
I I I . Shell energy balances 
A. the basic approach 
B. examples from FTI 

1. Fourier's law of heat conduction: Eq. 3.1, p. 105; note difference in symbols w5SL 
2. steady conduction through a flat wall: pp. 105 ff. 
3. steady conduction through a composite flat wall: pp. 107 f f 

Analogy to electrical conduction through multiple resistances: Fig. 3.3 
4. steady conduction through a cylindrical wall: pp, 109 ff. 
5. steady conduction through spherical wall: pp. I l l f f 
6. Newton's law of cooling: sect. 3.2, pp. 117 f f - note broader definition of Newton's 

Law than used in BSL 
a. example: heat transfer through flat wall with Newton's law of cooling on both sides 

pp. 118 
C. new examples from BSL 

1. steady heating of an electrical wire 
2. conduction through composite walls 

a. rectangular 
b. cylindrical 

3. heat conduction in a cooling fin 
4. heat conduction and convection in a porous medium 



A,. IÉ Outline of Shell Energy Balance Approach ^f&f^éf^^ 

APPROACH 

1. SELECT COORDINATE SYSTEM; DEFINE CONTROL VOLUME 
2. STATE BOUNDARY CONDITIONS * 
3. PERFORM ENERGY BALANCE 
4. THICKNESS 0 (-> dif. eq. for q) 

(optional): solve dif. eq. for q, apply b.c. - IF b.c. applies 
to q alone 

5. RELATE q TO dT/dx (Fourier's law) 
6. SOLVE DIF. EQ. FORT; APPLY B.C.* 

(optional) COMPUTE Q, etc. 

* - BOUNDARY CONDITIONS (see p5?aSl-292) 

1. SPECIFY T AT SURFACE 
2. SPECIFY q AT SURFACE 

2a) q = 0 across surface ("perfectly insulated surface") 
2b) q specified in problem statement 
2c) q, T CONTINUOUS ACROSS SOLID/SOLID I F . 

3. "NEWTON'S LAW OF COOLING" AT SOLID/FLUID SURFACE: 
q = ± h (T - Tfluid) 

(sign of q depends on direction of coordinate system) 
4. q, T NOT INFINITE ANYWHERE IN REGION OF INTEREST 

"ALL BOUNDARY CONDITIONS ARISE FROM NATURE" 
(i.e., from problem statement) 

* * - ELEMENTS OF ENERGY BALANCE 

ENERGY FLUX (a area); sometimes called "e" vector in BSL 
1. CONVECTION OF ENERGY THROUGH SURFACE (vpCpT) 
2. ENERGY CONDUCTION THROUGH SURFACE q 

("molecular transport of energy") 
ENERGY "GENERATION" or "SOURCE" (a volume) 

3. ELECTRICAL, NUCLEAR, CHEMICAL OR VISCOUS 
HEAT "GENERATION" WITHIN VOLUME ("S") 

ENERGY ACCUMULATION (a volume) (not at steady state!) 

4. ACCUMULATION OF ENERGY I N SYSTEM (pCp — ) 
dt 



'X ^ conduction through composite walls (BSL sect. 10.6) 

Initial notes 

suppose there are n layers 

each layer has different properties (e.g., thermal conductivity k) 

need separate shell balance on each layer 

- ^ n second-order differential equations for T 

Boundary conditions: 

T continuous at contacts between layers 

q continuous at contacts between layers 

q - h AT at both outer surfaces 

Total: 

a^fë rectangular layers (BSL section 10.6) 

what i f To is specified instead of Ta? 

| | analogy to Darcy flow in layered rock 



5. Review of simplifications in examples 3 and 4 
Cooling fin: complex reality: Newton's law of cooling is B.C. at x=4-AB. Variation of T in x direction is small 
compared to variation in z direction. Complete solute requires partial differential equation for T(XjZ). 

Simplified model: Assume uniform T across fin for any z. T=T(z). Control volume extends across fin, fromx=B to 
x=-B. Newton's law of cooling now applies at boundary of control volume enters energ}> balance. Energy balance 
leads to ordinaiy differential equation for T(z). ; 

h • 

Convection, reaction and conduction in porous medium. Complex reality: T differs slightly between solids and 
nearby fluid, but much less than it varies along length of medium. Complete solution requires partial differential 
equation for T as function of distance from particle and position along bed. 

1 

Simplified model: assume T uniform 
between catalyst and adjacent fluid for 
any z; T=T(z). Energy balance leads to 
ordinary differential equation. 
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