Dynamics and Stability AE3-914

Sample problem-Week 6

Functional with several basic variables and higher-order derivatives

Statement

Find the Euler-Lagrange equation and the natural boundary conditions for the variational problem

$$
\begin{equation*}
I(u(x, t))=\int_{t_{a}}^{t_{b}} \int_{x_{a}}^{x_{b}} F\left(x, t, u, u_{t}, u_{x x}\right) d x d t \tag{1}
\end{equation*}
$$

with the essential boundary conditions

$$
\begin{equation*}
u\left(x, t_{a}\right)=f_{a}(x) ; \quad u\left(x, t_{b}\right)=f_{b}(x) \tag{2}
\end{equation*}
$$

where $u_{t}=\frac{\partial u}{\partial t}$ and $u_{x x}=\frac{\partial^{2} u}{\partial x^{2}}$.

Variation of the functional

An extremal of the functional is found when the variation vanishes,

$$
\begin{equation*}
\delta I=\int_{t_{a}}^{t_{b}} \int_{x_{a}}^{x_{b}} \delta F\left(x, t, u, u_{t}, u_{x x}\right) d x d t=0 \tag{3}
\end{equation*}
$$

The variation δI is elaborated as

$$
\begin{equation*}
\delta I=\int_{t_{a}}^{t_{b}} \int_{x_{a}}^{x_{b}}\left(\frac{\partial F}{\partial u} \delta u+\frac{\partial F}{\partial u_{t}} \delta u_{t}+\frac{\partial F}{\partial u_{x x}} \delta u_{x x}\right) d x d t . \tag{4}
\end{equation*}
$$

In order to get the variation of I in terms of that of u only, and not those of u_{t} and $u_{x x}$, integration by parts is carried out, paying special attention to the actual integration variable,

$$
\begin{align*}
& \delta I=\int_{t_{a}}^{t_{b}} \int_{x_{a}}^{x_{b}} \frac{\partial F}{\partial u} \delta u d x d t \\
& +\int_{x_{a}}^{x_{b}}\left(\left.\frac{\partial F}{\partial u_{t}} \delta u\right|_{t_{a}} ^{t_{b}}-\int_{t_{a}}^{t_{b}} \frac{\partial}{\partial t}\left(\frac{\partial F}{\partial u_{t}}\right) \delta u d t\right) d x \tag{5}\\
& +\int_{t_{a}}^{t_{b}}\left(\left.\frac{\partial F}{\partial u_{x x}} \delta u_{x}\right|_{x_{a}} ^{x_{b}}-\int_{x_{a}}^{x_{b}} \frac{\partial}{\partial x}\left(\frac{\partial F}{\partial u_{x x}}\right) \delta u_{x} d x\right) d t,
\end{align*}
$$

in which the last integral is further developed to get

$$
\begin{align*}
\delta I= & \int_{t_{a}}^{t_{b}} \int_{x_{a}}^{x_{b}} \frac{\partial F}{\partial u} \delta u d x d t \\
& +\int_{x_{a}}^{x_{b}}\left(\left.\frac{\partial F}{\partial u_{t}} \delta u\right|_{t_{a}} ^{t_{b}}-\int_{t_{a}}^{t_{b}} \frac{\partial}{\partial t}\left(\frac{\partial F}{\partial u_{t}}\right) \delta u d t\right) d x \tag{6}\\
& +\int_{t_{a}}^{t_{b}}\left[\left.\frac{\partial F}{\partial u_{x x}} \delta u_{x}\right|_{x_{a}} ^{x_{b}}-\left(\left.\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial u_{x x}}\right) \delta u\right|_{x_{a}} ^{x_{b}}-\int_{x_{a}}^{x_{b}} \frac{\partial^{2}}{\partial x^{2}}\left(\frac{\partial F}{\partial u_{x x}}\right) \delta u d x\right)\right] d t .
\end{align*}
$$

Regrouping terms one gets

$$
\begin{align*}
\delta I= & \int_{t_{a}}^{t_{b}} \int_{x_{a}}^{x_{b}}\left[\frac{\partial F}{\partial u}-\frac{\partial}{\partial t}\left(\frac{\partial F}{\partial u_{t}}\right)+\frac{\partial^{2}}{\partial x^{2}}\left(\frac{\partial F}{\partial u_{x x}}\right)\right] \delta u d x d t \\
& +\left.\int_{x_{a}}^{x_{b}} \frac{\partial F}{\partial u_{t}} \delta u\right|_{t_{a}} ^{t_{b}} d x \\
& +\left.\int_{t_{a}}^{t_{b}} \frac{\partial F}{\partial u_{x x}} \delta u_{x}\right|_{x_{a}} ^{x_{b}} d t \tag{7}\\
& -\left.\int_{t_{a}}^{t_{b}} \frac{\partial}{\partial x}\left(\frac{\partial F}{\partial u_{x x}}\right) \delta u\right|_{x_{a}} ^{x_{b}} d t,
\end{align*}
$$

which should vanish to provide an extremal to the variational problem.

