AE4520: Advanced Structural Analysis

Food for thought (Basics)
Mostafa Abdalla

Problem 1

- The circular ring shown is subject to internal pressure p
- If the displacement component along the tangent direction is u, and along the normal is w :
- Show that for small strains:

$$
\varepsilon=\frac{u_{, \theta}+w}{R}
$$

- Use the PVW (see problem 3) to show that the tensile normal force in the ring is given by

$$
N=p R
$$

Problem 2

- Consider the use of polar coordinates (r, θ, z)
- Unit vectors in the radial, circumferential and vertical are

$$
\begin{aligned}
& \mathbf{e}_{r}=\left(\begin{array}{lll}
\cos \theta & \sin \theta & 0
\end{array}\right)^{t}, \\
& \mathbf{e}_{\theta}=\left(\begin{array}{lll}
-\sin \theta & \cos \theta & 0
\end{array}\right)^{t}, \\
& \mathbf{e}_{r}=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)^{t}
\end{aligned}
$$

- Show the position vector of a particle is given by

$$
\mathbf{r}=r \mathbf{e}_{r}+z \mathbf{e}_{z}
$$

- Show that the relative position of two infinitesimally close particles is given by

$$
d \mathbf{r}=d r \mathbf{e}_{r}+r d \theta \mathbf{e}_{\theta}+d z \mathbf{e}_{z}
$$

Problem 2 (cont.)

- If the displacement components are (u, v, w) in polar coordinates, show that the change in displacement of two infinitesimally close particles is:

$$
d \mathbf{u}=\left(\begin{array}{ccc}
u_{, r} & \frac{u_{, \theta}-v}{r} & u_{, z} \\
v_{, r} & \frac{v_{, \theta}+u}{r} & v_{, z} \\
w_{, r} & \frac{w_{, \theta}}{r} & w_{, z}
\end{array}\right) d \mathbf{r}
$$

- From this derive the components of "small" strains in polar coordinates

Problem 3

- Show that the virtual work
of internal normal forces in a
bar is given by:

$$
W_{i n}=-\int_{0}^{L} N \delta \varepsilon d x
$$

- N is the normal force given by:

$$
N=\int_{\text {section }} \sigma_{x} d A
$$

- Use PVW to show that in the absence of distributed loading:

$$
N_{, x}=0
$$

