6. Correctly including hydrostatic pressure in flow equations

Consider the following example

What is ΔP across the pipe?

at is
$$\Delta P$$
 across the pipe?

 $P_0 = 1$ at $m + pgH$, $P_L = 1$ at m
 $\Delta P = \left(1 \text{ st} m + pgH \right) - \left(1 \text{ at } m \right) \right) + pg(0) = pgH$
 $\Delta P = \left(1 \text{ st} m + pgH \right) - \left(1 \text{ at } m \right) \right) + pg(0) = pgH$

the change in elevation along pipe

Consider the another example

vapor space at top of tank at pressure Pa

What is ΔP across the pipe? PL = Pz+ PgHz

Moral: include hydrostatic contributions to inlet and outlet pressures in ΔP

PGE 322K - TRANSPORT PHENOMENA

Fall 2005 Pop Quiz #4 (1:00 class) VERSION B

NAN	E:

For this problem, you only have to answer one question: what is the gradient of total flow potential, $(\Delta P/L)$? The problem statement is as follows:

Oil of density 800 kg/m³ flows into a pipe. The length of the pipe is 20 m. The outlet of the pipe is 2 m lower than the inlet. Both inlet and outlet are at atmospheric pressure.

Write clearly below a mathematical expression for the overall flow potential gradient driving this flow, $(\Delta P/L)$ (including both pressure and gravity). To avoid any ambiguity or possibility of purely mathematical mistake, do not compute the value of this expression; leave it as, say,

$$(10 \times 4 + 15 \times 3 - 6) / (5 + 3 \times 4)$$

(or whatever).

$$(\Delta P/L) = \frac{\left[(1atm - 1atm) + 800 (9.8)^2 \right]}{20}$$

PGE 322K - TRANSPORT PHENOMENA Fall 2005

Pop Quiz #5 (9:00 class) VERSION B

NAME:	

Consider the piping system below. A liquid of density 1100 kg/m^3 fills the pipes and tanks as shown. Point A is at the top of the liquid in the first tank; the vapor space above this liquid is at pressure $1 \times 10^6 \text{ Pa}$. Point B is at the top of the liquid in the second tank, where the pressure is $2 \times 10^6 \text{ Pa}$. Determine whether the liquid would flow from A to B, or from B to A, and calculate $\Delta P/L$ for the flow.

Write clearly below a mathematical expression for the overall flow potential gradient driving this flow, $(\Delta P/L)$ (including both pressure and gravity). To avoid any ambiguity or possibility of purely mathematical mistake, do not compute the value of this expression; leave it as, say,

$$(10 \times 4 + 15 \times 3 - 6) / (5 + 3 \times 4)$$

(or whatever).

$$(\Delta P/L) = \frac{\left(10^{6} + (1100)9.8.5\right) - \left(2.10^{6} + 1100(9.8)4\right) - 1100(9.8)3}{8+5}$$

Flow is from: (A to B, or B to A)

PGE 322K - TRANSPORT PHENOMENA

Fall 2005 Pop Quiz #4 (9:00 class) VERSION A

NAME:	

For this problem, you only have to answer one question: what is the gradient of total flow potential, $(\Delta P/L)$? The problem statement is as follows:

Water (density 1,000 kg/m³) at the bottom of a water well is pumped up a distance of 5 meters. The bottom of the well is open to the atmosphere $(1.01 \times 10^5 \text{ Pa})$. Just upstream of the pump (i.e., at the top of the well), absolute pressure is 5×10^4 Pa (7.26 psi below atmospheric pressure). The pipe itself is 6 m long; 1 m of it lies below the water surface, and 5 m above.

Write clearly below a mathematical expression for the overall flow potential gradient driving this flow, $(\Delta P/L)$ (including both pressure and gravity). To avoid any ambiguity or possibility of purely mathematical mistake, do not compute the value of this expression; leave it as, say,

$$(10 \times 4 + 15 \times 3 - 6) / (5 + 3 \times 4)$$

(or whatever).

(or whatever).
$$(\Delta P/L) = \frac{[(1.0) \cdot 10^5 + 1000 \cdot (4.8) \cdot] - 5 \cdot 10^4] - 6 \cdot 1000 \cdot 98}{6}$$

PGE 322K - TRANSPORT PHENOMENA

Fall 2005 Pop Quiz #4 (1:00 class) VERSION A

NAME:

Consider the piping system below. A liquid of density 900 kg/m³ fills the pipes and tanks as shown. Point A is at the top of the liquid in the first tank; the vapor space above this liquid is at pressure 2×10^6 Pa. Point B is at the top of the liquid in the second tank, where the pressure is 1×10^6 Pa. Determine whether the liquid would flow from A to B, or from B to A, and calculate $\Delta P/L$ for the flow.

Write clearly below a mathematical expression for the overall flow potential gradient driving this flow, $(\Delta P/L)$ (including both pressure and gravity). To avoid any ambiguity or possibility of purely mathematical mistake, do not compute the value of this expression; leave it as, say,

$$(10 \times 4 + 15 \times 3 - 6) / (5 + 3 \times 4)$$

(or whatever).

$$(\Delta P/L) = \frac{(2.10^{6} + 10(9.8)900) - (1.10^{6} + 7(9.8)900)] - 6(900)9.8}{20 + 12}$$

Flow is from: (A to B, or B to A)