Euler-Lagrange equation

For the variation (7) to vanish, i.e. $\delta I=0$, each of the involved integrals must vanish separately. For the double integral one has

$$
\begin{equation*}
\int_{t_{a}}^{t_{b}} \int_{x_{a}}^{x_{b}}\left[\frac{\partial F}{\partial u}-\frac{\partial}{\partial t}\left(\frac{\partial F}{\partial u_{t}}\right)+\frac{\partial^{2}}{\partial x^{2}}\left(\frac{\partial F}{\partial u_{x x}}\right)\right] \delta u d x d t=0 . \tag{8}
\end{equation*}
$$

Since condition (8) must be fulfilled for any variation δu, the fundamental lemma of the calculus of variations provides

$$
\begin{equation*}
\frac{\partial F}{\partial u}-\frac{\partial}{\partial t}\left(\frac{\partial F}{\partial u_{t}}\right)+\frac{\partial^{2}}{\partial x^{2}}\left(\frac{\partial F}{\partial u_{x x}}\right)=0 \tag{9}
\end{equation*}
$$

which is the Euler-Lagrange equation for this variational problem

Boundary conditions

The three boundary integrals in equation (7) must vanish to ensure that $\delta I=0$. The boundary integral with respect to the variable x,

$$
\begin{equation*}
\left.\int_{x_{a}}^{x_{b}} \frac{\partial F}{\partial u_{t}} \delta u\right|_{t_{a}} ^{t_{b}} d x \tag{10}
\end{equation*}
$$

is developed as

$$
\begin{equation*}
\int_{x_{a}}^{x_{b}}\left(\left.\frac{\partial F}{\partial u_{t}}\right|_{t=t_{b}} \delta u\left(x, t_{b}\right)-\left.\frac{\partial F}{\partial u_{t}}\right|_{t=t_{a}} \delta u\left(x, t_{a}\right)\right) d x . \tag{11}
\end{equation*}
$$

From the boundary conditions (2)

$$
\begin{equation*}
u\left(x, t_{a}\right)=f_{a}(x) ; \quad u\left(x, t_{b}\right)=f_{b}(x) \tag{12}
\end{equation*}
$$

one has

$$
\begin{equation*}
\delta u\left(x, t_{a}\right)=\delta f_{a}(x)=0 ; \quad \delta u\left(x, t_{b}\right)=\delta f_{b}(x)=0, \tag{13}
\end{equation*}
$$

because f_{a} and f_{b} are prescribed functions and can, therefore, not experience any variation. Equations (11-13) together lead to the immediate conclusion

$$
\begin{equation*}
\left.\int_{x_{a}}^{x_{b}} \frac{\partial F}{\partial u_{t}} \delta u\right|_{t_{a}} ^{t_{b}} d x=0 \tag{14}
\end{equation*}
$$

The essential boundary conditions (2) thus ensure that the contribution of this integral to the variation vanishes.

The first boundary integral in (7) with respect to the variable t,

$$
\begin{equation*}
\left.\int_{t_{a}}^{t_{b}} \frac{\partial F}{\partial u_{x x}} \delta u_{x}\right|_{x_{a}} ^{x_{b}} d t \tag{15}
\end{equation*}
$$

is developed as

$$
\begin{equation*}
\int_{t_{a}}^{t_{b}}\left(\left.\frac{\partial F}{\partial u_{x x}}\right|_{x=x_{b}} \delta u_{x}\left(x_{b}, t\right)-\left.\frac{\partial F}{\partial u_{x x}}\right|_{x=x_{a}} \delta u_{x}\left(x_{a}, t\right)\right) d t . \tag{16}
\end{equation*}
$$

