. Then, combining the corre-
lated sources to a new source yields two uncorrelated sources:

vn1 and vn2 (2.11)

with corresponding transfer functions

H1 = a− b and H2 = c. (2.12)

Thus, the equivalent source is described as

vneq = H1vn1 + H2vn2. (2.13)

As both sources are uncorrelated, equation (2.9) can be used:

Sneq = |H1|2Sn1 + |H2|2Sn2 (2.14)

yielding
Sneq = (a− b)2Sn1 + c2Sn2 (2.15)
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Figure 2.9: Three noise sources that are not completely uncorrelated, that add up to
an equivalent noise source

2.4 Distortion

Distortion of a signal occurs, generally speaking, when the actual output signal de-
viates from the expected output signal, i.e. the signal which would be found at the
output of the ideal filter. Depending on the nature of the distortion, information
may be lost. Therefore a distinction is made between:

• weak distortion;

• clipping distortion.

Weak distortion occurs when the static transfer of a system deviates from the
intended static transfer, see figure 2.10. The actual static transfer still has an
inverse function so that a compensating function can be found for preventing
the system from losing information. Thus, for instance, intentionally using the
exponential transfer of a transistor does not mean that information is lost (remind
the dynamic translinear filters); by means of the inverse function, the logarithm,
the information can be retrieved again.

The other type of distortion is found when the transfer of a system no longer
has an inverse function, i.e. the transfer has become ambiguous; and thus the
original information can no longer be retrieved, see also figure 2.10. This occurs,
for instance, when signals clip to the supply voltage. Two different types of input
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ein
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Weak distortion
Clipping distortion

Linear transfer

Figure 2.10: Weak and clipping distortion arising from a function not being linear as
intended

signals, one causing clipping and the other being close to clipping, may result in
the same output signal. A very straightforward example is the use of a limiter to
get rid of all the amplitude information in a signal.

When circuit transfers are perfectly corresponding with the intended transfer,
no weak distortion is obtained. In that case the upper limit of signal amplitudes is
given by the clipping distortion. Thus an upper limit for signals is given by supply
voltage and supply current.

2.5 DR optimization

Clearly, the dynamic range of a filter depends on the noise and distortion perfor-
mance of the comprising elements. For instance, the noise of the resistors used in
the filter implementation will somehow limit the dynamic range of the filter at the
lower bound. The upper bound of the dynamic range is likely to be limited by the
power-supply voltage limiting signal swing. Doing careful calculations, it appears
that the effect on the dynamic range of all the separate components in the filter
are completely taken into account when the dynamic range of the integrators are
studied, which is not trivial.

In chapter 1 several topologies where shown having the same transfer function.
Noticing that for the different topologies the integrators are connected differently
to each other and the input and output of the filter, it is not surprising that the
different topologies exhibit different dynamic ranges.

It can be said that for optimizing the dynamic range of a filter two key issues
need to be addressed:

• optimization of the dynamic ranges of the integrators in the filter;
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• optimization of the interconnection of the integrators, i.e. the topology of
the filter.

2.5.1 Dynamic range of integrators

The dynamic range of integrators consisting of a resistor and a capacitor is partly
determined by the maximal signal levels the integrator is able to handle. Because
integrators are coupled in a filter, all integrators must have approximately equal
signal-handling capabilities. When the maximal signal amplitude is Vmax, the
maximal signal power level is by definition V 2

max/2.
The noise of the integrator of figure 2.11 can be modeled as a noise voltage

source at the input, with a single-sided spectrum (f ≥ 0) of:

Sni(f) = 4kTξR (2.16)

in which ξ is the noise factor of the integrator with a minimum value of 1. This
noise factor accounts for the surplus noise of the active devices. The mean squared

+

-

R VCC

vout

C

+

-
vin

Figure 2.11: An active integrator

noise voltage can be determined by integrating over the noise bandwidth B, which
is chosen to be equal to the unity gain frequency of the integrator, B = 1/(2πRC):

Pni =

∫ ∞

0

Sni(f)df ≈
∫ B

0

Sni(f)df =
2kTξ

πC
(2.17)

From this a very remarkable conclusion can be drawn: in the integrator the resistor
is the element generating noise, however, looking to the total noise power of the
integrator, only the value of the capacitor is what matters! The dynamic range of
the integrator becomes:

DR =
V 2

max/2
2kTξ
πC

=
πV 2

maxC

4kTξ
(2.18)
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Note that for a single-sided supply voltage holds: Vmax = VCC/2.

The same calculations can be performed for the completely passive integrator
(first-order low-pass filter) as shown in 2.12. The spectral power density of the

iin

vuit

+

-

vin

+

-

R

Figure 2.12: A first-order low-pass filter used as integrator

noise voltage source (vnin) at the input equals:

Snin(f) = 4kTR (2.19)

The spectral power density of the noise voltage at the output of the filter becomes:

Snout(f) = |H(s)|2Snin =
4kTR

1 + (2πfRC)2
(2.20)

Integrating over the total frequency band, the total output noise power Pnout ap-
pears to be kT/C exactly. The dynamic range becomes, by assuming again a
maximum signal level of 1

2
V 2

max:

DR =
V 2

maxC

2kT
(2.21)

The difference between this expression for the DR and expression (2.18) is a result
of the different definition of the band of integration. In the last situation the band
of integration is infinite. For the active integrator of figure 2.11 it is not possible
to integrate over an infinite band; for frequencies approaching 0 Hz the gain of the
integrator becomes infinite. This integrator needs to be placed within the context
of the filter network to be able to do calculate the total noise over an infinite band.
So, for the active integrator an assumption had to be made. This assumption does
not have any influence on the optimization of the dynamic range, only on the
absolute value of the dynamic range that results.

Conclusion for the integrators is that the larger the capacitance, the larger the
dynamic range is. On top of that, the active part of the integrator should be
designed such that ξ approached 1 for optimal performance.
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2.5.2 Matrix transforms

As the state-space description describe the filter topology and transfer function, it
is suitable for doing dynamic range optimizations. It is used to calculate new or
adapted topologies in order to optimize the dynamic range.

There are two methods of optimization. The first one is called scaling. Scaling
does not change the topology of the filter. Simple “start” topologies are locally
optimized. This method does not usually reach the maximally possible dynamic
range. Full optimization is, however, able to reach this limit. In this case the
topology is also changed. All possible connections between integrators may be
used to obtain the maximal dynamic range.

The change of topology, without changing the transfer function, can be de-
scribed by the following transformation with the transformation matrix T:

A′ = T−1AT (2.22)

B′ = T−1B (2.23)

C′ = CT (2.24)

D′ = D (2.25)

By which the states of the filters are transformed according to:

X′ = T−1X (2.26)

By these transforms, the transfer function of the filter remains the same (verify by
using equation (1.9) and equations (2.22)-(2.25))

H ′(s) = H(s) (2.27)

Thus the transfer function remains the same, as the topology is changed, in
order to attain the maximal dynamic range.

2.5.3 Optimization of the dynamic range of filters

Two items are important when optimizing filters: the maximal signal capability
and the noise. The problem can be viewed as that of looking through a window.
This is depicted in figure 2.13. All windows have a view which extends from left to
right; it can be large or small. The total range is determined by the highest noise
level of all integrators, and the lowest output level of all integrators. Although all
integrators can have a large dynamic range, not all integrators make optimal use
of it. Better performance results when all the integrators are scaled to each other.

To show the effect of scaling, an implementation was made of a signal-flow
diagram, analogous to those of figures 1.13 1.14, of a third-order filter. The 1/s
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Figure 2.13: Window of several integrators

branches were implemented by means of active integrators like figure 2.11. Sim-
ulation results of the output levels of the integrators as a function of frequency
are depicted in figure 2.14. It can be seen that the first integrator, magn(f1) in
figure 2.14, has to handle larger signals than the second and the third integrator,
magn(f2) and magn(f3) in figure 2.14.

By scaling the top levels of the integrator’s output levels, the output signals
as shown in figure 2.15 results. Now the maximum output level of the integrators
are equal and thus all the integrators determine equally the maximum signal that
can be handled; all of them are using their signal capability for the large signals
completely. This kind of optimization is especially suited for sinusoidal input
signals.

Another possibility of scaling is ”scaling on the integral of the signal outputs
over the total frequency spectrum”. This can be viewed as the total signal power
level the integrator should be able to handle, which is represented by the total
area under the curve of representing the output signal as function of frequency of
a single integrator. Such scaling results in the frequency characteristic shown in
fig.2.16. This optimization is most suitable for white (noisy) input signals, which
is, for example, a good model for a radio input spectrum.

The optimization carried out only considers the output signal handling capabil-
ities of the integrators. This is usually called scaling. Referring to the state-space
description, the transfer from the input of the filter to the output of the integrators
is equal to, see figure 1.9:

F =




f1
...

fn


 = (sI−A)−1B (2.28)

From this the “controllability matrix”, K, can be constructed:

K =
1

2π

∫ ∞

−∞
FF∗dω (2.29)
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Figure 2.14: Integrator outputs of the unscaled filter

This matrix describes the (power-)transfer from the input of the filter to the output
of the integrators.

Scaling does not have any effect on the topology of the filter. This is clear
as the scaling action is as shown in figure 2.17. By equalizing the output levels
of all integrators, no single integrator will limit the dynamic range at the upper
bound of the dynamic range. This is the basic idea behind scaling. It is clear that
scaling actually replaces a branch in the filter by another branch with another
amplification factor. By means of this amplification factor, the actual integrator is
optimally used, with respect to output capability, without changing the topology.

Full optimization –in contrast to scaling– makes use of the noise transfer of the
integrators to the output too. Not only is the output capability of the integrators
important, but also the noise level. Equalizing the noise levels as well as keeping
the output signal capabilities equal makes full optimization feasible. The transfer
of the noise sources at the inputs of the integrators to the output of the filter is
described as, see again figure 1.9:

G = (g1 · · · gn) = C(sI−A)−1 (2.30)

Now the “observability matrix”, W, can be defined as:

W =
1

2π

∫ ∞

−∞
GG∗dω (2.31)
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Figure 2.15: Integrator outputs after scaling to the tops

To minimize the total noise of the filter, the main diagonal of the matrix W must
be equalized. The main diagonal entries can be viewed as the noise transfers of
the inputs of the various integrators to the output of the filter. The difference in
the noise of the various integrators also has to be taken into account. This can be
done by choosing an ideal capacitance division over the integrators.

Because both the W and K matrices are used to optimize the filter, the topol-
ogy changes. The result is usually a filter with non-zero coefficients in every matrix
entry. Thus, a fully connected network of integrators evolves. This is most often
a structure too large and too difficult to implement on a chip. The dynamic range
of this optimal filter is often only used to compare with the actual scaled design,
which gives an indication of the quality of the filter structure used, i.e. is there
still a lot to be gained or does it not make much sense to optimize my current
filter any further. Because a method is known to obtain a topology that actually
yields an optimal filter, it is important to know the fundamental limits in advance,
so that a filter designer is able to know in advance if it is possible to realize the
specifications.
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Figure 2.16: Integrator outputs after scaling to the power transfer
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Figure 2.17: Effect of scaling

2.5.4 Fundamental limits

It is possible to derive fundamental limits for the dynamic range of bandpass filters.
The dynamic range can be maximally (its derivation is beyond the scope of this
book):

DRopt =
V 2

maxC

4kTξQ
· f(H(jω)) (2.32)

Q being the quality factor of the factor, approximately equal to the ratio of the
bandwidth and the center frequency.

The first part of the expression shows that the output capability and the total
capacitance increase the dynamic range when they are enlarged. The noise factor
of the active components must be as small as possible. It is also clear that the Q
of the filter should be kept as low as possible from dynamic range point of view.
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The second part of this equation is only dependent on the transfer function of the
filter.

The total minimal power consumption can be derived from this expression.
The maximal signal level is equal to Vmax. Current flows optimally only through
the integration capacitors, at a frequency of at most ωc, the cut-off frequency of
the filter. Thus the supply current becomes:

Isup =
n∑

i=1

Isupi
=

n∑
i=1

ωcCiVmax

π
(2.33)

in which Isup1 is the current through integrator i, as the current through the
resistors is not taken into account, nor is the surplus current of the biasing for the
active circuits.

2.5.5 Example

To show what scaling on tops means for a practical filter design, the filter of figure
1.18 is implemented by means of active integrators. As the transfer of the active
integrator of figure 2.11 equals:

H(s) =
−1

sRC
=
−ωc

s
(2.34)

the signal-flow graph of figure 1.18 is drawn now with that transfer function for the
integrators, i.e. −ωc is shifted into the branches representing the integrators, see
figure 2.18. Subsequently, this signal-flow diagram is implemented. The bandwidth

X1X3

-ωc/s

X2

u
1/2

-2

-2

-1

y-ωc/s -ωc/s 1

[V] [V] [V] [V] [V] [V]

Figure 2.18: Modified signal-flow diagram of figure 1.18, included the dimension of the
signals

is chosen to be 1 Hz and for the resistor in the integrator a value of 1 Ω is chosen.
For the integrators, active integrators are used as depicted in figure 2.11.

A difficulty arises when we want to implement the scaling blocks. This illustrate
in figure 2.18 by the dimension of the signals at the ”state nodes”, i.e. voltage.
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As becomes clear from the picture, the dimension of the scaling blocks is [V/V],
i.e. dimensionless. Further, at the input of integrator 3, several voltages need to
be added. Adding voltages is relatively complicated when compared with adding
currents. By means of some little changes, we can implement current additions.
For this, consider a part of the signal-flow diagram of figure 2.18 as depicted in
figure 2.19A. First, in the signal-flow diagram the transfer of the active integrator

x3
-ωc/su

1/2

-2

[V] [V] [V]

1/R1/2

-2

[V] [V] [I]

-1/(sC)

[V]

1/R1/2

[V] [I]

-1/(sC)

-2/R

[V][V]

A)

B)

C)

Figure 2.19: Changing from adding voltages to adding currents

is expanded in a transfer of the conductance (resistor) with transfer 1/R and of
the active capacitor 1/(sC), see figure 2.19B. As the conductance 1/R is a linear
transfer, the addition point can be shifted from the input of this transfer to the
output, which has a dimension of a current [A]. Of course, the transfer of “-2” has
to be changed into “-2/R” to have again same transfer between the states. Using
this adaption, the positive scaling blocks can be implemented by resistors only.
For a negative gain block a inverter is required. The resulting implementation
is given in figure 2.20. The corresponding output voltages of the integrators are
depicted in figure 2.21 for a input voltage of 2 V. From this figure it easily follows
that the maxima of X2 and X3 are both about 0.73 V whereas the maximum in
X1 is 1 V. Thus X2 and X3 have to be scaled by 1.37. This means that the scaling
as depicted in figure 2.17 has to be applied to the corresponding branches. This
is illustrated in figure 2.22A. In subsequent shifts, the additional scaling factors
are shifted to locations where they can easily be implemented, i.e. at the gain
blocks or at the inputs of the integrators (just changing a resistors value). The
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Figure 2.20: Implementation of the filter of figure 2.18, fc = 1 Hz

implementation corresponding with figure 2.22D is depicted in figure 2.23. The
corresponding output signals of the three integrators are depicted in figure 2.24.
Clearly, for all the integrators, the maximum output signal (for 2 V input signal for
the filter) is now 1 V. The only measure that had to be taken was changing some
resistor values. As was stated in a previous section, the noise of the integrators is
completely determined by the capacitor values used. Therefore, changing resistor
values does not change the noise level and thus an increased dynamic range is
obtained.
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Figure 2.21: Integrator output voltages of the unscaled filter, input voltage is 2 V.
From left to right X1, X2 and X3.
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Figure 2.22: Scaling the filter of figure 2.20 to obtain for each of the integrators max-
imum output levels of 1 V
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Figure 2.23: Implementation of the scaled filter of figure 2.22D

Figure 2.24: Integrator output voltages of the scaled filter, input voltage is 2 V. From
left to right X1, X2 and X3.
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2.6 Exercises

1. Long Wave (LW) transmission is still very popular in the UK. The frequency
range of the LW is from 153 kHz to 279 kHz. For the transmitted signals Am-
plitude Modulation (AM) is used. Figure 2.25 shows a block diagram of a LW
receiver. At the input the signal is received by the antenna. A preselection filter

Preselection Amplification

Antenna

Selection Detection Amplification
Speaker

Tuning

Figure 2.25: A block diagram of an LW receiver.

