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1. Do d properhes.

¥ez> non-Newtonian fluids
4% motivation:
sometimes want fluids that sometimes behave like solids:

sometimes want fluids that have low viscosity near well, high viscosity away
from well:

Recall for Newtonian fluid: Tyx = - u(%)

a, $ Bingham plastic

% equations:

(Beware confusion over * sign in BSL eq. 1.2-2)



& two parameters: g, Tg

Ho:

units:
Ho:

Note: if 1o --> 0, Bingham plastic --> Newtonian fluid

% examples of fluids with yield stress:

£ two asides:
why does honey tear bread, while mayonnaise does not?

why does ketchup get stuck in the neck of a ketchup bottle?

2.7




b, & power-law fluid (Ostwald-de Waele fluid)

& equation:

% two parameters: m, n

m

If n=1: Newtonian fluid, withm=p

"ot 1"

n <1: "shear thinning", "pseudoplastic

n > 1: "shear thickening", "dilatant"

(recall definition of IxI:

ifx20, xl=x

ifx <0, xl=-x )
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C. & effective viscosity of non-Newtonian fluids
a. general definition: |
The "effective viscosity” of a non-Newtonian fluid is the viscosity of a
hypothetical Newtonian fluid that would give the same
as the real fluid does in the same

(Definition applies even if have no idea of true nature of fluid or even of how
viscometer works - see homework)

& effective viscosity for shear flow between parallel plates

The "effective viscosity" of a non-Newtonian fluid in shear flow between
parallel plates is the viscosity of a hypothetical Newtonian fluid that would

give the same as the real fluid does at the same

Note; the given value of "effective viscosity" may not apply to other situations:
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a_%. Bingham plastic in tube - BSL Ex. 2.3-2 (first edition of BSL)

Notes:
« only the relation between 1, and (dv,/dr) changes from Newtonian fluid in tube;
geometry, momentum balance, boundary conditions are unchanged.
Therefore everything up through Eq. 2.3-13 (Eq. 2.3-12 in 1st edition of BSL) still

applies
¢ Recall definition of Bingham plastic:

dv,

Trz =-logy T To Trz = To

dv,

E =0 ~To STz < To
dv,

Trz T -Ho'gr "~ To Tz <-To

« Drawing a picture of 1,,(r) is essential (cf. Fig. 2.3-3)

i. calculating Q for Bingham plastic in tube

= AP
¢ calculate g & 5

o

=

¢ compare Tg, To:
- if 1R <16, Q=0. Don't use Eq. 2.3-30!
- if 1R > 70, Q given by Eq. 2.3-30

tips for homework:
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b, & Power-Law Fluid
Key points in this derivation are as follows:

1) Because the system geometry, elements in the momentum balance, and
boundary conditions are the same as for flow of a Newtonian fluid in a tube

(BSL Section, 2.3), we can skip directly to Eq. 2.3-13, just before Newton's
law is introduced in Section 2.3.

2) Itis important to recall the mathematical definition of absolute value:
x| = x ifx>0
= -x ifx<0. [1]
3) Recall that one cannot take arbitrary, fractional powers and roots of negative
numbers (unless one is working with imaginary numbers).
4) Due to points (2) and (3), it is important to identify from the start the sign of

(dvz/dr). Of course, deriving v,(r) is the point of the exercise, so one has to

sketch out the expected shape of v,(r) to guess in advance what the sign of
(dvy/dr) will be.

r

Expect
Y,=maxatr=0
v,=0alr=R
therefore (dv.dr) < 0 rz

KNOW (from BSL 2.3-13) '
Tz> 0

BSL Eq. 2.3-13, for flow of any fluid in a tube:

T = (PO2'LP L) r 2]

For a power-law fluid,

dvy

dvg) n-1 dv,
dr

dr - [3]

Tz = - m

Eventually we want to get rid of the absolute value. As a first step, we need to combine

both derivative terms within the absolute value. Since (dv;/dr) <0 in this case (see
diagram above), (dv,/dr) =-|dvz/dr|; therefore

n-1

dv,

dr

dv,

dvg dvz
dr

dr

n

Tz = - M = m

[4]
Combining with Eq. [2],

dVZ n Po'PL
- = (2Lmj r. [5]

dr




Both sides of this equation are positive; therefore we can take the nth root of both sides:

