
Determination of Thermal Properties of a Solid (ta3220) 
(revised 8 Feb. 2013) 

 
Set-Up 
 A heating element occupies the entire central axis of a rectangular solid block 
composed of either concrete or rock salt. The concrete block is approximately 15 x 15 x 
30 cm and the salt block is 11.2 x 11.2 x 30 cm.  As electric current flows through the 
heating element, the solid heats up and a temperature profile is set up in the solid.  For a 
given rate of heat release by the element, the temperature profile in the solid over time 
depends on the thermal properties of the solid.  One can infer those properties from the 
temperature profile. 
 The diameter of the heating element is 1.2 cm.  In this experiment temperature is 
measured at 5 thermocouples at radial distances from the outer surface of the heating 
element as follows: for the concrete block, 0.5, 1, 2, 4 and 6 cm (distances from central 
axis 1.1, 1.6, 2.6, 4.6 and 6.6 cm); for the salt block, 1.0,1.3,1.7, 2.2 and 2.8 cm from the 
outer surface of the heating element, or 1.6, 1.9, 2.3, 2.8, 3.4 cm from the central axis.  
The thermocouples can be read from the knobs on the switchboard, as will be explained 
at the laboratory.  Note that the thermocouples are separated enough from each other 
vertically that hole for one element does not significantly distort the conduction of heat to 
thermocouples further out from the center.  The power delivered to the heating element 
(and therefore the rate of heat release by the heating element) is regulated by a 
transformer. 
 
Experimental Procedure: 
 Each lab group will carry out the measurements on one solid block, either the 
concrete one or the salt block. 
1. Determine the readings of the five thermocouples in the block and write them down.  

The initial temperature distribution should be nearly homogeneous. 
2. Set the transformer to 100 and start the stopwatch.  The graphs and tables in 

Appendix A give the relation between the setting and the total rate of release of 
thermal energy Q.  

3. Record the readings of the 5 thermocouples every 2 minutes for 16 minutes; use the 
table in Appendix C. 

4. Reset the transformer to zero (i.e., shut off the heater).  Note the exact time at which 
the heat is turned off (even if it is not exactly 16 minutes). 

5. Continue to record the readings of the thermocouples every 2 minutes for at least 
another 16 minutes, using the table in Appendix C 

 
Theory 
 We approximate the square concrete block 15 cm on a side as a cylinder of the 
same volume and mass (radius  8.5 cm); for the salt block, this gives a radius of 6.3 cm.  
We assume that the heat loss to air at the outer radius of the block (R1) is insignificant 
(stagnant air is a poor heat-transfer medium), and therefore approximate the outer surface 
as perfectly insulated.  We assume the uniform heat flux at the inner surface (surface of 
the heating element, at radius Ro) is qo.  qo is the total rate of heat release by the heating 
element: that is, it is Q (which is known), divided by the surface area of the heating 
element (a cylinder of radius 0.6 cm, 30 cm long).  We likewise approximate the top and 



bottom surfaces as perfectly insulated; there is therefore no gradient of temperature, and 
no heat conduction, in the z direction. 
 The partial differential equation for dimensionless temperature as a function of 
dimensionless position and dimensionless time is derived in Appendix D.  In a previous 
year, students solved this equation numerically, but you are not required to do so.  Plots 
of dimensionless temperature as a function of dimensionless position and dimensionless 
time are given in Appendix B. Note that separate plots are needed for the concrete and 
salt blocks, because the dimensionless outer radii of the blocks differ between the blocks; 
hence the geometry of the two blocks is slightly different and the mathematical solution 
also slightly different.  Note that dimensionless position of each thermocouple is known 
at the start, but dimensionless temperature and dimensionless time must be determined 
from a fit of the model to experimental data.  In the process, you determine the thermal 
properties of the solid. 
 Another parameter you will need to determine is the heat flux qo at the surface of 
the heating element.  As noted above, from the setting of the transformer and the chart in 
Appendix A you can determine the total rate of heat flow from the heating element Q.  
Next determine the surface area A of the heating element (it is a cylinder of radius 0.6 cm 
and its height is 30 cm, the height of the block).  The heat flux qo is then Q/A. 
 