(bandpass filter) rejects all the signals outside the LW band, for instance due to
mobile phones or other radio transmitters. The remaining signals of the LW band
are amplified for more robust processing. Subsequently, a selection filter selects,
by means of band-pass filtering, a single channel with a bandwidth of 9 kHz. To
be able to tune to different stations, this filter is made tunable. After selection of
a single channel, the AM signal is demodulated. Finally, the signal is amplified
such that it can be made audible via a speaker.

(a) What class of filter is most suitable for the preselection filter? Motivate your
answer.

(b) What class of filter is most suitable for the selection filter? Again, motivate
your choice.

(c) Which of the two filter is likely to determine the overall dynamic range of
the receiver. Discuss both aspects of dynamic range: noise and distortion.

2. For the LW receiver of figure 2.25, the selection filter was designed in a
0.35 µm CMOS technology. The supply voltage for that technology is 5 V. The
filter has a dynamic range of 70 dB and occupies 1 mm2 of chip area. The filter
capacitances are responsible for 75% of this area. The capacitors are made by the
gate-capacitances of the MOS transistors.

For the new generation LW receivers a redesign is required in a 0.25 µm CMOS
technology. The corresponding supply voltage is 3.3 V. The gate oxide in this
process is 30% thinner. The new filter should have a dynamic range of 85 dB.

(a) What will be the size of the redesign in this new technology when one can
assume that the active part of the receiver hardly changes in size.
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3. Given the cascade of electronic blocks as depicted in figure 2.26. Each block

I

Au=0 dB

II

Au=40 dB

III

Au=0 dB

IV

Au=40 dB

Figure 2.26: A cascade of electronic blocks.

has only got a voltage-to-voltage transfer (i.e. A 6=0 and B=C=D=0) and there
respective equivalent input noise voltage and maximum output voltage are listed
in table 2.6.

Table 2.1: The respective equivalent input noise voltage and the maximum output
voltage for the blocks of figure 2.26

Block vnoise,in,eq vout,max

I 1 µV 10 V
II 10 nV 10 V
III 10 µV 1 V
IV 10 µV 10 V

(a) Determine the dynamic range of the chain of blocks.

4. Given the two possible representations of the noise of a resistor in figure 2.27.

R

vn

+

-

A

R in

B

Figure 2.27: Modelling the noise of a resistor. A) with an equivalent noise voltage
source and B) with an equivalent noise current source.
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(a) What are the power spectral densities of the two noise sources in figure 2.27?

To determine the equivalent noise source of a larger network several trans-
formations can be used. Given a ”larger” network as depicted in figure 2.28.

R1 R2 R1 R2

vn,eq

Figure 2.28: two parallel connected resistors with a model for the equivalent noise
source.

(b) What four transformations do you know?

(c) Identify in the left part of figure 2.28 the relevant noise sources.

(d) Give an expression for the equivalent noise voltage in terms of the noise
sources of R1 and R2.

(e) Finally, give the expression for the power spectral density of the equivalent
source.

5. Given the network of figure 2.29 which is considered as a one-port . Source

R1

R2

R3
in,eq

Figure 2.29: A three resistor one-port.

in,eq is the equivalent noise source of this one-port.

(a) Determine the spectral power density of the equivalent noise source.

Subsequently, the one-port is changed by adding either a parallel capacitance
or a series capacitance, see figure 2.30.
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R1

R2

R3
in,eq

C

R1

R2

R3
in,eq

C

Figure 2.30: Adding either a parallel or a series capacitor to the one-port.

(b) Describe in a qualitative way how the power spectral densities of each of
these two situations relate to the power spectral density of question (a).

6. In figure 2.31 a signal model of a bipolar transistor is depicted including the
relevant noise sources. The noise source in,c is due to shot noise on the collector

rbvn,rb

in,b in,c

+

- -

+

vbe

vce

ib

ic

+ -

Figure 2.31: A signal model of a bipolar transistor including the relevant noise sources.

current whereas noise source in,b is due to the shot noise of the base current.
The base resistance introduces thermal noise. The corresponding power spectral
densities are listed in table 2.2. A simplified chain matrix of the bipolar transistor
is given by: (

vbe

ib

)
=

(
0 −1

gm

0 −1
β

)(
vce

ic

)
(2.35)
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Noise source S

in,c 2qIc

in,b 2qIb

vn,rb 4kTrb

Table 2.2: The power spectral densities of the relevant noise sources of a bipolar tran-
sistor.

(a) determine the equivalent noise sources at the input of the transistor, vn and
in.

(b) Determine the power spectral density of both sources.

7. Given the two amplifiers in figure 2.32.

RF

(A)

RL

(B)

Figure 2.32: Two feedback amplifiers.

(a) Determine for amplifier A) the equivalent input noise source(s) and the cor-
responding power-density spectrum assuming that only RF contributes to
the noise.

(b) Determine for amplifier B) the equivalent input noise source(s) and the cor-
responding power-density spectrum assuming that only RL contributes to
the noise.

8. Given the voltage amplifier of figure 2.33.

(a) Identify in the circuit diagram the noise sources. The active part can be
assumed to be noise free.

(b) Transform the noise sources to an equivalent noise source at the input.
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vin

vout

-
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-

RS

R1
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RL

Figure 2.33: A voltage amplifier.

+

-

Rint VCC

vout

vs

Cint

Rs

iopamp

vopamp

Figure 2.34: An active integrator

(c) Determine the power spectral density of the equivalent source.

9. Given the circuit of an active integrator in figure 2.34. The current source,
iopamp, and the voltage source, vopamp, can be used to model the noise contribution
of the opamp. Assume for this exercise that vopamp = 0.

(a) Determine for the integrator the equivalent input noise voltage, taking into
account the noise of the opamp, iopamp, and the noise of the resistors (see
figure 2.35.

(b) Determine the power-density spectrum of the equivalent source. Assume
that the power-density spectrum of iopamp equals Siopamp .

10. In figure 2.36 the block diagram off an all-pass filter is depicted. For an all-
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Figure 2.35: The location of the equivalent source
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Figure 2.36: Block diagram of an all pass filter

pass filter the magnitude of the transfer is flat whereas the phase of the transfer
is not flat (for this filter the phase variation over the frequency is 360 degrees).

(a) Apply power scaling to this filter when it is given that f1f
∗
1 and f2f

∗
2 of the

controllability Gramian matrix are 6.25 and 12.575, respectively.

11. Consider the implementation of a third-order Chebyshev filter of figure 2.37.
The output voltages of the integrators as a function of the frequency are depicted
in figure 2.38.

(a) Apply scaling on this filter such that the maxima of the integrator outputs
become equals. Give clearly the different steps.
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100 pF 100 pF 100 pF

R1 63.6 kΩ R5 15.9 kΩ R8 15.9 kΩ

R6 100 kΩ

R7 100 kΩ

R2 63.6 kΩ

R3 17.1 kΩ

R4 27.0 kΩ

V in
Vout

V(3) V(2) V(1)

Figure 2.37: Implementation of a third-order Chebyshev filter

12. Given the filter transfer function according to (compare with the correspond-
ing exercise on page 25):

H(s) =
s2

s2 + 1.4 · 107s + 107
(2.36)

This filter function is to be implemented by means of resistors, capacitors and
opamps. For the opamp may be assumed that their bandwidth is infinite, the
noise is zero and their supply voltage is 15 V. The integrators in the filter should
minimally have a dynamic range of 120 dB.

(a) Give a circuit diagram of the filter implementation.

(b) Determine the values of the resistors and capacitors using the required filter
function and the minimum dynamic range for the integrators.

13. Given the filter transfer function (compare with the corresponding exercise
on page 25)

H(s) =
(s2 − s + 1)(s− 1)

(s2 + s + 1)(s + 1)
(2.37)

(a) Draw an implementation of this filter by using capacitors, resistors and nul-
lors.
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Figure 2.38: The integrator-output voltages as a function of the frequency
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Chapter 3

Filters and sensitivity to
component spread

3.1 Introduction

In the previous chapters it was shown how to design, starting with a transfer
function (differential equation), a filter topology realizing the specified transfer
function. Subsequently, implementing the topology by means of resistors, capaci-
tors and nullors, was shown to be a straightforward step. In the example shown,
the capacitor values where specified with a precision of four digits. When looking
to filter tables specifying for a given topology the required components values,
even higher precision are used even up to 10 digits! An example of a passive filter
found from a standard topology and a table with component values is given in
figure 3.1. “Building” such filters in simulators will work fine; the expected filter

1 Ω

1 Ω

1.6180 F 0.5 F 1.6180 F

0.6180 H0.6180 H

Figure 3.1: A passive filter obtained from a standard topology via tables with compo-
nent values. Component values are specified by 5 digits.

function is obtained accurately. However, when realizing filters physically, for in-
stance on a chip, one is limited to a certain accuracy. Trying to get an absolute
accuracy of 5 digits is not easy to do. Spread on component values can be in
the order of 10%. Designing accurate filters with those inaccurate components is

63
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a challenge, especially when you consider that filters comprise different types of
components, each having their own specific inaccuracy and spread. For instance,
for a first-order low-pass filter realized by a capacitor, (C), and a resistor, (R), the
corner frequency (fC) is defined by:

fc =
1

2πRC
(3.1)

When for both, the resistor and the capacitor, the spread on their values is 10%,
the worst-case error in the corner frequency is 20% !.

Still, designers are able to design very accurate on-chip filters. In this chapter
techniques will be shown that enable designers to make accurate filters by using
relative inaccurate components. First, some basic reasons for the existence of
inaccuracy are treated and how designers have to take that inaccuracy into account
during their design. Subsequently, with some more detail the spread in the value
of on-chip resistors is discussed including some guidelines to obtain the accuracy
that is possible within the used technology. When the required accuracy of a filter
is higher than the intrinsic accuracy of the comprising components, system level
measures need to be taken: trimming and tuning. In the previous chapters we
concluded that different topologies, realizing the same filter function, may have
different dynamic ranges. The same goes for the sensitivity of a implemented filter
transfer function for component values. It appears that different topologies have
different sensitivities for variations in component values. This will be addresses
at the end of the chapter and design rules are derived for obtained low-sensitive
filter.

3.2 Accuracy and models

For designing accurate circuits, two possible sources of errors should be distin-
guished:

• too simple models;

• spread on the model parameters.

These are discussed in the next sections.

3.2.1 Model complexity

Models are an abstraction of the real life world. The complex physical effects
present in the physical components are described by relative simple relations such
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that by using these relative simple expressions the behavior of the physical com-
ponent can be predicted. With a good model, the relevant physical effects can be
predicated relatively easily.

Depending on the context of the model, a good model can be very simple but
sometime more details and relations are required in the model. When a model is
used that is too simple, given a particular context, for instance when a relevant
physical effect is not modelled, the outcome of the prediction will be incomplete
and therefore the final design may have a unexpected behavior.

Consider, for instance, the two models depicted in figure 3.2. Figure 3.2A

R R

Cp1 Cp2

A. B.

Figure 3.2: Two models for a resistor.

models the basic behavior of the resistor, i.e. Ohms law. For a lot of situations
this model is accurate enough (luckily). However, when signal frequencies go up,
at a certain point this model will be incomplete. The physical resistor is embedded
in some environment, i.e. in the bulk of a chip or on a PCB, and has a capacitive
coupling to that environment. This can be modelled, for instance, as indicated
by the two additional capacitors in the model of figure 3.2B. When in a design
signals are expected requiring the inclusion of these capacitors in the model but
the simple model of figure 3.2A is used, unexpected frequency dependency may be
obtained. The accuracy of the physical circuit is limited then also by this lack of
modelling.

The other way around, the use of a too complex model will cause unnecessary
design complexity which may impede the designer from focussing on the relevant
and dominant effects determining the accuracy. So care should be taken in deter-
mining the simplicity (complexity) of the models to be used in a design trajectory.

3.2.2 Model parameter spread

When the models are accurately modelling the relevant physical effects, then the
spread on the model parameters still may cause errors and inaccuracy in a design.
Roughly speaking, the spread in the parameters are mainly caused by the limited
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Min (Ω) Nom (Ω) Max (Ω)
900 1000 1100

Table 3.1: Specification of nominal sheet resistance including the deviations.

accuracy of the production process of the physical realization. For instance, the
resistance of a resistor is determined, amongst other things, by its geometrical
aspects. On a chip where resistor dimensions can be as low as several µm, it is not
difficult to imagine that the final dimensions deviate from the intended ones when
taken into account that dimensions are determined via lithographic and diffusion
processes.

For reasonable spread on parameters, the consequences on the design are likely
to be just quantitative deviations from the expected behavior. This in contrast
when too simple models are being used, in which case unexpected phenomena may
arise and thus also a qualitative deviation may result.

To be able to design circuits which are capable of surviving parameter spread,
the characterization of the statistical information of those parameters is essential.
Then, via design measures and simulations the effect of the real life parameter
spread can be investigated and, if necessary, countermeasures can be taken.

For instance, in a design manual of a process the sheet resistance of a layer in
which a resistor can be realized can be specified as given in table 3.1.

3.3 Resistors

A resistor is a device that defines a linear relation between a current and a voltage.
In the ideal case the relation is:

u = Ri (3.2)

corresponding to the model in figure 3.2A. In equation (3.2) R is a constant. Thus,
R does not depend on time, frequency, temperature, and the value of u and i. In
practice, R, unfortunately, also depends on all these factors:

u = R(t, ω, T, u, i)i (3.3)

In addition, the relation is also subject to statistical variations due to, for example,
process variations. Thus, the behavior of a resistor can be predicted with limited
accuracy only.

When an electronic circuit is being designed, usually, first the ideal model
according to equation (3.2) is used. In such a case, the fundamental limits to the
performance of the circuit can be found. This performance is compared to the
specifications. Then it becomes possible to estimate the magnitude of the errors
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that can be allowed within the demands of the specifications. From this, the design
constraints for the devices can be derived when equation (3.3) is used.