P "PL I/n
- () " e 5

dvg
dr

Now for the final time we use the definition of absolute value. Since (dv,/dr) <0 in this
case, (dv,/dr)=-|dvz/dr|, and

dvz Po- _P_L_) In 1/n
dM = (ZLm . [6]

If one were less careful about handling the absolute values in this derivation, one
would end up with the wrong sign upon arriving at Eq. [6]. Integrating Eq. [6] gives

Po-Pr\ 1/

2Lm [1+(1/m)] »
with C, a constant of integration. The final boundary condition is
vz =0 atr =R [8]
which gives, after some algebraic manipulation,
_ (Po-Pr)ln R T\1+(Um)]
w= (Fin) fecamn (-G Pl

Note that if n = 1 and m = p, this is the same as BSL Eq. 2.3-18 for a Newtonian
fluid.

R
Q= J2nrvydr [10]
0
P, - P 1/n gIIFO/MI 0 I \[1+(1/n)]
_ r n
0 =25 5r) " frvemy f[1- ) L
0
Q= 2%@‘1 mL) ' l[{1+<1/n)] @ [gle((ll/g]) [12]
B (PO-PL) Im gEFOMI L g (PO-PL) 1/n
Q=72 m BrIm] T gmm B U L

[13]

Note that if n = 1 and m = p, this is the same as BSL Eq. 2.3-21 ff)r a Newtonian fluid.
Note that while Q ~ AP/L for a Newtonian fluid, Q ~ (AP/L)'™ for a power-law fluid.

2.3




C. & Definition of effective viscosity for tube flow

The "effective viscosity" of a non-Newtonian fluid in tube flow is the viscosity
of a hypothetical Newtonian fluid that has the same

as the given fluid in a tube with the same and

e. Summary of fluid behavior in tube flow

velocity profiles:

flow rates - on attached page
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d .4 rectangular slit
t #. Newtonian fluid - done on homework; BSL p. 62

% a note on boundary conditions

In the homework, we solved for v,(x) using the BC (1) v; =0 atx =B and (2) vz =
0 at x = -B. If one were clever, one could notice that the symmetry of the problem about x
= 0 implies a different boundary condition: (3) Txz=0atx=0. (The justification is as
follows: Since the problem is symmetric about x = 0, how can there by any momentum
transport across the plane of symmetry? Therefore Tx, must be zero at this plane, atx = 0.
For the Newtonian flow, then one could have solved for v4(x) for x 2 0 using BC (1) and
(3), and used symmetry to argue that, for x <0, vz(x) = v4(-x). For the Newtonian flow
this approach is not really necessary, but it greatly simplifies the solution for Bingham
plastics and power-law fluids. The reason is that in a slit Tx; changes sign at x = 0, and for
both Bingham and power-law fluids, the equations for Tx, differ for Tx; <0 and Txz > 0.
Therefore we use BC (1) and (3) below and solve for x 2 0 only.

.\ % Bingham plastic

Since the geometry and momentum balance are the same is in the homework
solution for Newtonian flow, we can jump directly to "Eq. II" on the homework solution
set:

sz=(P_O£:]‘3_L_‘)X+C1 ‘ [1]

We limit our consideration to 0 €x < B and use BC (3): 1xz =0 atx =0. This implies

Ci=0

TXZ=Q'QI;P—L) X. [2]

At this point it pays to sketch Ty, and the expected v; profile.

£ 0 x

o
b3
b o]
o
o
o

Xo =To / (AP/L)

1g=APB/L Vz' v, VZ©

We define xg s the location where Txz = To. That is,

%.\\




=0 3]
)

Xo

For x < X, txz < To and therefore dv,/dx = 0, according to the Bingham plastic equation.
For x 2 X,

rxz=Q°I-jP4‘)x=-uo%+‘co forx 2 x, . [4]

Rearranging and integrating gives

2
vo = - PoPr) X? + B x40 forx2xg . (5]
Ho L Ho

'BC (1), vz =0 at x = B, implies

PoPL B2 T

C, = . Xop [61]
oL 2 po
i 2 2
v = PoPL) B (1 ) (%)) B (1 %) for x 2 xq 7]
2o L Ko

For x < xq, vz is given by Eq. [6] with x = x¢:
g 2 2
2uo L Ho
Q for the whole slit is twice the flow through the half defined by x =2 0:
B

Q=W2 d[vz(x) dx . (9]

