WHAT MAKES A FLUID A BINGHAM OR POWER-LAW FLUID?

BASIC UNIT OF <u>NEWTONIAN FLUID</u>
IS MOLECULE, USUALLY < 100
ANGSTROMS LONG (10⁻⁶ cm)

BASIC ORIGIN OF VISCOSITY IN NEWTONIAN FLUIDS IS MOLECULAR COLLISIONS, i.e. EXCHANGE OF MOMENTUM BETWEEN MOLECULES

BASIC UNIT OF POWER-LAW
FLUIDS IS USUALLY
EXTREMELY LONG POLYMER
MOLECULES - 10° ANGSTROMS
OR LONGER
THESE MOLECULES GET TANGLED
- INCREASES APPARENT
VISCOSITY

THEY USUALLY STRETCH OUT AND UNTANGLE AND HIGHER SHEAR RATES → LOWER EFFECTIVE VISCOSITY (SHEAR-THINNING BEHAVIOR)

IF THEY CAN'T UNTANGLE AT HIGH SHEAR RATES → HIGHER EFFECTIVE VISCOSITY (SHEAR-THICKENING BEHAVIOR)

BASIC UNIT OF BINGHAM PLASTIC
IS USUALLY A CRYSTAL-LIKE
ARRANGEMENT OF SMALL
PARTICLES
"CRYSTAL" STRUCTURE RESISTS

"CRYSTAL" STRUCTURE RESISTS DEFORMATION AT LOW au - BEHAVES LIKE SOLID

FLUID BEGINS TO FLOW
Alternative structure: polymer gel (below)

BOTH BINGHAM AND POWER-LAW FLUIDS HAVE MOLECULES OR STRUCTURES THAT CAN BE BIGGER THAN PORE THROATS IN ROCK ON PORE SCALE THESE FLUIDS ARE NOT HOMOGENEOUS

MODELS ARE NOT VERY ACCURATE IN THESE CASES
- ESPECIALLY BINGHAM PLASTIC

WEAK CHEMICAL OR ELECTROSTATIC BONDS

STRUCTURE OF A POLYMER GEL

MORE-COMPLEX FLUIDS

FOR NEWTONIAN, BINGHAM AND POWER-LAW FLUIDS, RELATION BETWEEN τ AND $\frac{d\,V}{dx}$ DEPENDS ON SHEAR RATE, BUT NOT ON TIME

TIME DEPENDENT FLUIDS:

- THIXOTROPIC VISCOSITY DECREASES WITH TIME AT CONSTANT τ
- RHEOPECTIC VISCOSITY INCREASES WITH TIME AT CONSTANT τ

VISCOELASTIC - VISCOSITY DEPENDS ON RECENT SHEAR HISTORY