Determining the Properties of the Solids from the Temperature Profile 
 This section pertains to the 16-min. period of heating of the solids. 
 As noted, the relation between real time and dimensionless time, and physical 
temperature and dimensionless temperature, are not known in advance because the 
properties of the solid are yet to be determined.  (You can look up the properties of the 
solids on the internet, but note that "concrete" can vary widely from one batch to another, 
and we haven't even specified the composition of the "rock salt."  Don't rely on a 
literature search to tell you the properties of the solids in advance.  Once you are done, it 
might be enlightening to compare your results to the range of properties you find on the 
internet.)  One could take all the temperature data simultaneously and solve for the 
parameters by minimizing some sort of measure of error between all the data and the 
model.  The following is a simpler method. 
 In earlier years students were told to use the rate of penetration of the heat front at 
early times to determine the relation between dimensionless time and physical time.  
There are two problems with this approach:  First, this works for one of the blocks (the 
thermal front takes more than 2 minutes to penetrate to the outer thermocouple), but for 
the other block the front has penetrated the whole block by the first temperature reading 
at 2 minutes.  It's already too late to see this rate of penetration.  Second, it takes a bit of 
time for the heating element to come up to its steady temperature.  This distorts the 
readings, especially at short times.  In other words, the short-time readings are the least 
reliable of all the data, because the system does not immediately fit the heat-flux 
specified in the inner boundary condition at t = 0. 
 Therefore, the following approach uses your temperature readings at 16 minutes 
to estimate the physical properties of the block. 
 Note that for tD > 20 or 30, the difference in dimensionless temperature between 
the center and the edge (or between the innermost and outermost thermocouples, or 
between any two given thermocouples) is nearly independent of time.  Check whether 



your data fit this prediction for the readings late in your experiment.  Compare the 
difference in physical temperature between the innermost and outermost thermocouples 
after 16 minutes to this difference in TD from the charts in Appendix B, and use Eq. 5 of 
Appendix D to calculate thermal conductivity k.  An example calculation is given in 
Appendix E. 
 Now that you know k, you can take any temperature reading at any time to 
determine the remaining unknown, the product ( Cp).  It makes sense to take the 
measured temperature of the innermost thermocouple at the latest time (16 minutes), 
because the temperature rise is largest here, so relative errors are probably smallest.  (If 
you suspect that something went wrong with this thermocouple during the experiment, or 
for any reason you don't trust its reading at 16 minutes, use another thermocouple or 
another time.)  Determine the physical temperature rise at that thermocouple.  Given the 
value of k you estimated in the preceding paragraph, determine TD at 16 minutes at this 
position.  Look at the charts in Appendix B, and find the dimensionless time tD that 
corresponds to this TD at this position.  From that value of tD, and the real time (16 
minutes), estimate  and then ( Cp) (you already know k) from Eq. 4 in Appendix D.  
An example calculation is given in Appendix E. 
 Now that you know k and , you can use the dimensionless plots to predict what 
T(r, t) should be for all times.  Plot T(r, t) derived from the plots in Appendix B (given 
your fitted values of  and k) for 4 min., 8 min. and 16 min. and compare them to your 
measurements at the five thermocouples; that is, put your data as points on the plots of 
T(r,t) for those times.  If you don't get a good fit, adjust the values of k and  and see if 
you can get a better fit.  (Hint: if the T profile of the block as a whole suggests the block 
is heating up too fast or too slowly, then adjust ( cp); if the temperature difference across 
the block is too large or too small, adjust k.)  Whether or not you get a good fit, discuss 
possible causes for a poor fit between data and the theory. 
 
The Rest Period After Heating:  Superposition 
 It is an important property of the partial differential equation solved in Appendix 
D (and many similar equations, for diffusion and Darcy flow among other transport 
phenomena) that if two functions, call them TD1(rD,tD) and TD2(rD,tD), each satisfy the 
equation, then a new function TD3(rD,tD)  [TD1 + TD2] also solves the equation.  (Check 
this out for yourself.)  The trick in the technique called "superposition" is to find a TD1 
and TD2 for which their sum satisfies the boundary conditions.  We already know it 
would satisfy the differential equation. 
 Consider the following choice to describe the after the heating element is turned 
off.  Call the dimensionless time at which the heating element is turned off tD

o.  Let 
TD1(rD,tD) be the solution plotted in Appendix B, i.e. during the period of heating.  Let 
TD2  [-TD1(rD,(tD - tD

o))].  Note that TD2 has a time scale that starts at zero at the moment 
the heat is turned off.  Then let  
 
 TD3  TD1(rD,tD) for tD < tD

o 
           [TD1(rD,tD) - TD1(rD,(tD - tD

o))] for tD > tD
o

    .    (1) 