In this section focus is on the physical aspect of a on-chip resistor in relation
to model complexity and parameter spread.

3.3.1 The value of a resistor

A resistor consists of a “bar” of material with the resistivity ρ and connections
to both sides (see figure 3.3). The value of the resistor is determined by ρ, the

W

d

L

Figure 3.3: A resistor

thickness (d), the length (L) and the width (W ).

R = ρ
L

d ·W (3.4)

Because, in practice, d cannot be influenced by the designer, only L and W can,
ρ and d are usually taken together in a parameter called the sheet resistance.

R¤ =
ρ

d
(3.5)

With the use of this parameter, the layout and value of a resistor is commonly
expressed in squares as depicted in figure 3.4. When the number of squares in a

Figure 3.4: A resistor of 4.5 squares

resistor is equal to:

N =
L

W
(3.6)

its value can be expressed as:
R = NR¤ (3.7)

From equation (3.7) it can be seen that it is the number of squares that determines
the value of the resistor and not the absolute size of the squares. The maximum
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current that the resistor can support, its accuracy and its bandwidth, however, do
depend on the size of the squares. This is discussed later.
In each technology, there are several layer that are, in principle, suitable for the
implementation of a resistor. For each layer, a different number of squares may
be necessary to obtain the same resistor value. In table 3.2, for a standard bipo-
lar process, the number of squares necessary to implement a resistor of 1kΩ is
indicated.

Name R¤ (Ω/¤) N
epi 2300 0.43
BW 600 1.67
WP 25 40

metal 0.044 22727

Table 3.2: The number of squares necessary to implement a 1kΩ resistor

Suppose the resistor is implemented with the lowly doped P-type layer BW.
In figure 3.5, a cross-section of this resistor is shown. The BW layer cannot be

BWWP WP

ICIC

Figure 3.5: Cross-section of a BW-resistor

directly connected from the outside. In order to obtain a good contact between
the metal interconnect layer (IC) and the silicon, a highly doped P layer (WP) is
used to interface between IC and BW. Therefore, the resistor actually consists of
a series connection of several resistors, as is shown in figure 3.6. From the left to
the right there are:

• The resistance of the metal (IC) from the connection point to the silicon
(WP).
In table 3.2, it can be seen that the sheet resistance of the metal is much
lower than that of the BW layer. Therefore, generally, the resistance of the
interconnect does not play a significant role.

• The contact resistance between the metal and the silicon.
The mask that defines the size of the contact opening between IC and WP is
the CO mask. The current through the contact opening is a vertical current,
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as opposed to all other currents in the resistor, which are lateral. Therefore,
the resistance of the contact (CO) is not expressed in a sheet resistance,
but as a resistance per area. In the standard process used as an example
in this book, the resistance of a contact with a size of 2 × 2µ is about 4Ω.
The larger the area is, the smaller the contact resistance will be. When the
contact area is enlarged, however, care must be taken that the current flows
homogeneously through the contact. If not, the contact resistance becomes
larger than expected, and the predictability decreases. When this “current
crowding” starts, it is of no use to enlarge the contacts any further.

• The resistance of the WP region.
The sheet resistance of the WP layer is smaller than that of the BW layer,
but not small enough to be neglected. Therefore, the number of WP squares
in series with the BW resistance should be kept as small as possible.

• The resistance of the BW region.
This region forms the actual resistor. The number of squares in this layer
dominantly determines the resistor vale. Commonly, this part of the resistor
occupies most of the area.

• Again the resistance of another WP region, a contact and the interconnect.

wpic ic

co co

wpbw

Figure 3.6: The resistor chain of which an integrated resistor consists

From all this, it can be concluded that equation (3.7) is a very simple expression
to design an accurate resistor. This equation yields only the resistance of the BW
layer. Therefore, the contribution of the other resistors is added via the contact
resistance Rc:

R = 2Rc + NR¤ (3.8)

It is difficult to calculate the exact value of Rc. However, the order of magnitude
in which its contribution lies can easily be estimated. To obtain accuracy, resistors
with various BW layer lengths have to be implemented and measured. The value
of Rc can be extracted from this data.
The value of Rc can also be determined numerically by a device simulator, but to
still supply this simulator with the correct model parameters, accurate measure-
ments have to be done at least once. The results of a simulator are never more
accurate than the measurements that were used to generate the model parameters.
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3.3.2 The structure of a resistor

In figure 3.7 a cross-section of a resistor in a standard process is shown. It can be
seen that the resistor has four connections. Two of them are the usual terminals
between the desired resistance exists. Between these terminals, the layers that
were shown earlier in figure 3.5 (IC–WP–BW–WP–IC) are found. The contact
between the metal (IC) and the silicon (WP) is made via a contact hole. The
place and the size of the contact is determined by the (CO) mask.

The resistor is surrounded by the epi well. To isolate this well from the resistor,
the WP–epi and the BW–epi junctions have to be reverse biased. Because in this
case the resistor body is P type and the eip is N type, the epi connection should
be at a voltage that is higher than the highest voltage that can be expected on the
resistor body. The positive supply voltage is a safe choice in this respect. For the
connection to the epi layer, a standard NPN-collector contact is used. The buried
layer (BN) is also present, because also in this case there is the risk of latch-up via
the parasitic PNP transistor (BW-epi(+BN)-Subtrate = PNP).

The epi well is isolated from the rest of the chip via a DP (Deep P) ring around
it, and the P substrate at the bottom. To keep the junctions involved reverse
biased, the substrate and the ring should be at a sufficiently negative voltage; the
negative supply voltage or, if not present, ground is the common choice.

There is no need for a separate epi and substrate connection for each resistor.
The substrate connection is inevitably a global one, but to have more than one
resistor in the epi well is also permissible. They are isolated from each other
anyway, because their junctions to the epi layer are reverse biased. This also saves
space, because the DP isolation takes much space in comparison to the resistor
body itself. Still, for each resistor, the epi voltage should be considered with care.

ic

wp bw wp

bn

Substrate

epi
dn

dp

wp

dp

SubstrateEpiRR
icic ic

Figure 3.7: Cross-section of a BW resistor

Certainly, in circuits that have more than one supply voltage, it might happen that
a resistor is driven at a voltage that is higher than the voltage of its well. Then
the junctions between the resistor body and the epi layer become forward biased
and the epi layer will “try to follow” the signal voltage at the resistor terminal.
Also at that moment, the parasitic PNP starts injecting current into the substrate,
since the junction is now biased in forward mode from its base-emitter junction.
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In figure 3.8, a more complex model, including the parasitic PNP transistors, for
the resistor of figure 3.7 is shown.

epi

bw

R Epi SubstrateR

Substrate

Figure 3.8: A model for a diffused resistor including a the relation to the epi and
substrate.

3.3.3 Design aspects

It is common practice in circuit design to start with models including only the basic
behavior of the components to get an estimate, without a need of excessive design
time, of the performance of the design. Often, when more effects are modelled
the corresponding performance lowers. Thus, the estimate done with the simple
models can be seen as an upper limit of the performance. This can be very helpful
in valuing basic circuit concepts.

When with simple models the performance is good enough two different strate-
gies can be used in dealing with additional model refinements.

• accept the refinements as they are and include them in the design;

• try to find design measures such that the model refinements can be neglected.

The first approach just accepts the refinements and includes them into the design.
This results in a more complex design but more important is, also the performance
may be reduced by these additional effects. An advantage can be that the final
design is more compact.

For the second approach the argumentation is: with the simple models I have a
circuit that meets the specification. Thus, now I should try to make those simple
models valid (again), i.e. take design measures such that additional effects be-
come negligible. Advantage of this approach is that the design remains relatively
simple when the models are considered and as less effects are hampering the per-
formance, higher performances are likely to be obtained. Disadvantage is that due
to the additional design measures a less compact design is obtained. However, as
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compactness is often not a main issue whereas the quality is, designing via this ap-
proach may yield better results. On top of that, as the models remain simple, also
better insight is obtained in the design which may open possibilities to complete
new designs.

A straightforward example of this second approach is given in figure 3.9. Figure

R = 1 MΩ

C = 1.6 pF C = 1.6 pF

Rseries = 10 Ω

Lwire = 200 nH

Lwire = 200 nH

R = 1 MΩ

Cpar = 0.2 pF

A. B.

C = 16 pF

Rseries = 1 Ω

Lwire = 20 nH

Lwire = 20 nH

R = 100 kΩ

Cpar = 0.2 pF

C.

Figure 3.9: A. Simple model for estimation. B. Refined model and relatively high
impedance level. C. Refined model and relatively low impedance level.

3.9A depicts a first-order low-pass filter in which the most simple models are used
for the comprising elements. The transfer from input voltage to output voltage
as a function of frequency is found in figure 3.10, the lowest curve. When the
filter is implemented by means of discrete components, wiring inductances, series
resistances and parallel capacitances are found. When these parasitic effects are
also taken into account, the circuit model of figure 3.9B is obtained. The simulation
results of the voltage-voltage transfer of this filter is depicted in 3.10, the upper
curve. Clearly, serious deviations arise beyond 1 MHz. The relative effect of
the parasitic components should be made less in order to approximate better the
ideal transfer. This is realized, for this example, by reducing the wire lengths
of the components by a factor ten and lowering the impedance level of the filter
resistor and capacitor by a factor 10 also. This is depicted in figure 3.9C. The
corresponding simulation result is the middle curve in figure 3.10. Now the transfer
starts deviating seriously from the ideal transfer beyond 10 MHz. So, in this case,
by simple and trivial measures a decade is gained in the usable frequency range of
the filter. Of course, for designing integrated filters, the required measures to be
taken for reducing the effect of the parasitic components can be less trivial.
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Figure 3.10: Simulation results of different levels of complexity for a first-order filter.
From bottom to top: using simplest models; using complex models and
low impedance level, using complex models and high impedance level.

3.4 Tuning

The function of filters is to separate signals on the basis of frequencies. The
frequencies of interest have to be passed through the filter, as other frequencies
are attenuated. The specifications are defined by the system in which the filters
are used. As the components in circuits can, for example, have a 10 % tolerance,
filters have to be trimmed during the fabrication. Often, also filters have to be tuned
over a certain frequency range, for example, in a radio receiver. The above two
comments imply that tuning (trimming) to some reference frequency is desirable.
Here focus will be on tuning, in stead of on trimming.

In order to accomplish tuning, a reference frequency has to be available, and
the filter must have the possibility of being tuned. This is depicted schematically in
figure 3.11. The frequency response, τ(x), is changed relatively based on absolute
frequency information ,(x), from a reference, τref .

Filters can be tuned in two ways. Firstly, by varying the capacitance in the
integrators. This is possible when using junction capacitances, but this causes
problems, because junction capacitances have a polarity, they usually cannot be
used floating and they are strongly non-linear with voltage. Secondly, the transfers
Gx can be used to tune the filters. In practice, this mostly means that resistors are
varied. Examples are MOS transistors in triode, which can be tuned by varying
the gate voltage.
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τ (x)
in out

τref
x

Figure 3.11: Tuning a filter

There are several tuning options, two of which are discussed below. Both
methods rely on the matching of components, which determine the time constants
of the filter. A Voltage Controlled Oscillator (VCO) or a reference filter can be
used for tuning. Both these methods are depicted in figure 3.12.

comparison

circuit

reference

filter

main filter

clock

in

out

comparison

circuit

reference

oscillator

main filter

clock

Vc

in

out

Figure 3.12: Two methods of tuning filters

In both cases, the same components are used in the VCO or the reference filter
as in the desired filter. If, for example, an eighth-order bandpass filter has to be
tuned, a second-order reference filter can be chosen, with a center frequency equal
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to the filter to be tuned. It is also possible to use a VCO (undamped filter) that
oscillates at the frequency the filter should be tuned at. By means of a feedback
loop, the VCO or reference filter can be tuned. Because of the matching to the
VCO or the reference filter, the main filter is tuned, too. The two possible feedback
loops are shown in Fig. 3.13.

Ref.
Filter

fref

LP F  A

Control input

Filter

in

out

Ref.
Osc.

fref
LP F  A

Control input

Filter

in

out

Figure 3.13: Two feedback loops for tuning filters

Of the two methods presented, the VCO tuning has the advantage of not being
sensitive to phase errors due to, for example, the phase comparator. VCO non-
linearities, however, influence the tuning error. The realized loop actually is a
classic phase-locked loop (PLL).

3.5 Correlating errors by using switched capaci-

tors

The drawback of making filters with coils and capacitors is the impossibility of
integrating the coils. This resulted in the demand for fully integrated filters.
Crystal and ceramic filters (both mechanical) are also commonly used filters. They
usually have very high Q, do not need supply voltage, are cheap, but they cannot
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be integrated on chip, which is the major drawback. The Sallen and Key filters,
which apply active components, can be used to design on-chip filters. They only
use resistors, capacitors and transistors as active components.

So far, continuous time filters were treated. They process the signal contin-
uously in time, and use capacitors, resistors, coils and amplifiers to realize the
filtering function on the basis of currents and voltages. In contrast, the sampled-
data class using switched capacitors or switched currents or switched voltages, are
not time continuous. The switched capacitor filters, for example, use switched
capacitors to “simulate” resistors. The capacitor is switched between the two con-
nections, where the “resistor” should be. The charge transfer on the system clock
signal, causes the capacitor to behave like a resistor. An integrator made in this
way is depicted in figure 3.14.

in out

Ci

Cr

fs

Figure 3.14: Example of switched capacitor (SC) integrator

The continuous time equivalent is depicted in figure 3.15. The equivalent re-

Ci

out
R

in

Figure 3.15: Equivalent continuous time (CT) integrator

sistor value yields:

Rs =
1

fsCr

(3.9)

and thus the resulting transfer function of the circuit yields:

1

sRsCi

=
fsCr

sCi

(3.10)
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The big advantage of switched-capacitor filtering is its accuracy. The transfer
function is determined not by absolute values of capacitors and resistors, but by
a ratio of capacitors. So, when the capacitors match well, thus also have the same
relative errors, the ratio of the capacitor values is not affected by the error in the
absolute values of the capacitors. Thus the relative-frequency response can be
designed very accurately, i.e. based on matching. Whereas the absolute frequency
accuracy is governed by the clock signal.

Usually, the requirements of good matching and a accurate clock can be ful-
filled. By changing the clock signal, the filter is tuned.

Clearly, a disadvantage of the switched capacitor filter is that a clock signal is
necessary, which, via clock feed-through, quite often causes the desired signal to
deteriorate. What is more, the use of sampled data systems requires pre-filtering.
The sampling causes higher frequency bands to be folded to the base band, i.e.
aliasing. Thus, continuous time pre-filtering is required.

The dynamic range of continuous time and switched-capacitor filters appears
to be the same for equivalent structures and high sampling rates. This can be
explained because of the simulation of the resistor by a capacitor. On every clock
pulse, some amount of charge is transferred to the following circuit part, depending
on the value of the capacitor. Keeping in mind the aliasing problem, the capacitor
seen as a resistor.