Evaluating the equation for Q is easiest if one uses the trick in BSL Example 2.3-2 and
integrates by parts. The result is

2 W®PLPOBY, 3 () 1 (1)
= = 1-%|2]+ 3|2 |fortg=7 10
R IS RTE T C
Q=0 fortg< 19 [11]
with
. (PO]:PI.) B [12]

G
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Py-P

= ("L—L) B . [12]
Note the similarity in the form of Egs. [7], [8], and [10] to BSL Egs. 2.3-25, 26 and 30.
Note also that all of these equation revert to the Newtonian equations if 1, = 0. In Eq.
[10], the first part of the equation matches the Newtonian equation (with p, substituted
for p) while the bracketed term reduces Q below the value for a Newtonian fluid.

The final equations for v, and w = Qp for Bingham flow in a slit are found on pp.
259-260 of BSL 2"d Ed., though the derivation is not given there.

{tt)%. power-law fluid
The derivation of v,(x) for a power-law fluid in a slit is given as a homework

assignment. The final result is

(Po-PL)) 1n gt /Ml [1+(1/n)]
vy = ( —~3 ) T (1@ ) for x> 0. [13]

The total flow rate is derived by integrating v, over x:

B
Q=W2 [vix)dx [14]
0
2 Wn) (PoPr) an““l) ln
Q= (2n+1) ( mL ' [15]

Note that for flow of a power-law fluid through a slit, as for power-law flow through a
tube, Q ~ AP, Note also that Eq. [15] reverts to the Newtonian formula if n = 1 and m
= H.
4. annulus
a. Newtonian fluid - BSL sect. 2.4

Notes:
* the basic geometry (i.e., cylindrical) and the momentum balance are same as for flow

through circular tube
e BC differ:

- vz=0atr=R

- vz=0atr=«xR

(r = 0 is not within system; therefore can't apply BC that 1., is finite at r = 0)
» BSL defines z pointing up this time, unlike sect. 2.3 - alters definition of P
The math gets hairy. Don't let the math distract you from the following:
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Y, % suspension of particles in Bingham plastic

students not responsible for derivation, but for final equation:

Particle is completely suspended, as in a solid, if

4
TOZ-3_7E Rips-pl g

applications to suspension of:
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|.£ An aside: Definition of AP

AP is always (po - pL) + p g (A vertical position)
AP = (po- pL) + p g [(vertical position)g - (vertical position); ]

If z axis is defined as pointing down, as in BSL sect. 2.3, then
P=p-pgz
AP = (po-pL)-p g(z0-2L)

=(Po-pL)+pgL ,
(same formula applies to Ex. 2.3-2 (p. 48) because z points down there, too)

If z points up, as in BSL sect. 2.4, then

P=p+pgz
AP = (po - pL) + p g [(vertical position)p - (vertical position)y ]
=@o-pL)-pgL

Better than memorizing either formula is to realize the physical significance of the
hydrostatic forces; they should add to AP if flow is downwards and reduce AP if flow

is upwards, against gravity.
See wext P

2.8 An aside: physical meaning of T < 0

Now we have had two problems here T < 0 somewhere:

annulus:




€ samples

€ Correctly including hydrostatic pressure in flow equations

Consider the following example

L o ‘o
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What is APacross the pipe?
Consider the another example odop o £

Vo Por spate
c}\—\x\t Z—‘r pressuce Fa

V4

What is APacross the pipe?

Moral: include hydrostatic contributions to inlet and outlet
pressures in AP



physical significance: either

momentum in positive z direction is carried in direction of decreasing x or r (both
cases here), or

* momentum in the negative z direction is carried in the direction of increasing x or r
. how to handle this mathematically ... ? Which terms represent transport "into"

and "out of” the control volume?

3. # An aside: What if fluxes or velocities are negative?
(For instance, what if wall is moving in negative z direction; or positive z momentum is
transported radially inward (in direction of decreasing 1, i.e., Tz < 0))
Principles:

1. Coordinate axes define directions of positive velocity, fluxes.

2. For purposes deriving shell balance, assume all fluxes and velocities are
-in positive directions, as defined by coordinate axes.

3. Apply boundary conditions consistently with physical constraints and
coordinate-axis directions.

4. Negative velocities or fluxes (e.g., vz < 0, Trz < 0) will result naturally
from application of boundary conditions.

(Don't try to out-smart the process.)

R
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