 
Because of the principle of superposition (i.e. because of the form of the partial 
differential equation), TD3 satisfies the partial differential equation.  Note that it also 



satisfies the initial and boundary conditions: uniform initial temperature, insulated 
boundaries above and below and at the outer radius at all times, fixed heat flux for tD < 
tD

o and zero heat flux (Q-Q) for tD > tD
o.  An example calculation for physical 

temperature during the rest period is given in Appendix E. 
 Using Eq. 1, plot temperature T(r,t) for 4, 8 and 16 min. after the heat is turned 
off, and plot the actual data on these same plots.  Comment on how good the fit is, and if 
the fit is not perfect discuss the possible causes of imperfection in the fit. 
 If the experiment goes smoothly, tD

o should be close to 16 min.  (It will probably 
be a little later, because you'll be taking temperature measurements right at 16 min.)  But 
whatever the time at which you turn off the heating element, of course use that time, not 
16 min., for tD

o in your calculations.  See example in Appendix E. 
  
Analogy to Well-Testing 
 The procedure you follow here is similar to that of "well testing" to determine 
flow properties of a geological formation, i.e. an aquifer or oil or gas reservoir.  The 
differential equation for unsteady Darcy flow of a slightly compressible fluid is identical 
to that for unsteady heat conduction in a solid.  In well testing, too, one uses 
superposition: measuring pressure after shutting off injection or production from the well, 
just as here you measure temperature after shutting off the heater.  One difference is that 
in this experiment we measure temperature as a function of position and time within the 
solid.  In a well test, the analogous measurements would be pressure in the formation as a 
function of position and time.  We don't have pressure measurements from within the 
formation.  Instead, in a well test one measures pressure within the well as a function of 
time.  It is as though in this experiment one measured temperature in the heating element 
as a function of time instead of within the solid.  One other difference is that in our heat-
conduction experiment the outer radius is nearby.  In a well test, the pressure might not 
begin to change at all at the outer radius of the reservoir during the test.  The time for the 
temperature front in our experiment to penetrate to the outer radius is a few minutes.  In a 
well test, the pressure wave may not penetrate to the outer reservoir radius at all during 
the test. 
 
Report:  
Each student must do a report. The report must contain the following: 
1. A brief description of the apparatus and the procedure and purpose of the experiment. 

Nothing elaborate is needed; one-half page would suffice if you are concise. 
2. The raw data for the solid block you  worked with. 
3. A description of how the data were used to fit  and k, including the fits to the 

theoretical curves. 
4. Plots of (dimensional) temperature as a function of (dimensional) time corresponding 

to 4, 8 and 16 minutes of heating and 4, 8 and 16 minutes into the rest period. On this 
plot should appear the values computed from the dimensionless plots and the 
measured values at the five thermocouples.  This implies 3 plots of T(r) for each 
value of t for the period of heating (with measured data included on the plots) and 3 
plots of T(r) for each value of t for the period after the heat is turned off. 



  It's easiest to interpret this plot (i.e., compare it to the plots in Appendix B) if you 
plot all the thermocouples at each time (i.e., T(r) for fixed t), and see how T varies 
with r at a given time, rather than plot one thermocouple as a function of time. 

5. A discussion of any mismatch between the measurements and the model, including 
the magnitude of the mismatch and possible causes. 

  
 
 
Appendix A:  Chart for Determining Rate of Heat Release at Heating Element 

 



Appendix B:  Dimensionless Temperature Plots for Concrete Block  
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Appendix B2:  Dimensionless Temperature Plots for Salt Block  
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Appendix C:  Table for Entering Raw Data 
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Appendix D: Derivation of Governing Equation (following pages) 
(adapted from 2009 lab report of Quirijn Noordoven, Marinus Dalm, Erika Deviese, 
Yolanda Kolenberg, with thanks) 
 
Assumptions: 

 Constant heat flux q0 from surface at r = R0 ; 

0
02

Q
q

R H
          (1) 

 
q0 = heat flux [W/m2] 
Ro= radius heating element [m] 
H = height heating element [m] 

 
 Perfectly insulated boundary at r = R1 
 Assume no heat flux (perfect insulation) at the top and bottom flat surfaces. 
 Uniform and constant properties k, , Cp within the block. 