3.6 Sensitivity

Different filter implementations, having the same transfer, may have different sen-
sitivity to variations in component values. Key issue for the designer is to find the
topology that for the lowest cost implements the required transfer function with
the required specification, including capability of dealing with the uncertainty in
parameters.

In this section a mathematical description of sensitivity is given. Subsequently,
the sensitivity of passive LC ladder filters is considered as it appears to be very
low. From that quality of passive LC ladder filter, design rules are formulated to
improve the sensitivity performance of active filters.

3.6.1 Definition of sensitivity

The sensitivity, SH
x , of a transfer, H, to a variation in a parameter, x, is defined

as the ratio of the relative variations in H and x:

SH
x =

∂H/H

∂x/x
(3.11)



78 CHAPTER 3. FILTERS AND SENSITIVITY TO COMPONENT SPREAD

As for a filter transfer H is a complex function depending on frequency, also the
sensitivity is in general a complex function depending on the frequency. Ideally,
the sensitivity is zero.

Besides sensitivity of a transfer function to a parameter variation, also, for
instance, the variation of a -3 dB corner frequency due to a variation in a parameter
can be described by a sensitivity function.

Depending on what the key characteristics are of the filter, corresponding sen-
sitivity functions can be derived. As the level of sensitivity is dependent on the
characteristic

3.6.2 Sensitivity of passive LC Ladder Filters

From a relative long history of designing passive LC ladder filters, it appeared that
this type of filters shows a very low sensitivity to parameter variations. The reason
for this can be illustrated relatively easy. Consider the fifth-order low-pass filter
of figure 3.16. In the pass band of this filter, the available power of the source is

Rc

Rc

L1 L3 L5

C2 C4Vin Vout

Figure 3.16: A LC ladder filter

completely passed through the filter network to the load, i.e. no power is dissipated
in the filter. Consequently, due to variations in one or more of the elements, the
delivered power to the load can only be lowered. This is schematically depicted in
figure 3.17. Thus the derivative of the transfer with respect to that parameter in
that point is zero:

SH
L1

=
L1

H

∂H

∂L1

= 0 (3.12)

3.6.3 Design rules for active filters

Essential in the low sensitivity of passive filters is the fact that in the pass-band
maximum available power of the source is transferred to the input. As the filter
is passive, due to parameter variations the filter cannot have gain larger than
one. Gain only reduces (or in the best case remains constant) when parameters
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L1

H

Lnom

Hnom

Figure 3.17: The variation in the power transfer as a function of the variation in a
component at a specific frequency

change. When designing active low-sensitive filters this is a property that needs
to be maintained, i.e. the property of a passive terminal behavior.

Figure 3.18 shows a capacitor as passive integrator. The transfer function,

+ -
VCAP

ICAP

Figure 3.18: A capacitor as passive integrator, ICAP the input current and VCAP the
output voltage.

H(s), of the capacitor as integrator is given by:

H(s) =
VCAP

ICAP

=
1

sC
(3.13)

The transfer function will always be passive, independent of variations in C. Only
for a negative C this transfer function would become active. Active behavior means
that power is increased. Figure 3.19 depicts an active (balanced) integrator. The
transfer function of this integrator is given by:

Vout

Vin

= H(s) =
−1

s(R1 + R2)Ceff

(3.14)

in which Ceff = C1C2

C1+C2
. Clearly, due to variations in component values this integra-

tor also exhibits always a passive transfer, i.e. due to variations in the component
values no sign change can occur. From straightforward calculations it appears
that passive terminal behavior for this integrator is identical to fulfilling the port
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R1

C1

i1

+
vin

-

C2

R2

-
+

vout

Figure 3.19: An active balanced integrator

conditions. Thus to have low sensitive filters, at least one should use integrators
that fulfill the port conditions.

Subsequently, when considering that variations in parameters can also be trans-
lated in a kind of disturbances in the filter transfer, i.e. a kind of noise, it is evident
that different topologies may exhibit different sensitivity performance. It is beyond
the scope of these lecture notes to derive this property.
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3.7 Exercises

1. Consider a filter designed with a certain level of model complexity. After the
implementation, the filter is measured and it appears that the transfer differs from
what is expected. Basically, the difference can have two types of nature.

(a) How would you characterize the nature of the difference in the case that the
model complexity was too low?

(b) How would you characterize the nature of the difference when the model
complexity is good but a model parameter deviates?

2. Consider the notch filter as depicted in figure 3.20. This type of filters are

L

C RL

RS

VS VL

+
+

--

0.25 µH

10 pF

Figure 3.20: A notch filter.

used when a specific, small band, disturbing signal has to be suppressed.

(a) Determine the transfer VL/VS of this filter.

(b) At what frequency is the notch?

(c) How large is the suppression of this filter at that notch frequency?

Assume that the value of C1 and L1 have a maximum error of 5%.

(d) Calculate the worst-case deviation of the notch frequency.

(e) What is the magnitude of the suppression at the original notch frequency for
this worst case situation?

(f) What do you conclude?

3. Simple, but effective voltage references can be made by a diode voltage. A
possible implementation is given in figure 3.21. The diode is biased at a current
ID and the resulting diode voltage can be used as a reference voltage.
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VSUP

+

-

ID

D VREF

Figure 3.21: A simple diode-voltage reference.

(a) Give an expression for the reference voltage VREF .

(b) What is the error in the reference voltage when the bias current has a relative
error of δI?

(c) What is the sensitivity of the reference voltage for variations in the diode
current?

(d) What is your conclusion?

4. Accurate components are required for to be able to design accurate filters.
What should be done to design accurate on-chip resistors? Motivate the effect of
the following options.

(a) Large number of squares

(b) Large squares

(c) Low resistive layer

5. In circuits often resistors are required that have a good matching. On chips
this matching can be realized relatively accurately. Consider the situation that a
resistor is required with value R and a resistor with value of 4R. Resistor R has
got 5 squares and is designed as depicted in figure 3.22.

Figure 3.22: Resistor R designed with 5 squares.
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(a) How would you design the resistor with value 4R for maximum matching?
Design it such that a gradient in the doping level (and thus in the sheet
resistance) is compensated for. Motivate your answer.

6. Consider the resistor as depicted in figure 3.23.

Figure 3.23: A resistor with a corner.

(a) When you can neglect the contact resistances, what do you expect the re-
sistance R is?

• 6R¤ < R < 7R¤

• R = 7R¤

• 7R¤ < R < 8R¤

Motivate your choice.

(b) What drawbacks can you imagine when you use such a corner in a resistor?

Designers use corners in a resistors just because that without a corner the resistor
would be too long.

(c) How would you design this resistor when corners are not allowed (using the
same sheet resistance)?

7. Given two resistive layers in a certain technology, see table 3.3. In this table
C¤ stands for the parasitic capacitance per (µm)2 area between the bottom of
the resistor and its environment. Cedge is the capacitance per µm length of the
sidewalls of the resistor and its environment.
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Layer R C¤ Cedge min. ¤ ∆W
[Ω/¤] [fF/(µm)2] [fF/µm] [µm] [µm]

BW 690 720 750 0.29 0.55 2 0 0.5 1
WP 24.0 24.5 25.0 0.31 0.70 2 0 0.5 1

Table 3.3: Specifications of the BW and WP layer of a DIMES technology.

(a) Design a resistor body (i.e. resistor without contacts) with a value of 10 kΩ
and a uncertainty of maximum worst-case 10%. Give the number of squares
and the size of the squares and the total size of the resistor you would draw
on a lay-out.

(b) Determine the bandwidth of the designed resistors when for a distributed
RC-line the bandwidth, when used as one-port resistor, can be described by:

B =
1
4
π2

2πRC
(3.15)

in which R and C are the total resistance and capacitance, respectively.

8. The accuracy of integrated filters is mainly determined by the accuracy of the
comprising resistors and capacitors which determine the time constants. In order
to obtain high-accuracy filters, tuning can be used. A block schematic of a filter
using tuning is depicted in figure 3.24.

Filter

Oscillator

Comparator

in out

fosc

fref

vtune

Figure 3.24: Using tuning in order to obtain high accuracy.
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(a) Resistor and capacitor values cannot be realized exactly on chip. What
reasons do you know for this (3) ?

(b) Explain how the tuning is realized in figure 3.24.

(c) What is the main criterion regarding the relation between the filter and the
oscillator?

(d) Explain what happens with the filter when the comparator has got a constant
error (offset) at its output.

9. Given the switched-capacitor filter in figure 3.25.

Vin Vout

+

- -

+

C1

C2

C3

fs

fs

Figure 3.25: A switched capacitor filter.

(a) Draw the ”equivalent” circuit diagram in which the switched capacitors are
replaced by resistors.

(b) The circuit diagram of the previous question is not completely equivalent
with the circuit diagram of the switched capacitor filter. What is the differ-
ence in behavior of the two circuit diagrams?

(c) Calculate the transfer of the filter.

(d) What effect has frequency fs on the transfer of the switched-capacitor filter?

10. Given the circuit of a time-continuous first-order low-pass filter of figure 3.26.
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R

C

+ +

- -

Vin Vout

Figure 3.26: A time-continuous first-order low-pass filter.

(a) Show that the total noise power of the equivalent noise voltage at the output
of the filter is given by:

P =
kT

C
(3.16)

The power of this noise voltage can be interpreted as the uncertainty there is in the
DC capacitor voltage when the capacitor would be disconnected from the circuit.

Subsequently, the switched-capacitor version of a resistor is considered, see
figure 3.27. The input and output of the switched capacitor can be considered to

C

fs
in out

Figure 3.27: A switched-capacitor implementation of a resistance.

be connected to other circuitry.

(b) Show that the power spectral density of the noise voltage in series with either
the input or or output is given by:

S = 4kTR (3.17)

in which R is the equivalent resistance.

(c) Conclusion?

11. Explain why a filter with a high dynamic range is likely to have also a low
sensitivity.



Chapter 4

Implementing the integrators

4.1 Integrators

Filters can be considered to be composed of integrators or differentiators. Integra-
tors are used because differentiators are inherently difficult to implement, due to
stability problems. In continuous time filters, using the Laplace domain descrip-
tion, the integrating function can be defined as the transfer a0/s. There are two
integrating elements in electronics, i.e. coils and capacitors. As high-quality coils
cannot yet be integrated on a chip, capacitors almost always are used to imple-
ment the integrator function. The current that flows through a capacitor results
in an integrated voltage across the capacitor terminals. If the coil were taken as
an integrating element, the voltage across the coil would result in an integrated
current through the coil.

Choosing the capacitor as the integrating element implies using a current as
input quantity, and getting a voltage as output quantity. This necessitates using
voltage-to-current conveyors, or (trans-)conductances in order be able to connect
the integrators, see figure 4.1. Between each integrator a conductance, G, is placed
to convert the output voltage of a capacitor to a current such that it can be used
as an input signal for the next integrator. At each node additional signals can be
added and from each signals can be distributed in order to construct a state-space
filter. However, adding signals as currents is much easier than adding them as
voltages. The analogous holds for the distribution of signals; distributing signals
as voltages is much easier than distributing them as currents. As the input voltage
and the output current of a conductor have a linear static relation, it does not
matter for the filter transfer whether the addition or distribution is done in the
voltage or current domain. The only difference is a factor equal to G. Therefore,
when adding signals, the easiest way is to do so in the current domain, i.e. at
the input of the integrator. Distributing is done the easiest by using the output
voltage of the integrator. This means that the gain blocks required to implement a

87
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1/(sC) G 1/(sC) G
I I I

VV

Adding signals (I)

Distributing signals (V)

Figure 4.1: A cascade connection of integrators

state-space filter are also conductances (see for instance the example in chapter 2 in
which a state-space filter was implemented with opamps, resistors and capacitors.).
The simplest solution for conductances is to make use of resistors.

Essentially, it means that to be able to connect the integrators the dimension
of the input-output transfer should be dimensionless. Whereas, the transfer of the
capacitor has a dimension equal to [Ω]. Therefore, using a cascade of a conductance
and a capacitor yields the required dimensionless transfer. It may be clear, that it,
consequently, does not differ whether the internal signals of the filter are described
in terms of voltages of currents. The location where it matters is at the input and
output of the filter. There, the dimensions of the signals should correspond to the
requirements.

Thus, an implementation of an integrator (thus with a dimensionless transfer)
is composed of a capacitor and a conductor. Taken into account that each of them
can be either passive or active, four types of integrators can be distinguished.
Figure 4.2 depicts the four types in the case that the input and output signal are
considered to be a voltage.

The admittance-impedance integrator does not use active components. Both the
required conductance and integration are implemented in a passive fashion. When
no active elements are used in the other blocks of the filter, it is not possible to
make filters with complex poles by using this type of integrator. Therefore, this
type of integrator is not used.

The second type of integrator is the admittance-transimpedance integrator. In
this type of integrator, the realization of the actual integration function is active.
The advantage is that the “opamp” used is a well-known electronic function, that
can be easily integrated. The opamp can be designed to operate rail-to-rail at the
output terminals, so full advantage is taken of the supply voltage. This allows
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Figure 4.2: Four classes of integrators

for optimal dynamic range performance. The resistor used can be integrated as
a diffused resistor, but it could also be implemented as an MOS transistor in the
triode region thus yielding the MOSFET-C filters.

The third type, the transadmittance-impedance integrator, makes use of active
“conductances”, or transconductances. The advantage of transconductors is that
they are able to operate at high frequencies, because in these integrators the para-
sitic capacitors of the transconductor are in parallel with the integrator capacitors.
Thus, they can be accounted for easily in the dimensioning of the required capac-
itance. A major drawback, however, is that it seems impossible to implement
transconductors with rail-to-rail input capability.

The fourth type of integrator is the transadmittance-transimpedance integra-
tor. This integrator has no advantages over the second and third integrators
mentioned. The disadvantage is the use of two active parts. Both parts add dis-
tortion, as distortion is chiefly formed by active components and, moreover, the
power consumption and the noise production increase.

In conclusion, the second and third type of integrators are preferred when
designing filters. For both types of integrators an active part is required. In the
next section some simple implementations of integrators are discussed. In the next
chapters the design of the amplifier (nullor/opamp) active parts is treated.
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4.2 Small-signal models for nonlinear devices

For designing high-performance integrators it was found in the previous section
that active elements are required. Two types of integrators showed to be preferable.

In the following sections, a start is made with how to implement the amplifier
block that is often required in filters. Assuming, that either the active conductance
or active integration is realized by means of feedback around a nullor (active part),
the two integrators as depicted in 4.3 are obtained.

Vin Vout

R

C

Vin
VoutC

R

Figure 4.3: Two types of integrators using feedback around a nullor. A) Passive con-
ductance and active impedance B) Active conductance and passive imped-
ance

For implementing these integrators it is required to design nullor implemen-
tations. A nullor is an element defined by circuit theory. It can be seen as an
ideal gain block, i.e. infinite gain, infinite bandwidth and no noise. In practice
the nullor should be approximated by physical elements. The closer the nullor is
approximated the better (the more linear and accurate) the input-output transfer
of the integrator is. In electronic design the nullor is approximated by combining
one or more voltage-controlled current sources. A single voltage-controlled current
source is depicted in figure 4.4 The choice for this voltage-controlled source as
a basic building block is not arbitrary. As will be seen later on, the commonly
used active devices, like bipolar transistor, junction FET (JFET) and the MOS
transistor can be described for small variations on a quiescent point as a voltage-
controlled current source. This is the small-signal approximation.

