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Analysis of trade-off between volume size and entropy production rate  
Impact of intensification on entropy production rate and exergy losses 
 
Example: 
Isothermal, single chemical reaction in a well- mixed continuous flow reactor  
Two different situations are considered (due to new catalyst with a higher activity <= 
intensification) 
 
System:  

Feed S into product P in CSTR by means of one reversible reaction: S => P.  
Production rate of p is fixed 

 
Production target and operational policy for reactor: 
Rtarget  = F [p] 
Rtarget = r .V   
Rtarget  = F {[s]in – [s] } 
 
F molar flow rate through the reactor 
[p] molar fraction of product species P 
[s] molar fraction of reactant species S 
r  molar reaction rate per unit volume [kmol/(m3 s)] 
Rtarget molar production rate of product P to be formed in reactor [kmol P/s] 
V  reactor volume 
 
Operational policy: 

1) Rtarget  kept constant 
2) [s]in  kept constant  
 

F, [p] and [s] may be varied in order to optimise the design.  
 
 
 
Relation driving force affinity (A) and reaction rate r: 
Rate of the reversible reaction: 
 
r = kf [s]νs – kb .[p]νp   with    K  = kf / kb  = exp (- ∆G0

r /RT) 
 
Free energy change in reaction:  ∆G0

r  = �i νi. µ0
i (T) 

ν stoichiometric coefficient 
µ chemical potential of species i: µ(T, x) = µ0

i(T) + RT. ln[xi ] 
x molar fraction of species i 
 



 
 
Introduce affinity of reaction:   A  =  - ∆Gr (T,x) = - �i νi. µi (T,x) 
 
Note that if any of the product species is not present, [xi] = 0, the affinity goes to 
infinity (the reverse reaction does not run. The reaction is in equilibrium when A= 0, 
corresponding with the familiar equilibrium condition: K = [p]e

νp / [s]e
νs    

So, A can vary between zero and infinity (when no product P is present). 
 
Re-arrange reaction rate in terms of affinity: 
r  = kf [s]νs { 1 - .[p]νp . [s]-νs / K }  =  kf [s]νs . {1 – exp (-A/RT) } 
r  = rf {1 – exp (-A/RT) }  with 
rf  =  kf [s]νs      (maximum forward rate) 
The maximum forward rate rf is determined by catalyst effectiveness (kf) only. 
 
There is a consistent link with Non-Equilibrium Thermodynamics: 
For small affinity A the reaction rate is linear with affinity:  
r  ~ rf . A / (R.T)  with r=0 for A=o 
 
 
Computation of reactor volume 
Fix the production rate Rtarget and the driving force A([s]) by means of the exit  
concentration of  reactant s. Then, one can compute: Flow F, reaction rate r(A), and 
the required volume 
 
Make a plot how the volume varies as function of the affinity: 
The plot is a hyperbolic one with two asymptotes: 

Vertical asymptote:   for affinity to zero  � Volume goes to infinity 
Horizontal asymptote: for large affinity  => Volume goes to a minimum. 

 
Here is room to draw the plot { V vs A vs σSiir } 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Entropy production rate [σiir  in kJ/ (K.s)] : 
 
T * σSiir =  V * r (A) *A 
 
σSiir Total entropy production rate (kW/K) 
T  Reactor temperature 
 
Note that this expression can be rewritten as: 
 
T * σSiir =  Rtarget *A 
 
The plot the entropy production rate as function of the affinity A is a linear one. 
  
 
Trade-off:  
Large affinity is good for smaller volume (low investment) but worse for entropy 
production rate.  
 
Note that improving the catalyst and so increasing the reaction rate coefficient does 
lead to smaller volume. As long as the same the same amount of product is produced 
the entropy production rate does NOT change. Also, the trade-off pattern does not 
change.  
 
The gain obtained by means of the catalytic intensification of the reaction rate can be 
allocated in a distributed way. It is possible to reduce size of the reactor to the fullest 
extend, keeping the driving at the same level as for the conventional case. But one can 
also decide not use the full extent of size reduction and to choose for a smaller size 
reduction while reducing the driving force and the associated entropy production rate 
as well. 
 
 
 
Part B: This case can be extended to cover the heat removal system. 
 
Extended entropy production rate [σiir  in kW/ K] : 
 
T * σSiir  =  V * r (A) *A  +  X. Jq. (T-Tc)  
 
X Heat exchange surface 
Jq Heat transfer rate per unit area 
T Reactor temperature 
Tc  Coolant temperature 
 
Heat flux equation as a function of the driving force : 
 
Jq  =  λ . (T-Tc) 
 
λ heat transfer / conductivity coefficient 
 
The energy balance is set up to keep constant reactor temperature. 



I.e., the heat removal rate is coupled with production rate. 
 
X. Jq   =  ∆Hr . r(A). V 
 
Using the standard production rate specification:  r(A) . V = Rtarget,  
one gets a simple entropy production function, linear in both driving forces. 
 
T * σSiir  =  Rtarget  .{A + ∆Hr . (T-Tc)} 
  
Conclusion: entropy production rate is proportional with driving forces 
 
Small temperature difference is beneficial for entropy production but leads to larger 
area X because of smaller heat flux Jq. 
 
Make a plot of heat exchange area X versus the driving force, ∆T. The plot can also 
show the linear relationship of the entropy production rate with the driving force for 
heat transfer. 
 
Plot {X vs ∆T vs σSiir } 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusion: 
This example shows the potential reduction of total volume and/or area obtained by 
PI can be deliberately given away to reduce driving forces and to achieve a lower 
entropy production rate in the process, enhancing economy and ecology at the same 
time. 
 


