Introduction to Aerospace Engineering

Exams

Exam "Introduction to Aerospace Engineering II" AE1102

Date 31-Jan-2012

READ THIS FIRST (NEDERLANDS vanaf pg. 9)

- This is a multiple-choice exam.
- Put your name and student ID on EACH multiple-choice FORM and ANY OTHER SUPPORTING DOCUMENT.
- Indicate the correct answer by putting a "cross" in the appropriate boxes or open circles on the forms
- Only ONE answer per sub-question is allowed (otherwise the answer will be graded ZERO). So, crossed out and "repaired" results will NOT be accepted.
- Only answers with INK PEN are allowed (so answers with lead pencils will NOT be accepted)
- Do NOT make any notes on the multiple choice forms! They will be disregarded.
- The "structures" part will provide 40 percent of the grade and the "space" part 60 percent.
- Submit all multiple-choice forms (and contingent supporting documents) as ONE set to the examination monitors when you leave.
- Only submit EITHER a DUTCH or an ENGLISH set of forms.

In addition, for the "space" part:

- Supporting illustrations, used formulas, derivations and intermediate calculations MUST be provided on separate sheets of regular exam paper (with your name, student ID and number of the question).
- "Gambled" answers without supporting notes on regular exam paper will be graded ZERO.
- The sub-questions are NOT inter-related. In principle, you should be able to answer them even if you don't know the result of the previous questions.

"Structures" Question A:

With D>d and $r_1 < r_2$ mark for the following statements the correct answer:

- a) The stress in location III is ... the stress in location VI
- b) The stress in location IV is ... the stress in location VI
- c) The stress in location V is ... the stress in location II
- d) The stress in location III is ... the stress in location II
- e) Under tensile load P diameter D is ... diameter D in unloaded condition
- f) The load P at which location VI deforms plastically is ... the load P at which location IV deforms plastically
- g) The fatigue life of bar 1 is ... the fatigue life of bar 2
- h) The stress concentration in bar 1 is ... that in bar 2

State whether the following statements are true or false:

- i) Fail-safe is the number of flights, landings or flight hours during which there is a low probability that the structure will degrade below its design strength
- j) Composites do not corrode and therefore do not suffer from environmental conditions
- K) To provide the load transfer through the spacecraft structure two categories of structures can be distinguished: truss structures and stage structures
- I) A sheet provides a diagonal function when loaded in shear
- m) Structural safety is solely the responsibility of the aircraft manufacturer and the operator
- n) Tension joints can be obtained with mechanical fastening (bolting) and with welding
- o) A hole in an infinite plate has a stress concentration $K_t = 3$ indifferent whether the hole is open or filled
- p) Expansion and contraction during respectively temperature increase and decrease is described by the Poisson's ratio
- q) During curing of thermoplastic polymers irreversible chain linking occurs
- r) The E-modulus of aluminium can be significantly changed by alloying
- s) A disadvantage of ceramics is the high ductility
- t) Milling is a process that removes "chips" from the material
- u) Filament winding is a process that can be applied in dry and wet condition to short fibres only
- v) The selection of a rib type depends on 4 aspects: strength, design philosophy, available equipment, and costs
- w) The selection of materials for a wing skin application depends on whether it is the upper or lower wing skin.

less	equal	greater
than	to	than
	\succ	
\ge		
\geq		
\ge		
\geq		
\searrow		
$\langle \rightarrow$		
$>\!$		
		\geq

"Structures" Question B:

An Airbus A340-600 with a fuselage diameter of 5.64 m is cruising at an altitude of 3000 meters. Gust applies a load that can be represented by a single load of 1500 N acting on the vertical tail at a distance of 6.5 m from the fuselage centre.

What is the torsion moment acting on the rear fuselage?

- O 9750 N/m
- O 5520 Nm
- O 13980 N/m
- 9750 Nm
- O 5520 N/m
- O 13980 Nm

Assume an average fuselage skin thickness of t = 2 mm and a torsion moment acting on the fuselage of 8000 Nm. What is the shear stress in the fuselage skin ($M_T = 2qA$)?