In this context electronic design can be seen as first design a circuit by using
linear elements, like voltage-controlled current sources, resistors and capacitors.
Second, replace the voltage-controlled current sources by active devices (bipolar
transistors etc.) with an appropriate quiescent (bias) point.

In the next sections, first the basic concepts of the small-signal analysis are re-
viewed, and subsequently the small-signal models for the commonly used nonlinear
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Figure 4.4: A voltage-controlled current source, g, as a first approximation of a nullor.
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Figure 4.5: A biased diode

electronic elements are derived.

4.3 Small-signal analysis

Small-signal analysis is a technique to describe the behavior of nonlinear elements
for small (signal) variations around a quiescent point. The obtained model is the
so-called small-signal model. This in contrast to the set of equations describing
the nonlinear behavior of the element which is called the large-signal model.

To illustrate this difference consider the biased diode in figure 4.5 (ignore for
the moment the signal source is). The bias current, ID, through the diode and
the bias voltage, VD, across the diode are related via the well-known nonlinear
equation:

ID = f̃(VD) = IS

[
exp

(
qVD

kT

)
− 1

]
(4.1)

in which IS is the saturation current of the diode, q the electron charge, k the
Boltzmann constant and T the absolute temperature. This equation relates the
total current through the diode to the total voltage across the diode. The combi-
nation of ID and VD is called the quiescent (bias) point of the diode. To find this
point either numerical routines are required, this is used by computer simulators
for instance, or graphical representations of equations to find the corresponding
intersection point, or straightforwardly solving the set of nonlinear equations. Of-
ten, via inspection an accurate approximation of the bias point can be obtained.
For the diode circuit of figure 4.5 the quiescent current equals ID = I0 as the cur-
rent I0 can only flow through the diode. From expression (4.1) the corresponding
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quiescent voltage VD can be obtained.
Subsequently, it is assumed that on top of the current I0 a little variation due

to a signal is is present. This is modelled in figure 4.5 by the current source is.
As a result, the diode voltage will have also a small variation, called vs. Now, this
small variation could be calculated via:

vs = g̃(ID + is)− VD (4.2)

in which g̃(.) is the inverse of f̃(.). The variation vs is found via determining the
difference in the diode voltage for the case that signal is is present and the case
that signal is is not present. For this calculation still the nonlinear function f̃(.),
or its inverse g̃(.) is required.

In contrast, the small-signal analysis uses the fact that for determining the
effect of small disturbances a nonlinear function may be considered to be linear.
This linear behavior is found from the corresponding Taylor series. The Taylor
series for equation (4.1) is given by:

ID + is = f̃(VD) +

[
df̃(V )

dV

]

V =VD

· vs + higher order derivatives (4.3)

Performing the required calculations yields:

ID + is = ID + gm · vs + c2v
2
s + · · · (4.4)

in which gm is called the small-signal conductance and given by qID

kT
. Assuming

that vs is small such that the higher-order terms with v2
s , et cetera, can be ignored

(the essential assumption for the small-signal analysis), yields:

is = gm · vs (4.5)

which is a very simple relation. As gm can be found very easily, the signal variations
can be found via the small-signal analysis also very easily. The graphical interpre-
tation of this small-signal approximation is depicted in figure 4.6. The quiescent
point, Q, is found from the large-signal nonlinear relation. Subsequently, the effect
of small variations around the quiescent point can be explained via the tangent
line in the point Q. The slope of this tangent is found from the first derivative of
the nonlinear function yielding; gm.

From the previous discussion it is clear that for determining the effect of small
variations on a nonlinear circuit three steps are required:

• determine the quiescent (bias) point;

• derive the small-signal model;

• perform the analysis on the small-signal model.

For the first two steps corresponding circuit diagrams are used modelling the rel-
evant relations for that specific step.
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Figure 4.6: Graphical interpretation of the small-signal behavior of a diode

I0
VD

+

-

Figure 4.7: Circuit diagram for determining the quiescent point of the circuit of figure
4.5

4.3.1 The circuit for determining the bias point

For finding the quiescent point of a circuit, a simplified circuit diagram can be
used. The simplifications are obtained when we consider what a quiescent point
is. The quiescent point is the point the circuit evolves to in the limit when no
signals are applied to the circuit. So, first of all, the signal sources can be set to
zero. This means that a signal current source becomes an open and a signal voltage
source becomes a short. Further, as we have to do with a point, a static quantity,
also the dynamic elements can be set to zero. Thus a capacitor is replaced by an
open and an inductor is replaced by a short. In the resulting circuit diagram only
static elements and quantities are found.

The corresponding circuit for determining the quiescent point for the diode
circuit in figure 4.5 is given in figure 4.7. From this circuit the quiescent point can
be derived either via numerical methods (computer simulation), via solving the set
of expressions or via graphical representation. Often, inspecting the circuit may



94 CHAPTER 4. IMPLEMENTING THE INTEGRATORS

is
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Figure 4.8: The small-signal diagram related to the circuit of figure 4.5

result in a considerable simplification for the calculations.

4.3.2 The small-signal circuit

When the quiescent point is found, then for each element its response on a small
variation on that quiescent point can be determined. This results in small-signal
models for the elements. The corresponding small-signal diagram for figure 4.5 is
depicted in figure 4.8. In a small-signal circuit no static currents and voltage are
found which are related to the quiescent point. Further, all the elements in the
small-signal circuit are linear. This is because the static voltages and currents in
combination with the nonlinear elements are replaced by their linear small-signal
models. When DC currents and/or voltages arise in the circuit, this is because the
signal source contains signal at DC.

4.3.3 Analysis of the small-signal behavior

Finally, when the small-signal circuit is obtained, analysis can be performed to
determine the response of the circuit on a small signal. Analysis can be done using
all methods and techniques available for linear circuit analysis, i.e. Kirchhoff laws,
Modified Nodal Analysis (MNA), superposition, Laplace transform, etc.

From the circuit of figure 4.8 the variation in diode voltage, vs, is easily obtained
as:

vs = is/gm (4.6)

When the results are obtained, one should check whether for the obtained response
still the small-signal approximation holds. If the approximation appears not to be
valid for the small-signal response, then , consequently, the obtained response is
not an accurate prediction of the response of the nonlinear circuit.

This section showed the use of small-signal models to derive the response of a
nonlinear circuit to a relatively small signal. Via the small-signal models the cal-
culations can be simplified enormously as soon as the quiescent point is obtained.
In the next section it is shown that for the commonly used bipolar and field-effect
transistors the relation between the nonlinear model and the quiescent point to
the small-signal model is straightforward. This is essential as in the end a designer
synthesizes its, in this case, nullor approximation by first using voltage-controlled
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current sources. Subsequently, to approximate these voltage-controlled current
sources by transistors, the appropriate biasing points should be found such that
the small-signal behaviors of the transistors approach the required small-signal
behaviors.

4.4 Models for devices

In this section the small-signal models for the commonly used active devices are
discussed. These models can be used to synthesize on a small-signal level a nullor
implementation.

4.4.1 Bipolar transistor

Several physical models are available for bipolar transistors, like Ebers-Moll model,
transport model and the Mextram model. In these lecture notes the transport
model will be used. It describes the terminal currents of the bipolar transistor as
a function of the terminal voltages, see figures 4.9 In most of the cases the bipolar

C

E

B

VBC

VBE

VCE

IB

IC

IE

Figure 4.9: The terminal currents and voltages of a bipolar transistor

transistor is used in its active forward mode. For a NPN transistor this means
VBE > 0 and VBC < 0. The corresponding essential part for that mode is depicted
in in figure 4.10. For this part of the large-signal model the following relations
holds:

IC = IS

[
exp

(
VBE

VT

)
− 1

]
(4.7)

IB =
IC

BF

(4.8)

in which IC and IB are the collector and base current, respectively, VBE the base-
emitter voltage, VT the thermal voltage and IS the saturation current and BF the
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Figure 4.10: The essential part of the transport model for a transistor in its forward
active mode.

current-gain factor. The corresponding small-signal diagram is depicted in figure
4.11. The voltage-controlled current source is the small-signal equivalent of the

gmvberπ

+

-

vbe

icib

Figure 4.11: Small-signal diagram related to figure 4.10

current source (which has the exponential relation to the VBE) of figure 4.10, i.e.
equation 4.8. The transconductance factor, gm, is given by (compare with the
diode):

gm =
IC

VT

=
qIC

kT
(4.9)

Due to the base current, also a small-signal input resistance (rπ) can be identified.
It can be directly derived from determining the derivative of IB versus VBE. Here
we use expression (4.8), as:

rπ =
vbe

ic
· ic
ib

(4.10)

The first factor is given by 1/gm whereas the second factor is the small-signal
current-gain factor (βf ) that can be derived from expression (4.8):

βf = BF (4.11)
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which is for silicon transistors on the order of 50 - 100. Thus

rπ =
βf

gm

(4.12)

The small-signal model of figure 4.11 models the essential static small-signal be-
havior of a bipolar transistor. For taking the essential dynamic behavior into
account, i.e. charge storage and finite speed of the carriers, a capacitance, cπ in
parallel with rπ should be used. This capacitance comprises two physical effects:

• charge storage in the base-emitter depletion layer, cje

• charge storage in the base region, cd

The cje accounts for the charge variation in the base-emitter depletion area when
the base-emitter voltage is changed. Often it is assumed to be constant. The
diffusion capacitance, cd, models the charge present in the base region when a
collector current is flowing. The higher the collector current the more charge
is present in the base region and the slower the carriers move trough the base
region, the more charge is present in the base region. From physical modelling the
following relation can be found for the diffusion capacitance:

cd = gmτf (4.13)

in which τf is the time it takes for a carrier to cross the base region (on the order
of pico seconds). Thus, cπ is given by:

cπ = cje + cd = cje + gmτf (4.14)

The corresponding small-signal diagram is depicted in figure 4.12. This model

gmvberπ

+

-

icib

vbe cπ

Figure 4.12: Essential dynamic small-signal diagram of a bipolar transistor

is the essential dynamic small-signal model in designing nullor implementations.
After designing using this model, often some checks have to be performed in order
to validate this simple small-signal model. The following three effects need to be
checked:

• ro: the output resistance
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VCE

IC

VBE

Figure 4.13: Dependency of the collector current on the collector-emitter voltage with
the base-emitter voltage as a parameter.

• rb: base bulk resistance

• cµ : the base-collector junction capacitance

The output resistance of a transistor is physically explained by the fact that the
depletion area of the reverse-biased base-collector junction extends further into
the base region for larger reverse voltages. Consequently, the effective base width
reduces and the collector current increases. This is found when measuring the
collector current as function of the collector-emitter voltage. In figure 4.13 typical
behavior is depicted with the base-emitter voltage as a parameter. The effect of
the finite output resistance is seen in the slope of the curves beyond the dashed
line, where the forward active mode is. The slopes in the curves can be modelled
by a resistance equal to:

ro =
VA

IC

(4.15)

in which VA is called the Early voltage. This can be seen by extrapolating the
straight part of the curves to the left where they intersect at a single point of the
negative x-axis. This point is approximately at VA. For silicon it is on the order
of 50 V to 100 V.

The base bulk resistance, rb, models the resistance of the silicon between the
on-chip connection of the transistor to which the metal can be connected and the
internal physical base contact. It is a resistance on the order of 10 Ω to 100 Ω.

Finally, analogous to the base-emitter junction, also the base-collector junction
is responsible for a junction capacitance, cµ. It is located between the base and
collector node.

Figure 4.14 shows the model in which ro, rb and cµ are included.
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Figure 4.14: A small-signal model for a bipolar transistor including the most relevant
second-order effects
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Figure 4.15: Symbols for JFET and MOSFET

4.4.2 Field-effect transistors

The group of field effect transistors (FETs) comprise the commonly used Junction-
FETs and MOSFETs. Here a small-signal diagram is derived for these transistors.
Basically, the models can be the same, with, however, different physical interpre-
tation of the model components. The component symbols are depicted in figures
4.15.

The usual working mode for field-effect transistors is the forward saturation
mode. In this mode the transistors behavior can be modelled as a voltage-controlled
current source, like the bipolar transistor in active forward mode.

The basic relations that can be used for the Junction FET in the forward
saturation mode are:

ID = IDSS

(
1− VGS

Vth

)
(4.16)

IG = 0 (4.17)

in which ID is the drain current, VGS is the gate-source voltage, IDSS the maximum
drain current which is obtained at VGS = 0V (normally on device) and Vth is the
threshold voltage. The gate current can be assumed to be zero as the gate-source
junction is a reverse biased junction.

The basic dynamic behavior is modelled by the gate-source capacitance, cgs, of
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Figure 4.16: The essential dynamic small-signal diagram

VDS

ID

VGS

Figure 4.17: Dependency of the drain current on the drain-source voltage with the
gate-source voltage as a parameter.

the corresponding reverse-biased diode. Thus the essential dynamic small-signal
diagram for a junction FET is as depicted in figure 4.16. As the DC gate current is
zero, no analogous small-signal component for rπ is found. The transconductance
gm is given by:

gm =
2

Vth

√
IDSSID (4.18)

The following three additional effects need to be considered for checking the
validity of the model:

• output resistance, rd

• gate-drain capacitance, cgd

• gate resistance, RG

The small-signal output resistance is found from the output characteristic of
the JFET as depicted in figure 4.17. The curves are comparable with the curves
for the bipolar transistor. Via

rd =

(
dID

dVDS

)−1

(4.19)
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Figure 4.18: The dynamic small-signal diagram in which also rd, cgd and RG are in-
cluded

the value of the output resistance can be obtained. Often this is, analogous to the
bipolar transistor described by,

rd =
VA

ID

(4.20)

with VA also called the Early voltage.
Between the gate and drain also a reverse-biased junction is present. Physically

the gate-source and gate-drain junctions are just separate parts of one junction.
Its capacitance is modelled with cgd.

In the technology in which the JFET is made, often poly-silicon is used to
contact terminals, instead of aluminium. Poly-silicon has a relatively high resist-
ance compared with aluminium. Therefore, to account for this resistance a series
resistor is added to the gate, RG.

Thus, the small-signal model for the JFET including these effects is as depicted
in figure 4.18.

For the MOSFET also the small-signal model as presented in figures 4.16 and
4.18 can be used for the small-signal analysis. The differences between the JFET
and MOSFET are mainly physical. The main difference is that the channel con-
ductivity of a MOSFET is influenced via a field applied via an oxide capacitance
instead of a junction capacitance for a JFET. Therefore, the capacitances in the
model for the MOSFET relate to different physical capacitances. Further, a gate-
source junction of a JFET can become forward biased resulting in a gate-current,
whereas for a MOSFET the gate current is zero as long as the gate-oxide is thick
enough to prevent tunnelling.