The boundary conditions (2) are not providing any information on the variations

$$
\begin{equation*}
\delta u_{x}\left(x_{b}, t\right) \text { and } \delta u_{x}\left(x_{a}, t\right) \tag{17}
\end{equation*}
$$

now. The only possibility for integral (16) to identically vanish is

$$
\begin{equation*}
\left.\frac{\partial F}{\partial u_{x x}}\right|_{x=x_{b}}=0 \quad \text { and }\left.\quad \frac{\partial F}{\partial u_{x x}}\right|_{x=x_{a}}=0, \tag{18}
\end{equation*}
$$

which is a set of natural boundary conditions. Imposing these to the solution of (9) ensures that (16) vanishes and thus

$$
\begin{equation*}
\left.\int_{t_{a}}^{t_{b}} \frac{\partial F}{\partial u_{x x}} \delta u_{x}\right|_{x_{a}} ^{x_{b}} d t=0 . \tag{19}
\end{equation*}
$$

The same procedure is carried out for the second boundary integral in (7) with respect to the variable t,

$$
\begin{equation*}
\left.\int_{t_{a}}^{t_{b}} \frac{\partial}{\partial x}\left(\frac{\partial F}{\partial u_{x x}}\right) \delta u\right|_{x_{a}} ^{x_{b}} d t \tag{20}
\end{equation*}
$$

leading to

$$
\begin{equation*}
\int_{t_{a}}^{t_{b}}\left[\left.\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial u_{x x}}\right)\right|_{x=x_{b}} \delta u\left(x_{b}, t\right)-\left.\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial u_{x x}}\right)\right|_{x=x_{a}} \delta u\left(x_{a}, t\right)\right] d t \tag{21}
\end{equation*}
$$

As in (16), the boundary conditions (2) do not provide any information on the variations

$$
\begin{equation*}
\delta u\left(x_{b}, t\right) \quad \text { and } \quad \delta u\left(x_{a}, t\right) . \tag{22}
\end{equation*}
$$

Indeed, boundary conditions (2) are not imposing restrictions to the evolution of the solution $u\left(x_{a}, t\right)$ and $u\left(x_{b}, t\right)$ with respect to variable t. The value of u is prescribed for $t=t_{a}$ and $t=t_{b}$, but not along the integration domain in t. The only possibility for (21) to identically vanish is

$$
\begin{equation*}
\left.\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial u_{x x}}\right)\right|_{x=x_{b}}=0 \quad \text { and }\left.\quad \frac{\partial}{\partial x}\left(\frac{\partial F}{\partial u_{x x}}\right)\right|_{x=x_{a}}=0 \tag{23}
\end{equation*}
$$

which is one more set of natural boundary conditions. Imposing these to the solution of (9) ensures that (21) vanishes and thus

$$
\begin{equation*}
\left.\int_{t_{a}}^{t_{b}} \frac{\partial}{\partial x}\left(\frac{\partial F}{\partial u_{x x}}\right) \delta u\right|_{x_{a}} ^{x_{b}} d t=0 \tag{24}
\end{equation*}
$$

Summarising, the essential boundary conditions (2) together with the natural boundary conditions (18) and (23) ensure that the boundary integrals (14), (19) and (24) vanish. Together with the Euler-Lagrange equation (9), it is ensured that the variation δI expressed in equation (7) vanishes for the solution of the variational problem.

Conclusion

The Euler-Lagrange equation for the variational problem (1) is

$$
\begin{equation*}
\frac{\partial F}{\partial u}-\frac{\partial}{\partial t}\left(\frac{\partial F}{\partial u_{t}}\right)+\frac{\partial^{2}}{\partial x^{2}}\left(\frac{\partial F}{\partial u_{x x}}\right)=0 \tag{25}
\end{equation*}
$$

with the essential boundary conditions (2)

$$
\begin{equation*}
u\left(x, t_{a}\right)=f_{a}(x) ; \quad u\left(x, t_{b}\right)=f_{b}(x) \tag{26}
\end{equation*}
$$

and the natural boundary conditions (18) and (23)

$$
\begin{equation*}
\left.\frac{\partial F}{\partial u_{x x}}\right|_{x=x_{a}}=\left.\frac{\partial F}{\partial u_{x x}}\right|_{x=x_{b}}=\left.\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial u_{x x}}\right)\right|_{x=x_{a}}=\left.\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial u_{x x}}\right)\right|_{x=x_{b}}=0 \tag{27}
\end{equation*}
$$