- O 8000 Nm
- 0 0.04 N/mm²
- O 160 N/m
- 80000 N/m²
- 0 0.16 N/mm²
- O 40 N/m

If equilibrium is provided by reaction forces on both wings; for the moment in the previous question, what is the magnitude of each reaction force if these forces act 20 m away from the fuselage centre?

- O 400 N
- O 800 N/m
- 200 N
- O 800 N
- O 200 kN
- O 400 N/mm²

To limit wing bending, which solution should be applied?

- O A high strength material as skin material of the wing
- O A high strength material as web plate material for the spars
- A high stiffness material as skin material of the wing
- O A high stiffness material as web material for the ribs

If a circular cut-out is created in the skin of the fuselage, which is subsequently sealed air-tight by an unloaded window, see illustration below. Which locations face the highest stress concentration?

- O Locations A and C
- Locations D and B
- O Locations B and C
- O Locations A and D

 $\Delta V = c \ln \frac{M_{begin}}{M_{end}} = I_{sp} g_0 \ln \Lambda$

 $M\frac{dV}{dt} = T - M g$

 $\int \ln x \, dx = x \ln x - x$

 $D = \frac{k d}{f} \sqrt{\frac{b}{p}}$

 $m = -\frac{dM}{dt}$

T = mc

Spaceflight formula sheet

Basic orbit formulas:

Ellipse equation	$r = \frac{a(1-e^2)}{1+e\cos(\theta)}$
Vis Viva equation	$V^2 = \mu \left(\frac{2}{r} - \frac{1}{a}\right)$
Definition of mean motion	$n=\sqrt{\frac{\mu}{a^3}}$

NB. If you don't know them by heart the equations for the circular velocity, orbital period and escape velocity can be easily derived from the above equations.

Basic rocket formulas:

Tsiolkowski (NB. c is the exhaust velocity):

Equation of motion for vertical flight:

Mass flow:

Thrust:

Integral of ln(x):

Communication:

Diameter of antenna dish:

Where:

k = constant = 6000d = distance (km)f = frequency (Hz)b = bit-rate (bits/s)p = power (W)D = dish diameter (m)

Basic constants:

Mu_Earth	398601.3 km^3/s^2	gravitational constant of the Earth
Re	6378 km	Earth radius
g0	9.81 m/s^2	gravitational acceleration at Earth surface

"SPACE" Question C:

A spacecraft is in a circular orbit around the Earth at 519 km altitude and an inclination of 30 degrees.

- 1. (4 pts) What is the maximum time per orbit that the spacecraft spends in the Earth's shadow expressed as a percentage of the orbital period? Assume the Sun is at infinite distance. 0
 - a. 18.8 percent
 - b. 37.6 percent
 - c. 62.4 percent 0
 - d. 50.0 percent 0
- 2. (4 pts) What is the maximum contact time between a ground station and this satellite expressed as a percentage of the orbital period? Assume the Earth does not rotate.

0

- a. 2.6 percent
- b. 12.4 percent
- c. 18.6 percent 0
- d. 6.2 percent 0
- 3. (6 pts) Same as question 2, but now with a minimum (cut-off) elevation of 20 degrees (Hint: use sine rule).
 - a. 5.4 percent
 - b. 2.7 percent 0
 - c. 12.4 percent 0 0
 - d. 6.2 percent
- 4. (4 pts) What is the minimum distance to the spacecraft from a ground station at 35 degrees North latitude (Hint: use cosine rule)?
 - a. 519 km 0 b. 666 km 0 c. 777 km 0
 - d. 888 km
- 5. (3 pts) What is the orbital period of the spacecraft?