Usually, in design MOSFETs are used which are normally-off devices, i.e. no
drain current at zero gate-source voltage. In contrast, JFETs are often of the nor-
mally on type, i.e. maximum drain current for zero gate-source voltage. Therefore,
the relation between the drain current and gate-source voltage is expresses differ-
ently, as:

ID =
1

2
β(Vgs − Vth)

2 (4.21)
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in which β is parameters taken the geometry of the MOSFET into account, like
width, length, oxide thickness, et cetera. The corresponding expression for the
small-signal transconductance is given by:

gm =
√

2βID (4.22)

4.5 Simple MOS integrator implementations

MOS transistors in strong inversion are known to operate in two regions, i.e. the
saturation and the triode regions. In addition, MOS transistors can be operated
actively as well as passively. The difference is that actively operated MOS tran-
sistors have the input signal at the gate terminal, and passive transistors have the
input signal at the source terminal, i.e. they are used as resistor. By making this
division, four different types of MOS integrators are possible.

4.5.1 Passive triode integrator

In the triode region, the MOS transistor behaves according to the following equa-
tion:

ID = β

[
(VGS − Vth)VDS − 1

2
V 2

DS

]
(4.23)

in which ID is the drain current, β a factor depending on geometry and technology,
VGS is the gate-source voltage, Vth is the threshold voltage and VDS is the drain-
source voltage. This can be rewritten as:

ID

VDS

= β

[
(VGS − Vth)− 1

2
VDS

]
= f(VDS) (4.24)

In the triode region, VG > VD +Vth and VG > VS +Vth for NMOS transistors. From
this equation, it becomes clear that it is possible to use the MOS transistor in the
triode region for the voltage-to-current conversion, after which the current can
be integrated into a voltage by a capacitor. The transconductance, however, is a
function of the drain-source voltage. This implies non-linearity. Most of the even-
order non-linearities can be eliminated by using balanced structures. An example
can be seen in figure 4.19.

4.5.2 Active triode integrator

The active triode integrator is described by the same equations as the passive
integrator. The only difference is the coupling of the signals to the transistor.
The transconductance, gm, of the MOSFET is used to couple the integrators. The
distortion can also be reduced by applying balanced structures. An active triode
integrator can be seen in fig.4.20.
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Figure 4.19: Passive triode integrator
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Figure 4.20: Active triode integrator

4.5.3 Active saturation integrator

For MOS transistors in saturation, the following equation describes the relation
between the drain current and the terminal voltages:

Id =
1

2
β(VGS − Vth)

2 (4.25)

In the saturation region VG < VD + Vth. Also in this integrator, even-order non-
linearities can be canceled by using balanced structures. An example is given in
fig.4.21. This integrator has good high-frequency characteristics, because parasitic
capacitances are in parallel with the integrator capacitances, such that no parasitic
poles occur. Because NMOS and PMOS transistor non-linearities partly cancel
out, the distortion reduces but further measures are necessary to decrease the
resulting distortion.
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Figure 4.21: Active saturation integrator

4.5.4 Passive saturation integrator

A passive saturation integrator uses the source terminal as the input and is biased
in the saturation region. An example is given in fig.4.22. It should be noted that

Vin

Vsup

Gnd

Vout

C

Figure 4.22: Passive saturation integrator

this type of integrator belongs to the first group of integrators as discussed in the
previous section. Realizing the integration active yields an integrator from the
second type.
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4.6 Exercises

1. Given the voltage-to-voltage integrator in figure 4.23.

R

C

+ +

- -

Vin Vout

Figure 4.23: A passive voltage-to-voltage integrator.

(a) Determine the transfer function of this integrator.

(b) Draw, equivalent to the depicted integrator, an i-i integrator.

(c) What is the transfer of this integrator?

(d) Give a cascade of three i-i integrators and a cascade of three v-v integrators.
You may neglect input and output loading effects.

(e) What is the difference between the two cascades?

2. A first step in approximating a nullor is the use of a voltage-controlled current
source.

(a) Derive the chain matrix of the voltage-controlled current source depicted in
figure 4.4.

(b) Under what condition is this voltage controlled current source equal to the
nullor?

3. Determine for the ideal voltage and current source the corresponding small-
signal models.

4. Derive the expression for rπ by directly using:

rπ =

(
dIB

dVBE

)−1

(4.26)

5. A figure of merit for transistors is the transit frequency. This is the frequency
at which the current-gain factor becomes one.
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(a) Determine the current-gain factor of the bipolar transistor by using the model
of figure 4.12.

(b) Sketch the transit frequency as a function of the collector bias current, IC .

6. Given the signal schematic of transistor Q1 in figure 4.24. For the transistor

+

-
V

s

R
s

RL IL
Q1

Figure 4.24: A transistor circuit

holds: IS = 10−14A, VA = 40V, kT/q = 25mV . Q1 is biased (with circuitry that
is not shown) such that |IC | = 0.2mA, VCB = −10V and βf = 200. Further,
Rs ≈ 25kΩ and RL ≈ 100kΩ.

(a) Calculate the transfer |IL/Vs|.

7. Given the circuit in figure 4.25. For the diode the following values hold:

+

-
vs(t)

Rs=200 Ω

IDI
R

L

200 Ω

+

-
v

o
(t)

Figure 4.25: A diode circuit

IS = 2.5 · 10−12A (4.27)

kT/q = 25mV (4.28)

The signal source is given by:

vs(t) = 30 sin(ωt)mV (4.29)

For the current source it holds:

I = 0.25mA (4.30)

The impedance of the capacitor is negligibly small.
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Figure 4.26: A diode circuit

(a) Calculate the peak-peak value of the output voltage uo(t).

8. Given the circuit in figure 4.26. For the diode the following values hold:

IS = 10−14A (4.31)

kT/q = 25mV (4.32)

Voltage source U is such that the diode bias current is ID = 0.1mA. The signal
source is given by:

vs(t) = 10 sin(ωt)mV (4.33)

The impedance of the capacitor is negligibly small.

(a) Calculate the peak value of the diode voltage v(t).

9. Given the amplifier circuit in figure 4.27. For the transistors the following
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-
VCC

R
F

R
L

Q1

Q
3

Q3

0.1mA

1mA

10mA

i
s

+-
1VC

S

Figure 4.27: A amplifier circuit

values hold:

β1,2,3 = 100 (4.34)

kT/q = 25mV (4.35)

Cπ1 = 100fF (4.36)

Cπ2 = 300fF (4.37)

Cπ3 = 1pF (4.38)
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(a) Draw the small-signal diagram and determine the element values for the
transistors.

10. Given the differential pair in figure 4.28. Both transistors are equally biased.

+

-

vin

+

-

vout

Figure 4.28: A differential pair

(a) Determine the small-signal diagram.

(b) Simplify the diagram of the previous question assuming that the differential
pair is driven symmetrically.

11. Given the active saturation integrator of figure 4.29 This integrator imple-

Qp

Qn

iout

+ +

--

VDD

vin vout

IDp

IDn

Figure 4.29: An active saturation integrator.

mentation has the advantage that the nonlinearity of the MOS device can cancel
upto a large extent. This cancellation is the topic of this exercise.

The input voltage equals:
vin = Vin + vs (4.39)

in which Vin is the bias voltage and vs is the signal voltage.

(a) What condition such be fulfilled for Qn and Qp such that they have equal
bias currents.



4.6. EXERCISES 109

(b) Determine the combined transconductance of the two transistors.

(c) Determine the second-order distortion in the relation iout = f̃(vin). (Hint:
use second term of the Taylor expansion of the nonlinear circuit, see equation
(4.4) )

(d) What condition must be met to cancel this distortion term?

12. Consider the active triode integrator of figure 4.30.

Vin

Vout

C

V1

ID

-

+

+

-

+

-

Figure 4.30: An active triode integrator.

(a) Determine for the MOS device in the triode region the small-signal circuit
comprising gm and rd. Be clear in the sign conventions.

(b) Determine, using the small-signal circuit of the previous question, the trans-
fer of the integrator.

(c) A filter is designed using several of those integrators. How can the filter be
tuned making explicitly use of the triode region? Explain!
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Chapter 5

Nullor synthesis

5.1 Introduction

The key building block in electronic design is the nullor. In the previous chapters
the nullor frequently popped up as a desired building block. The basic function
of the nullor is to supply gain, ideally infinite. The symbol of the nullor and its
sign conventions are depicted in figure 5.1. Note that the output-current reference

iin iout

+ +

--

vin vout

Figure 5.1: The nullor symbol and the sign conventions

direction is defined to be outward. This in contrast to the common definition which
defines an inward direction (like for the input port) as the reference direction for
the output current, i.e. both the input and output ports are treated equally. The
convention of figure 5.1 is more convenient for designers, as in the case of cascading
two-ports, no ”minus sign” is required.

The nullor is an ideal element. The input voltage, vin, and the input current,
iin, are by definition zero. These zero-conditions are not fulfilled automatically in
a network. The values of the output voltage, vout, and the output current, iout,
of the nullor become such that these input conditions are met. This implies that
useful application of a nullor is always in a feedback situation. The input nullor
conditions are requirements and not enforcements, so the nullor input is not a short
circuit (vin = 0) nor a open (iin = 0).

Starting at the definition of the nullor, i.e., the input voltage of the nullor and

111
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the input currents to the nullor equal zero, the chain matrix is readily obtained to
be: (

vin

iin

)
=

(
0 0
0 0

)(
vout

iout

)
(5.1)

This chain matrix directly follows from the definition. Thus the nullor has by
definition a chain matrix filled with zeros.

Chain parameters have the reciprocal value of the transfer parameters. So, the
nullor has infinite gain. Thus a nullor implementation is always an active circuit,
i.e. comprising a power source. In the subsequent sections the design of a nullor
implementation is treated. First, in section 5.2 attention is paid to what basic
building blocks are preferably used to obtain the best nullor approximation. The
nullor has got infinite gain, whereas single amplifying stages have limited gain.
So, a cascade of single stages may be required to obtain sufficient gain. How to
compose a cascade of stages is discussed in section 5.3. The nullor is ideal and thus
adds no noise to a signal, has got no bandwidth limitation, and does not distort
a signal. Practical circuits are not that perfect. Section 5.4 discusses how these
quality aspects relate to the nullor implementation and how a design should be
organized such that these quality aspects can be optimized separately.

It should be noted that throughout this chapter, when transistors are depicted,
the bias circuitry is omitted. Thus, with a symbol of a transistor its small-signal
behavior is meant.

5.2 Basic building blocks

Goal in the implementation of a nullor is that the chain matrix of the designed
implementation approached the null-matrix as close as required. Thus to select
basic building blocks their chain matrices should be evaluated. Firstly, single
transistor stages are evaluated and subsequently, balanced configuration are dealt
with.

5.2.1 Single-transistor stages

Figure 5.2 shows the possible stages when using a single transistor in the case of
bipolar technology and MOS technology. So, a transistor is a three terminal device,
whereas the nullor is a two-port with four terminal. When using a single transistor
as an amplifying stage, always the input and output will have one terminal in
common. Which terminal is the ”common” terminal is put in the name of the
stage, i.e. CE means common emitter and CD means common drain.

For each of the stages the chain matrix can be derived. The small-signal di-
agrams used for calculating the chain matrix are depicted in figure 5.3. Using



5.2. BASIC BUILDING BLOCKS 113

CE CB CC

CS CG CD

Figure 5.2: Signal diagram of amplifying stages composed of a single transistor, Bipolar
and MOS technology.

these small-signal diagrams for the amplifying stages of figure 5.2 yields the chain
matrices as listed in figure 5.4. Looking to the matrices as depicted in figure 5.4,
several observations can be made.

• First of all, when comparing the chain matrix of the CE (CS) stage with the
chain matrix of the CB (CG) and CC (CD) stage, it is clear that they are
almost the same. Except a minus sign, only one chain parameter is different.
For the CB (CG) stage parameter D = 1 and for the CC (CD) stage A = 1.
The parameters A and D of the CE and CS stage are much smaller than one
and thus it can be concluded that, when the smallest chain parameters are
the goal, the CE and CS stage approach that the best. Therefore:

The CE and CS stage are the basic building blocks or basic am-
plifying stages comprising one transistor.

The other stages can be treated as the CE or CS stage but with local non-
energetic feedback. This feedback sets one of the chain parameters to one as
can be seen in figure 5.4.

• The chain matrix of the MOSFET stages are more simple than those of
the bipolar stages. However, this is not generally true. In this section the
DC chain matrices are considered and because of the absence of a DC gate
current, the chain parameters relating to iin become zero! When AC chain
matrices would be considered, the MOSFET chain matrices get the same
complexity as the corresponding bipolar chain matrices.
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Figure 5.3: DC small-signal diagram for the bipolar transistor and the MOSFET tran-
sistor in their possible configurations.
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Figure 5.4: Chain matrices for the stages of figures 5.2.

The single-transistor stages have one essential limitation: the terminal that is
common for the input and output. This is illustrated by the current amplifier with
a single transistor implementation for the nullor, see figure 5.5. Clearly, because
of the common-emitter terminal the load resistor, RL, is shorted!. Placing the
transistor up-side down, yields that feedback resistor R1 is shorted. Conclusion,
based on this single transistor it is not possible to implement a current amplifier,
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iin

R1

R2

RL

iout

Figure 5.5: A single transistor nullor implementation for a current amplifier.

other amplifying stages need to be found. As all the possible single-transistor
stages are evaluated, the need for an evaluation of two-transistor stages arises.

5.2.2 Two-transistor stages

Two-transistor amplifying stages can be found by combining two transistors such
that the chain matrix of the new stage is equal or slightly different compared with
the single-transistor stage. Visualizing a single transistor as a two-port, combina-
tions can be found by combining two ports. Some commonly used combinations
that can be obtained in such a way are depicted in figure 5.6. Assuming that the
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Figure 5.6: Some combinations of two-ports to end up with closely related new two-
ports. (A) Anti-series connection (B) Parallel connection
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chain matrix of the single two port is given by:

Ksingle =

(
A B
C D

)
(5.2)

then the chain matrix of the anti-series connection, Kas, is given by:

Kas =

(
A 2B

C/2 D

)
(5.3)

and the chain matrix of the parallel connection, Kp, equals:

Kp =

(
A B/2
2C D

)
(5.4)

Clearly, a close relation exists between the chain matrix of the single stage and
the chain matrices of these two combinations. The only differences are the factors
2 and 1/2. Thus, when for the two-ports stages are used with the lowest chain
parameters, the combination will have chain parameters close to those lowest chain
parameters. Replacing the two-port ports by CE stages yield the two stages as
depicted in figure 5.7. Transistor combinations like the one depicted in figure 5.7

(A) (B)

Figure 5.7: Combining CE stages in A) Anti-series connection (B) Parallel connection

are commonly used. The parallel connection of two transistors is used to enlarge
the current capability of the amplifying stage. The anti-series stage, or more
often called the differential pair, is used when, for instance, the three-terminal
CE stage can not be used, as was illustrated in figure 5.5. Because of the anti-
series connection of the inputs and outputs, the differential pair has become a four
terminal stage. The current amplifier in which the nullor is now implemented with
a single differential stage is depicted in figure 5.8.
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iin

R1

R2

RL

iout

Figure 5.8: A current amplifier with a differential stage implementing the nullor.

