ta3220 - Fluid Flow, Heat and Mass Transfer Heat transfer in tubes

1. An operator wants to heat oil by pumping it through a heat exchanger. In the heat exchanger, the oil flows at a velocity of $0.6 \mathrm{~m} / \mathrm{s}$ through cylindrical tubes 6 m long and of 0.025 m inside diameter. Steam outside the tubes maintains the temperature of the inside surfaces of the tubes at 373 K throughout the tube length. The oil enters the heat exchanger at 273 K . What is the temperature of the oil leaving the heat exchanger? You may assume that the oil properties are independent of temperature.

Properties of Oil

2. A 1 km length of 6 -inch I.D. steel pipe, with 1 -inch-thick walls, has hot oil flowing through it. The outside air temperature is $70^{\circ} \mathrm{F}$, and the heat-transfer coefficient on the outer pipe wall is $\mathrm{h}_{\text {outer }}=100 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$. For the steel pipe itself, $\mathrm{k}=16.3 \mathrm{~W} /(\mathrm{m}$ K). The oil enters the pipe at $300^{\circ} \mathrm{F}$ at a flow rate of $100 \mathrm{bbl} / \mathrm{hr}$. The properties of the oil are given below, and can be assumed to be independent of temperature. What is the temperature of the oil 1 km from the pipe inlet? Please do your calculations in SI units.

$$
\mu=100 \mathrm{cp} \quad \rho=0.95 \mathrm{~g} / \mathrm{cc} \quad \mathrm{C}^{\wedge}{ }_{\mathrm{p}}=1.5 \mathrm{cal} /\left(\mathrm{g}{ }^{\circ} \mathrm{C}\right) \quad \mathrm{k}=0.10 \mathrm{Btu} /\left(\mathrm{hr} \mathrm{ft}{ }^{\circ} \mathrm{F}\right)
$$

crossesection view

air, $70^{\circ} \mathrm{F}$

3. Water at $300^{\circ} \mathrm{F}$ (liquid, under pressure) is injected into a fracture 2 mm wide with a velocity of $10 \mathrm{~m} / \mathrm{s}$. Assuming the walls of the fracture are uniform at $150^{\circ} \mathrm{F}$, how far does the water travel before its temperature drops to $200^{\circ} \mathrm{F}$? Assume the water properties are those given below and are independent of temperature.

$$
\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}
$$

$$
\mu=0.001 \mathrm{~Pa} \mathrm{~s} \quad \mathrm{k}=.680 \mathrm{~W} /(\mathrm{m} \mathrm{~K})
$$

$$
\mathrm{C},{ }_{\mathrm{p}}=4190 \mathrm{~J} /(\mathrm{kg} \mathrm{~K})
$$

4. A tube heat exchanger is used to heat oil before injection into a well to dissolve asphaltenes. Hot water inside the tubes is used to heat the oil, which is on the outside of the tubes. The geometry of a tube is shown below. The tubes are of inner diameter 1 inch (2.54 cm) and outer diameter 1.5 inch (3.81 cm). In addition, each tube has a layer of solid scum on the outside, with outer diameter 5 cm . The thermal conductivities of the tube material and the scum are $16.3 \mathrm{~W} /(\mathrm{m} \mathrm{K})$ and $1 \mathrm{~W} /(\mathrm{m} \mathrm{K})$, respectively. At the outer surface of the scum, the heat-transfer coefficient is 50 $\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$. Inside the tube, water flows at velocity $1 \mathrm{~m} / \mathrm{s}$; the properties of water are given below.

The heat exchanger is not efficient enough. There are several things the operator could do to improve the rate of heat-transfer through the tubes; he could
(a) eliminate the scum (leaving the same value of h at the outer surface of the pipe),
(b) replace the material of the pipe with a new material with $\mathrm{k}=100 \mathrm{~W} /(\mathrm{m} \mathrm{K})$ (thereby also eliminating the scum, but leaving the same value of h at the outer surface),
(c) increase turbulence in the oil flow past the tubes, increasing h at the outer tube surface from 50 to $500 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$ (leaving the scum in place), or
(d) increase the rate of water flow inside the tube by a factor of 10 (leaving everything else the same).

By what factor much would each strategy, if used alone, increase the rate of heat transfer through each tube?

$$
\rho=1000 \mathrm{~kg} / \mathrm{m}^{3} \quad \mu=0.001 \mathrm{~Pa} \mathrm{~s} \quad \mathrm{k}=.680 \mathrm{~W} /(\mathrm{m} \mathrm{~K}) \quad \mathrm{C},{ }_{\mathrm{p}} \quad{ }^{2}=4190 \mathrm{~J} /(\mathrm{kg} \mathrm{~K})
$$