 
Partial differential equation for radial (cylindrical) conduction: 

 r 
r t

T

r r

           
                                                                              (2) 

where 
  Thermal diffusivity [m2/s] 
r radius [cm] 
T temperature [K] 
t time [s] 
 

With the following initial and boundary conditions: 
 

T=T0 at t=0 for all R 

0

T
k q

r


 


 at r = R0 for t>0  [constant heat flux from heater] 

0
T

k
r


 


at r = R1 for t>0  [perfectly insulated outer boundary] 

k  Thermal conductivity [W m-1K-1] 
 
Now define dimensionless variables 
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r
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Equation (2) becomes now: 
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Rewrite equation (2): 
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Rewrite equation (2):  D
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The radial boundary conditions become:  
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0
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Substitute equation (1) in eq. (5) 
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with initial and boundary conditions 
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Appendix E: Example calculations 
 
1.  Determining k from long-time temperature difference. 
 At long times, (tD > about 20 or 30), the difference in TD between any to fixed 
positions hardly changes further with time.  Check that this is true in your data.   For 
instance, the difference in temperature between the innermost and outermost 
thermocouples should be roughly constant in the later stages of the period of heating. 
 Pick any large value of tD (say 500).  Find the positions rD of your innermost and 
outermost thermocouple, and read TD off the chart in Appendix B for the two 
thermocouple locations.  Subtract the two values.  Suppose the result is 2 units in TD.  
Compare this to your actual temperature difference between the same two thermocouples 
late in the experiment; suppose that difference is 20⁰C.  Thus (T-To) = 10 TD. Then, from 
equation 5 in Appendix D,  

 0

0 0

( )
D

T T k
T

R q


  

0 0

10 D
D

T k
T

R q
  

0 0

0.1
k

R q
    .    

From this you can determine k. 
 
2.  Determining ( Cp) from long-time temperature difference. 
 Now that you know k, you know the relation between TD and (T-To).  You can 
use any thermocouple measurement to estimate the relation between tD and t, but it makes 
sense to use the 16-min. measurement at the innermost thermocouple (unless you have 
some reason not to trust this measurement), because its value is largest and therefore 
small reading errors have the smallest effect. 
 Suppose, as above, that (T-To) = 10 TD.  Suppose your innermost thermocouple is 
at rD = 3.  Suppose the actual (T-To) reading at the innermost thermocouple at 16 minutes 
is 40⁰C.  Because, as you've already calculated, (T-To)=10 TD, TD = 4.  We want to find 
the time tD where TD=4 at rD = 3.  If the block is the salt block (see charts in Appendix 
B), then I estimate (last chart in the appendix) that tD is between 150 and 200; much 
closer to 200, though, and I would estimate tD  188 at 16 minutes (960 sec) - this is the 
value of tD where the chart gives TD = 4 at rD = 3.  In other words, tD  188/960 = 0.196 t 
(where t is in seconds, as required using SI units), and from Eq. 4 in Appendix D you can 
calculate ( Cp) for the block. 
 Using (T-To)=10 TD and tD = 0.196 t (in this hypothetical example), you can 
convert all your data into dimensionless form, and compare them to the charts, or convert 
any curve for dimensionless variables into dimensional quantities. 
 
3.  Using superposition during the rest period. 
 Continue with the values from the previous examples:  (T-To)=10 TD and tD = 
0.196 t.  For the data during the period of heating, you use the charts directly to estimate 
what temperature should be at each thermocouple. 
 For times after the heat is turned off, you use superposition.  You are instructed to 
turn off the heater right at 16 minutes, but whatever happens you must note the actual 
time at which you turn off the heater.  Suppose someone was asleep and you actually 
turned off the heater after 18 minutes instead.  Suppose again that the inner thermocouple 
is at rD = 3.  After 4 minutes (240 s) of rest, 22 minutes (18+4 min., 1320 s) total, the 
dimensionless time since the start is 1320 x 0.196 = 258.  The dimensionless time since 



the heater was turned off is 240 x 0.196 = 47.  We look up those two values off the chart 
(continuing to use the salt block as an example).  I estimate 
 TD (rD=3, tD=258)  5.4 
 TD (rD=3, tD=47)  1.43 
and the actual dimensionless temperature is 5.4-1.43  4.0.  The physical temperature rise 
is 10 x 4.0 or 40⁰C. 
 After 16 minutes of rest, total time is 18+16=34 min. (2040 s); tD = 400.  The time 
of rest is 16 min., 960 s, tD = 188. From the charts, I get 
 TD (rD=3, tD=400)  7.9 
 TD (rD=3, tD=188)  4.0 
and the actual dimensionless temperature is 7.9-4.0  3.9.  The physical temperature rise 
is 10 x 3.9 or 39⁰C.  You can repeat this procedure for every thermocouple at each 
requested time in the period of rest. 
 
 
 
 