The chain matrix of the differential pair is easily found by considering the
relation to the chain matrix of the CE stage. It is given by:

Kas =

(
−VT

VA
−2VT

IC

− IC

2βF VA
− 1

βF

)
(5.5)

This means, that besides the basic single stages, CE and CS stage, also the dif-
ferential versions of those stages can be used as basic building block. The basic
stages are depicted in figure 5.9. Of course, also the P-type transistors can be used
to create basic amplifying stages.

As the chain matrix of the differential pair is closely related to the chain matrix
of the CE stage, it is to be expected that also the small-signal diagram of the
differential pair is closely related to the small-signal diagram of the CE stage.
Indeed, they look very similar. Figure 5.10 depicts the small-signal diagram of
the differential pair. Its derivation is left as an exercise at the end of this chapter.
The main difference is found in the fact that also the small-signal diagram is a
four terminal network. Consequently, when the sign of the nullor-implementation
gain is not correct, the output terminals of differential pair can be interchanged
to create a sign reversal. Further, in the small-signal diagram it can be seen that
Bas = 2Bce as the transconductance of the differential pair is half compared with
the single transistor.
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MOSBipolar

S
in

gl
e

D
if

fe
re

nt
ia

l

Figure 5.9: The basic stages that can be used for implementing a nullor in a bipolar
or MOS technology.
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v

Figure 5.10: The small-signal diagram of the differential pair. Small-signal variables
refer to the variables of a single transistor.

5.3 Cascade of stages

The previous section discussed what the optimal basic amplifying stages are for
implementing a nullor approximation. Depending on the amplifier one amplifying
stage could be insufficient. Insufficient means that the chain parameters are not
close enough to zero and thus the gain of the nullor implementation is not high
enough. In the next chapter the reason for having a certain gain level for the nullor
implementation is discussed in more detail. In this section attention is paid how
the chain parameters of the nullor implementation can be made closer to zero by
using additional stages.

The straightforward method to increase the gain of a nullor implementation and
thus to make the chain parameters closer to zero, is to cascade amplifying stages.
This cascading of stages is schematically depicted in figure 5.11. When cascading
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Figure 5.11: A cascade of amplifying stage in order to improve the nullor implemen-
tation.

the stages the output port of the first stage is connected to the input port of the
second stage and so on. Important is that the output port is directly connected
to the following input port. No additional elements should be in between. This
is because of the highest performance that is obtained in this case. On this level
of abstraction it may seem trivial. However, when connecting several transistor
stages one may get confused in what to connect to what. Therefore, working with
this level of abstraction can help in synthesizing correct nullor implementations.

The overall chain matrix of a multi stage nullor implementation is found by
multiplying the corresponding chain matrices. This can be done as the reference
direction of an output current is outward whereas the reference direction of the
input current is inward and the input and output voltage have same reference
direction. As an example, the chain matrix of a two-stage implementation is
given:

Kcascade = K1K2 =

(
A1 B1

C1 D1

)(
A2 B2

C2 D2

)
(5.6)

=

(
A1A2 + B1C2 A1B2 + B1D2

C1A2 + D1C2 C1B2 + D1D2

)

Each chain parameter of the cascade is a sum of two products of chain parameters.
As the chain parameters are close to zero, the chain parameters of the cascade
become even closer to zero. For instance, the DC chain matrix of the cascade of
two CS stages is given by:

KCS,CS =

(
1

gm1gm2rd1rd2

1
gm1gm2rd1

0 0

)
(5.7)

The terms gmrd are also called the voltage-gain factor of a FET device. This
voltage-gain factor can be on the order of 100 to 1000. Clearly, the chain matrix
of the cascade approaches the zero matrix closer than the one does of a single
stage.
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An example of a three-stage implementation is given in figure 5.12. The
first stage is a differential PMOS stage, the second stage is a differential bipo-
lar stage (N) and the third stage is a single CE stage (N). Note that each output

+ +

--

Figure 5.12: A three stage implementation of a nullor.

port is correctly connected to the subsequent input port. The overall polarity
of the cascade was chosen such that an interchange of two output terminals of a
differential pair was required.

5.4 Design for quality

In the previous section it was discussed how to implement a nullor approximation
by using more amplifying stages. Which type of stage (single or differential) and
what type of technology (bipolar or FET) should be chosen for optimal results
was not treated. This requires a more detailed analysis of the noise, speed and
distortion performance of a nullor implementation, which is beyond the scope of
these lecture notes. However, in this section attention is paid to the locations in
the circuit where the different quality aspects (noise, distortion and bandwidth)
are determined. This gives the designer insight in how (where) to improve certain
quality aspects of the circuit.

A properly designed nullor implementation comprises only amplifying stages:
CE, CS and the differential variant. As a result, when the signal level is depicted as
a function of the location in the nullor implementation, a diagram like depicted in
figure 5.13 is obtained. This diagram is the key to localizing the noise performance,
the distortion performance and the bandwidth performance. As a result of the use
of amplifying stages only, the signal at the input is the smallest whereas the signal
at the output is the largest.

Noise effects the signals dominantly at locations where the signals are the
smallest. Consequently, the noise performance is determined by the input stage:

The noise performance is localized at the input of the nullor implemen-
tation.
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IIII II

Figure 5.13: The signal level in a cascade of amplifying stages as a function of the
location in the cascade.

Analogous, strong distortion, like clipping, is likely to happen at the output,
since in a properly designed amplifier, the signals are the largest in the output
stage.

The clipping-distortion performance is localized at the output of the
nullor implementation.

The fact that these two properties can be assigned to different parts of the amplifier
makes an assumption of orthogonality for these two valid.

The third property, bandwidth, cannot be assigned to any particular part of
the amplifier. This is because the nullor implementation is used in a feedback loop
and the dynamic behavior of a closed loop is determined by the whole loop.

The bandwidth performance is determined by the whole nullor imple-
mentation

Both the input stage and the output stage contribute to the bandwidth perfor-
mance of the complete amplifier too. Therefore noise and clipping-distortion op-
timization always interfere with bandwidth optimization. For this reason noise
and clipping-distortion optimization should be performed before bandwidth opti-
mization. During these optimizations bandwidth is not taken into account. It is
assumed that this can be made correct later outside the first and last stage. The
contributions of the first and last stage to the bandwidth are taken for granted
during bandwidth optimization. They are taken into account, but in principle not
changed.

Since bandwidth calculations are very tedious, before the actual bandwidth of
the amplifier is determined, first a prediction of the bandwidth is made by way of
a fairly simple calculation. When the circuit passes this test, the actual bandwidth
calculations are performed, so bandwidth optimization will consist of two stages:

• bandwidth estimation
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• bandwidth optimization or frequency compensation

For ease of calculation bandwidth calculations will be performed with a very simple
transistor model at first. Later the model is refined gradually after each success-
ful calculation until the full transistor model is applied. Again this is to detect
unfeasible solutions before extensive calculations are performed. Also this gradual
refinement of models provides a lot of insight for the designer in the exact cause
of appearing problems in the amplifier.

5.4.1 Design of the first nullor stage: noise.

The first property that is optimized is the noise performance. In figure 5.14 the
nullor configuration is shown that is used for this optimization step. The first

+

+-

-

Figure 5.14: The model for the active circuit used for noise optimization.

stage is put in front of the nullor. When the gain of the first stage is sufficient,
the noise contribution of the rest of the circuit can be neglected. Therefore as a
first stage a CE or a CS stage should be used, or their differential version, because
they offer the most gain.

The advantage of starting with the noise optimization is the fact that it is
possible to model the circuitry following the first stage by a nullor. In this way,
the other two criteria, bandwidth and clipping distortion, remain ideal. The nullor
will supply infinite power if necessary, its infinite gain results in infinite bandwidth
and zero distortion for the feedback loop. The designer only has to be concerned
with noise in this stage. As long as the implementation of the nullor is good enough,
the performance of the first stage with respect to bandwidth and distortion is of
no importance.

An orthogonal design of the noise performance is therefore possible.
The clipping distortion, though also localized at a specific place in the amplifier,

is better not taken as the first aspect to be optimized. This is because it is not
possible, like it was for noise, to take the stage concerned and cascade it with a
nullor to make the optimization independent of the noise and bandwidth aspects.
The nullor would be placed in front of the stage concerned and with its infinite
gain, it would reduce the distortion caused by this last stage to zero, irrespective
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of the implementation of that stage. So to keep calculations simple as long as
possible, by keeping a nullor in the design as long as possible, the design should
start with noise optimization.

5.4.2 Design of the last nullor stage: distortion.

When the first stage has been designed for noise, the last stage should be designed
for clipping distortion. Bandwidth can be manipulated anywhere in the amplifier,
so any restriction on bandwidth caused by the last stage, can be corrected elsewhere
in the amplifier. The nullor implementation used, can be as depicted in figure 5.15.
The largest signals appear in the last stage. Therefore clipping is most likely to

+

+-

-

Figure 5.15: The model for the active circuit used for clipping distortion optimization.

happen in this stage and probably most of the power is consumed here. To make
the assumption true, the gain of the last stage should be as large as possible. The
magnitude of the signals in the preceding stage is reduced by the gain of the last
stage. Therefore it is unlikely that that stage will cause distortion problems if the
last one does not.

Apart from the clipping distortion, there is also the weak distortion caused
by the non-linearity of the devices. The dominant contribution of this type of
distortion may not be from the last stage. This type of distortion can be reduced
by increasing the loop gain, a measure that can be taken anywhere in the circuit
and that is not in conflict with bandwidth or noise optimization.

5.4.3 Design of intermediate nullor stages: bandwidth.

The exact calculation of the bandwidth of an amplifier is very complicated. It is
too complicated to waste it for detecting non-feasibility of a solution. Therefore
first a prediction will be made on the possible bandwidth of a solution that is
not based on complicated calculations. By model simplification, calculations are
reduced even further.

The two stages that have resulted from the noise and the distortion optimiza-
tion form the first ”guess” for the complete active circuit. The simple models are
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used. A negative-feedback amplifier results that at least meets the noise and the
clipping specs.

For this configuration a prediction of the maximum bandwidth can be found.
When this upper limit is too low it can be increased by means of, for instance, addi-
tional intermediate stages. When the prediction of the upper limit is high enough
the real design of the bandwidth can be done and a correct nullor implementation
is obtained.
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5.5 Exercise

1. Determine the chain matrix of a nullor by directly applying the definition of
the chain parameters.

2.

(a) Draw a current follower using a nullor for the active part.

(b) Implement the nullor by one single-transistor stage.

(c) Determine the chain matrix of the configuration of the pervious questions.

(d) What is your conclusion?

(e) Repeat this exercise for a voltage follower.

3. Given the combination of amplifying stages, depicted in figure 5.16. It can be

iin

iout

vout

vin
+

+

-

-

Figure 5.16: A combination of amplifying stages.

assumed that the four transistors are identical and have a chain matrix equal to:

K =

(
A B
C D

)
(5.8)

(a) Determine the chain matrix of the combination of transistors depicted in
figure 5.16 (Hint: use hierarchy).

4. The chain matrix of a differential pair is closely related to the chain matrix of
the single-transistor stage (CE, CS).

(a) What is the difference between the chain matrix of a differential pair and its
single-transistor counterpart (use the DC chain matrix)?

(b) How can those chain matrices be made identical? Discuss this for bipolar as
well as for FET technology.
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5. Small-signal diagrams are used to analyze the behavior of, for instance, non-
linear transistors.

(a) Derive the low-frequency (DC) small-signal diagram of a PNP bipolar tran-
sistor.

(b) Compare it to the low-frequency (DC) small-signal diagram of a NPN bipolar
transistor.

(c) What is your conclusion? Explain your findings.

6. Figure 5.17 depicted three nullor implementations.

(I)

(II)

(III)

+

+

+

-

-

-

Figure 5.17: Three arbitrary nullor implementations

(a) Which of the implementations of figure 5.17 are correct and which incorrect.
Motivate your choices.
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(b) Indicate in the figures the intended output polarities. A reference polarity
for the input is given in the figure.

7. Figure 5.18 depicts two two-stage nullor implementations yielding a inversion
between input and output as indicated.

(I)

+

-

+

-+

-

+

-

(II)

Figure 5.18: Two two-stage nullor implementations yielding inversion between input
and output.

(a) Are both implementations correct implementations?

(b) No: describe what is wrong and indicate what the consequence is on the
performance of the nullor implementation.

(c) Yes: which one do you prefer? Motivate!

8. Given the chain matrix of a CE-stage:

(
ACE BCE

CCE DCE

)
(5.9)

(a) Determine the elements of this matrix with the assumption that the fre-
quency dependent elements and the Early effect can be ignored

The stages depicted in figure 5.19 comprise one or more transistors

(b) Determine for the depicted combinations the chain matrices as a function of
ACE, BCE, CCE and DCE. It can be assumed that all the transistors are
identical.

9.
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(A) (B)

(C) (D)

Figure 5.19: Four transistor combinations.

(a) Determine for the stages depicted in figure 5.19 the small-signal equivalents.

10. Given the four amplifiers in figure 5.20.

(a) Determine the transfer of each of these amplifiers by using the nullor con-
straints.

(b) Give for each of the nullors a two-stage implementation using MOSFETs
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(A)

(B)
10:1

1 nF
(C)

(D)

C1 C2

Figure 5.20: four feedback amplifiers
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Chapter 6

Accurate Amplification

6.1 Introduction

In the previous chapters several design steps were treated in the design of active
filters. Clearly, the chapters dealing, for instance, with the noise performance of
circuits and the implementation of the nullor, are more general applicable than
to filter design only. The same goes for this chapter. In this chapter a model is
presented that fits perfectly to the design of negative-feedback circuits.

Feedback is applied when a highly accurate transfer exhibiting gain or a source
or load independency is required using the standard electronic components. The
standard electronic components are either active and relatively inaccurate or pas-
sive and relatively accurate. By means of feedback, these components are com-
bined such that an accurate transfer is obtained with the characteristics of active
devices, i.e. gain, etc. This is depicted in figure 6.1. When the active elements

Active
Inaccurate

Passive
Accurate

Σ+
-

Es Eo

Efb

Figure 6.1: Using feedback to combine the quality of passive and active components
to obtain highly accurate transfers.

supply sufficient gain, i.e. approaches a nullor, the transfer is determined by the

131
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feedback network. This is because in the situation of high gain, the input signal
of the active part approaches zero. This means that the feedback signal, Efb, ap-
proximately equals the input signal Es. As the output signal Eo is related to Efb

via the transfer of the feedback network this means that the ratio Eo/Es is given
by 1/β in which β is the transfer of the feedback network.