0

- a. 8050 seconds
- b. 23 hours 56 minutes 0
- c. 100.5 minutes 0
- d. 1 hour 35 minutes
- 6. (3 pts) What is the orbital altitude of a geostationary satellite? Note: the time of rotation of the Earth about its axis is 23 hour 56 minutes.
 - a. 42241 km 0 b. 35836 km 0 c. 42163 km 0
 - d. 35785 km

- 7. **(4 pts)** What is the velocity change (Delta-V) of the spacecraft required to enter a Hohman transfer orbit with an apogee at geostationary altitude? Assume Hgeo = 40000 km if you could not answer the previous question.
 - a. 9.97 km/s
 - b. 2.36 km/s
 - c. 7.60 km/s O
 - d. 2.43 km/s 0 ← alternative answer

0

- 8. **(5 pts)** At apogee the spacecraft performs a SINGLE maneuver to change the inclination from 30 degrees to zero degrees and to circularize the orbit. It arrives at apogee with a velocity in the inclined orbit of 1.630 km/s and changes to the circular velocity of 3.075 km/s at zero inclination. What is the TOTAL required velocity change (delta-V) for this SINGLE maneuver?
 - a.
 1.852 km/s
 ●

 b.
 1.445 km/s
 O

 c.
 0.844 km/s
 O

 d.
 2.288 km/s
 O
- 9. **(3 pts)** This spacecraft communicates with a ground station at a distance of 40,000 km, using a 64 W radio transmitter at a frequency of 3 GHz. The ground station has a 1 m diameter antenna dish. What is the maximum data rate of the communication?
 - a. 1 kbits/s O
 - b. 10 kbits/s c. 1 Mbits/s 0 d. 10 Mbits/s 0

"SPACE" Question D:

A spacecraft with a starting mass of 1000 kg is launched from the surface of Mars on a vertical trajectory. Assume a homogeneous (constant) gravity field with a gravitational acceleration at the surface of Mars of 3.70 m/s^2. The initial thrust-to-weight ratio of the spacecraft is 1.5. Specific impulse (Isp) of the rocket engine is 300 s.

1. (3 pts) What is the trust of the rocket engine?

a. b.	1.5 kN 14.7 kN	0 0
c.	5.5 kN	•
d.	3.7 kN	0

2. **(3 pts)** The spacecraft has to achieve an "ideal" (tsiolkowksi) end-velocity of 3.5 km/s. What is the end-mass of the spacecraft?

304.4 kg	•
42.8 kg	0
200.9 kg	0
536.1 kg	0
	304.4 kg 42.8 kg 200.9 kg 536.1 kg

3. **(3 pts)** What is the burn-time of the rocket engine? Assume the end-mass to be 400 kg if you could not answer the previous question. (These answers were wrong)

Name (Naam):

Student nr.:

a. 318.0 s ← alternative answer 0 b. 52.5 s 0 c. 368.7 s d. 70.9 s 0

4. (3 pts) What is the delta-V "gravity-loss" of the spacecraft during its vertical ascent? Assume the burn-time tb to be 60 s if you could not answer the previous question.

- a. 167 m/s
- b. 1365 m/s
- c. 553 m/s
- 0 0 d. 222 m/s ← alternative answer

0

5. (3 pts) What is the burn-out velocity of the spacecraft?

a.	2135 m/s	•	
b.	3500 m/s	0	
c.	3278 m/s	0	← alternative answer
d.	11226 m/s	0	

6. (3 pts) What is the burn-out altitude of the spacecraft? (Hint: first integrate the velocity equation)

a.	520.2 km	•
b.	196.3 km	0
c.	98.6 km	0
d.	5881.3 km	0

7. (3 pts) What is the maximum altitude of the spacecraft? Assume burn-out altitude to be 150 km and burn-out velocity to be 3000 m/s if you could not answer the previous questions.

a.	/12 km	0	
b.	1136 km	•	
c.	1366 km	0	← alternative answer
d.	905 km	0	

8. (3 pts) What is the impact velocity of the spacecraft after it falls down from its maximum altitude to the surface of Mars? Assume Hmax = 1000 km if you could not answer the previous question.

answer

a.	2900 m/s	•	
b.	8956 m/s	0	
c.	2426 m/s	0	
d.	2721 m/s	0	← alternative