6.2 Asymptotic-gain model

The derivation of the asymptotic-gain model starts with the application of the
superposition principle to the negative-feedback system. Therefore, two sources
need to be distinguished in the negative-feedback system:

• the independent signal source, Es;

• a dependent source modelling the active part, Ec

in which the dependent source is assumed to be described by the following relation:

Ec = AEcc (6.1)

in which Ecc is the control input and A the constitutive parameter. Applying
superposition to obtain an expression for the output signal, Eo, yields:

Eo = ρEs + νEc (6.2)

in which ρ is the transfer from the signal source to the output when Ec = 0 and ν
is the transfer from the dependent source to the output under the condition that
the input signal is zero. In this equation the value of the dependent source is still
an unknown and for getting a fully described system, superposition should also be
applied to the dependent source. To make the constitutive parameter explicit in
the model, superposition is applied to obtain an expression for the control input
of the dependent source, yielding:

Ecc = ξEs + βEc (6.3)

in which ξ is the transfer from the signal source to the control input when the
dependent source is zero and β is the feedback modelling the transfer from the
dependent source to the control input assuming that the signal source is zero.
Equations (6.1) - (6.3) can be graphically represented as depicted in figure 6.2.
Using (6.1) - (6.3), the transfer of the negative-feedback system, At, can be de-
scribed as:

At =
Eo

Es

= ρ +
νξA

1− Aβ
(6.4)
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Es Ecc Ec Eo
A

ρ

β

νξ

Figure 6.2: Graphical representation of the superposition model of a negative-feedback
system.

In a synthesis method it is preferable to start from an ideal situation. In the
case of a negative-feedback system, the ideal situation is that the active part is a
nullor. When modelling the nullor by means of a dependent source, the constitutive
parameters will be infinite. Thus, the gain of the negative-feedback system in the
ideal situation, A∞, is found as a limiting case for A →∞ as:

At∞ = lim
A→∞

At = lim
A→∞

(
ρ +

νξA

1− Aβ

)
(6.5)

= ρ− νξ

β

The gain At∞ is called the asymptotic gain, i.e. the gain of the amplifier in the
ideal (gain of active part asymptotically going to infinite) situation. Rewriting
the gain of the negative-feedback system, in which the asymptotic gain appears,
is given by:

At = At∞
−Aβ

1− Aβ
+ ρ

1

1− Aβ
(6.6)

In this expression the term A is not present individually, but always in a product
with β. Looking to the diagram in figure 6.2 it is clear that the product Aβ is the
loop gain of the amplifier. Assuming the loop starts at the dependent source, then
the loop goes on via the feedback path, β, to end up at the control port of the
dependent source and, finally, via the the constitutive parameter, A, the starting
point is reached again. Often, this loop gain is written as a single parameter, like
L.

Having a closer look at the expression, it appears that the gain, At, is a weighted
sum of two transfers: At∞ and ρ. The two weighting factors depend only on the
loop gain. In the case of infinite loop gain (the active part is a nullor), the gain
equals At∞ and in the case of zero loop gain (the active part is an open) the
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transfer is given by ρ. Therefore, a better name for ρ is At0, i.e. the gain of the
feedback system in the case that the loop gain is zero.

Applying these two changes to expression (6.6), yields:

At = At∞
−L

1− L
+ At0

1

1− L
(6.7)

Note that the loop gain for proper functioning of the loop should be negative.
Clearly, the asymptotic-gain model fits perfectly on the synthesis of electronic

circuits as presented in these lecture notes. Roughly speaking, the presented syn-
thesis procedure comprises two steps:

1. Design of the feedback network, assuming the active part is a nullor.

2. Approximate a nullor by means of a cascade of amplifying stages.

These two steps, translated to the asymptotic-gain model, yields:

1. Design At∞.

2. Design L such that it is sufficiently high.

6.3 Calculating loop gain

For the asymptotic-gain model two quantities need to be determined:

• At∞

• L

The asymptotic gain of a negative-feedback system is relatively easy to obtain:
assume the active part is a nullor and find for that configuration the transfer.

Calculating the loop gain of the negative-feedback system requires some specific
attention. In the asymptotic-gain model the active part is modelled by means of a
single dependent source and then the loop gain is A times β. However, most nullor
implementations have more than one amplifying stage, resulting in more than one
dependent source in the small-signal diagram. The question is: ”How to calculate
the loop gain in such a situation?”

Assume the simplified small-signal diagram of a negative-feedback amplifier
as depicted in figure 6.3. The active part is high-lighted by means of the dotted
box. Applying the asymptotic-gain model literally would mean that the active
part is modelled as a single dependent source, with input vbe1 and output gm3vbe3.
Subsequently, β and A should be calculated.
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is
rπ1 rπ2 rπ3 RL

RF

+

-
vbe1

+

-
vbe2

+

-
vbe3

gm1vbe1
(ix)

gm2vbe2 gm3vbe3

Figure 6.3: Calculating the loop gain of a negative-feedback amplifier.

However, a more direct method is to calculate the loop gain at once, i.e. cal-
culating ”L” directly. Therefore, somewhere the loop has to broken and the gain
should be calculated between the two open ends assuming that the input signal
(is) is zero. The loop is broken by making a dependent source in the loop, inde-
pendent. In this way the topology of the network is not changed and an exact loop
gain can be calculated. This in contrast with several methods found in literature.
In those methods the loop is broken by disconnecting somewhere in the loop an
element. For instance, when the loop would be broken by cutting RF from the
input, the impedance seen at RL is changed as RF is floating now.

In the amplifier of figure 6.3, each of the three independent sources can be
chosen to break the loop at. Criterion is that when the constitutive parameter,
of the dependent source that is made independent, is made infinite, the nullor
conditions should be found at the input of the active part. In the case of a correctly
broken loop, the constitutive parameter of the respective amplifying stage is in the
loop. Thus, when making this parameter infinite, the loop gain becomes infinite,
and the active part resembles a nullor. In the example presented in section 6.5 it
is shown how an error can be made by choosing the wrong dependent source.

When the loop is broken, the transfer from the new independent source to the
original controlling port should be calculated. The loop gain is then found by
multiplying that transfer by the constitutive parameter of the original dependent
source. The calculation can be done by using the MNA method, or often also by
inspection using current and voltage division.

For the amplifier in figure 6.3, the first dependent source is assumed to be
independent, ix. The transfer from ix to vbe1 is readily obtained to be:

vbe1

ix
= rπ2 · gm2 · rπ3 · gm3

RL

RL + RF + rπ1

· rπ1 (6.8)

and the loop gain is given by:

L = −gm1
vbe1

ix
= −β1 · β2 · β3

RL

RL + RF + rπ1

(6.9)
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It is easily shown that when the loop is broken at dependent source 2 or 3 the
same results are obtained.

6.4 Black’s feedback model

In the previous sections the asymptotic-gain model was presented as a model which
should be used for designing feedback circuits. A more commonly used feedback
model is Black’s model. Question then arises: ”Why not using that model, it
yields more or less the same kind of expressions?”.

Main reason, is the fact that Black’s model is defined at signal level using
unilateral blocks. Those blocks have a gain that is independent of source and load.
These kind of blocks are found, for instance, in control engineering. In electronics,
however, circuits have to do with voltages and currents and consequently, loading
effects of impedances play an important role.

The asymptotic-gain model has got its roots in the superposition principle.
This superposition principle is still valid when considering voltages and currents,
which makes the asymptotic-gain model suitable for application in electronic cir-
cuit design.

6.5 Example use of asymptotic-gain model

In this section an example is treated that shows how the asymptotic gain and the
loop gain can be calculated for the asymptotic-gain model. The amplifier of figure
6.4 is studied. The gain of the amplifier is set by resistor Rfeedback. Input signal

Q2Q1

+

-

Rload

+

-

vout

+

-

Csis

Rfeedback

Figure 6.4: A transimpedance amplifier with a two-stage nullor implementation.

is current is and output signal is voltage vout. The nullor is implemented by two
stages. The first stage is a CE-stage whereas the second stage is a differential pair
to guarantee a negative loop gain.
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6.5.1 The asymptotic gain

To calculate the asymptotic gain, the active part is replaced by a nullor, see picture
6.5. The input current and input voltage of the nullor are zero and thus all the

Rfeedback

is vout

+

-
RloadCs

Figure 6.5: Determining the asymptotic gain by replacing the active part by a nullor.

signal current flows through the feedback resistor, yielding and output voltage
equal to −Rfeedback · is. Consequently, the asymptotic gain is easily found to be:

At∞ = −Rfeedback (6.10)

6.5.2 The loop gain

For calculating the loop gain, the small-signal diagram of the amplifier is consid-
ered, see figure 6.6. For the differential pair a simplified small-signal diagram is

is

cπ1Cs rπ1

Rfeedback

+

-
v1 gm1v1

cπ2 rπ2
+

-
v2

gm2v2 RL

Figure 6.6: Small-signal diagram of the amplifier of figure 6.4

used. The derivation is depicted in figure 6.7. At the left side the small-signal
diagram of the differential pair is depicted by drawing for both transistors their
corresponding small-signal equivalent. For the case that both base currents are
equal (which is a good assumption for a differential pair), no current flows through
connection X. So, it can be removed from the diagram. The circuit which remains
in that case is easily reduced to the diagram at the right side of figure 6.7. For the
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cπ1 rπ1
+

-
v1

gm1v1 cπ3

+

-
v2

gm2v2

cπ2 rπ2

rπ3
+

-

v3 gm3v3

X

Figure 6.7: The small-signal diagram for a differential pair.

resulting diagram the input and output port do not have a terminal in common
and thus an inverting as well as a non-inverting transfer can be realized with this
stage. The relations between the elements are:

rπ3 = rπ1 + rπ2 = 2rπ (6.11)

cπ3 =
cπ1cπ2

cπ1 + cπ2

=
cπ

2
(6.12)

gm3 =
gm1gm2

gm1 + gm2

=
gm

2
(6.13)

in which the last equalities hold for the case of two identical transistors biased at
the same current.

For calculating the loop gain, a dependent source has to be made independent.
In this example, the dependent current source with current gm1v1 is assumed to
be independent with output current ix (see figure 6.8). The loop gain is found
easily now. First the transfer from ix to v1 needs to be calculated. As in the real
amplifier the relation between ”ix” and v1 is gm1, multiplying by gm1 yields the
loop gain:

loop gain =
V1

Ix

· gm1 (6.14)

It should be noted that the dependent source which is assumed to be independent
for calculating the loop gain, cannot be chosen arbitrary. The criterion is that
by making the dependent source independent, the overall loop should be broken.
This can easily be checked by making the corresponding constitutive parameter
infinite. In that case the loop gain should become infinite and at the input of
the nullor implementation the nullor conditions arise. When an incorrect source is
used, a local loop is broken and not necessarily the overall loop. In that case the
loop gain of a different loop is calculated and of course also a different asymptotic
gain is related to that loop.

This error is easily made when, for instance, for the differential pair the small-
signal diagram of the left side of figure 6.7 is used and one of the two dependent
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sources is assumed to be independent. The two transistors are anti-series connected
and thus both have local feedback. In that case the gain of this local loop is
calculated. This can easily be seen when the corresponding transconductance is
made infinite. In that case the corresponding transistor acts as an ideal voltage or
current follower (depending on which transistor is considered) and the loop gain
of the overall loop is certainly not made infinite. The correct choice is using gm3

of the diagram at the right side of figure 6.7.

For the example we assume that the voltage-controlled current source of the
input transistor is made independent. Figure 6.8 shows the small-signal diagram.
First step is to calculate the transfer from ix to v1. This can be done by the MNA

cπ1Cs rπ1

Rfeedback

+

-
v1 ix

cπ2 rπ2
+

-
v2

gm2v2 RL

Figure 6.8: Small-signal diagram for calculating the loop gain; the voltage-controlled
current source of the input transistor is assumed to be independent and
the input signal is made zero

method but also by inspection: use current division at the several nodes and the
gain of the transconductances:

V1 = −Ix · rπ2

1 + srπ2cπ2

· gm2 (6.15)

× RL

RL + Rfeedback + rπ1

1+srπ1(Cs+cπ1)

· rπ1

1 + srπ1(Cs + cπ1)

in which s is the Laplace variable. The loop gain is found by multiplying by gm1.
Simplifying the resulting expression yields:

L =
−β1β2RL

rπ1 + RL + Rfeedback

(6.16)

× 1

1 + srπ2cπ2

· 1

1 + s
rπ1(RL+Rfeedback)

rπ1+RL+Rfeedback
· (Cs + cπ1)

in which β = gmrπ. From this expression the DC loop gain [L(0)] and the poles
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(p1, p2) are readily found to be:

L(0) =
−β1β2RL

rπ1 + RL + Rfeedback

(6.17)

p1 =
−1

2πrπ1cπ1

(6.18)

p2 =
−(rπ1 + RL + Rfeedback)

2πrπ1(RL + Rfeedback)(Cs + cπ1)
(6.19)
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6.6 Exercises

1. With negative feedback the quality of passive elements (accuracy) and the
quality of active elements (gain) can be combined.

(a) Discuss the problems of error feedforward when trying to design accurate
amplification with passive and active elements.

(b) Discuss the problems that arise when error-compensation techniques are used
for realizing active amplification.

(c) What is the essential difference between negative feedback and the two pre-
vious discussed methods?

2. Assume that the inaccuracy of the passive elements that can be used in the
feedback network is 1%. The active part is implemented such that it approximates
the nullor well enough.

(a) What would you consider in this case a reasonable minimum loop gain?
Motivate your selection.

3. Given the three amplifiers in figures 6.9 - 6.10. For each of the amplifiers

Rs

vs

R1

R2 RL

Rs

vs RL

RF

Figure 6.9: Amplifier 1 and 2

calculate (using simple small-signal models, i.e. gm, rπ, cπ, cgs):

(a) The Asymptotic-gain for the transfer for source to the load quantity

(b) The loop gain in terms of the small-signal parameters, source, load and
feedback impedances.

4. Consider the active integrator as depicted in figure 6.11.
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R1

RL

R2

Rs
is

Figure 6.10: Amplifier 3

+

+-

-

VoutVin

G

Iout

C

Figure 6.11: An active integrator

(a) Determine At∞ for the active conductance.

Subsequently, assume that the nullor is approximated by a three stage implemen-
tation. The corresponding small-signal diagram is depicted in figure 6.12. For this
situation the loop gain is studied.

(b) For calulating the loop gain, the loop needs to be broken somewhere. How
and where can you break the loop for the amplfier of figure 6.12?

(c) What should the polarity be of a corret loop gain? Motivate!

(d) What is the dimension of a correct loop gain? Motivate!

(e) What is the effect of the integrator capacitor, C, on the loop gain?

(f) Determine the expression for the loop gain.
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gm2v2

rπ1 rπ2 rπ3

+

-

v1

+

-

v2

+

-

v3gm1v1 gm3v3

G

C

-

+

Vout
+

-

Vin

Figure 6.12: The small-signal diagram for the integrator when the nullor is imple-
mented by three stages.

R

C

in out

Figure 6.13: An active integrator.

5. Given an active integrator as depicted in figure 6.13.

(a) For what source and load type is this amplifier optimal? Motivate your
choices.

(b) Determine At∞ for this integrator.

The nullor is implemented by means of two amplifying stages. The corresponding
small-signal diagram is depicted in figure 6.14.

(b) What is the DC loop gain of the integrator ?

(c) Calculate the loop gain as a function of the frequency.
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R

C

rπ1 cπ1 rπ2 cπ2 Rv1 gm1v1

+

-

+

-

v2
gm2v2

Figure 6.14: The small-signal diagram of the integrator when the nullor is approxi-
mated by two amplifying stages.
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