G-L-2 Modelling

Modelling in design

TUDelft

Courtesy of centech.com.pl and http://www.clipsahoy.com/webgraphics4/as5814.htm

Cause & effect – The key to modelling

Case studies

Challenge the future

7

Design Brief

Design the functions of an ice dispenser for McDonald $^{\ensuremath{\mathbb{R}}}$

 Cooling the Coke to 0-5 degrees with one touch of the button
Marketing Worldwide

Fiction case study: For education only Golden Arches, Golden Arches Logo and McDonald's are registered trademarks of the McDonald's Corporation Ice dispenser image: Courtesy of http://rwmechanicalofsc.com/products.htm

The next step: System identification

TUDelft

Courtesy of centech.com.pl and http://www.clipsahoy.com/webgraphics4/as5814.htm

What is inside the system?

TUDelft

The next step

Challenge the future 12

TUDelft

Our experience

Courtesy of http://www.eriding.net/media/states.shtml, http://www.coffeee.net/Kettles-And-Toasters/Kettles/Red-Kettles, http://cater4you.blogspot.com/2009/01/new-products-paper-coke-cups.html

The next step

TUDelft

Courtesy of centech.com.pl and http://www.clipsahoy.com/webgraphics4/as5814.htm

Heat exchange in system(s) -Choices

Heat exchange in system(s) -The conventions

Thought simulation System

Thought simulation -Sub-system Ice

Thought simulation -Coke

Physics behind Modelling

States of matter (Simplified)

Latent heat

DEF: The amount of energy released or absorbed by a chemical substance during a change of state that occurs without changing its temperature

Latent heat – Quantitative point of view

Specific heat capacity

DEF: Specific heat capacity is the measure of heat (i.e. thermal energy) required to increase the temperature of a unit quantity of a substance by one unit

What is the similarity / difference between the models

The next step

How to master basketball

Courtesy of http://www.lpl.arizona.edu/~umpire/softball/aiasoftball00.html

How to master basketball modelling

TUDelft

Courtesy of http://www.eriding.net/media/states.shtml, http://www.coffeee.net/Kettles-And-Toasters/Kettles/Red-Kettles, http://cater4you.blogspot.com/2009/01/new-products-paper-coke-cups.html

Building a mathematical model System

$$(0 - T_{ice_initial}) + m_{ice}L_{ice} + m_{ice}c_{p_{water}}(T_{final} - 0)] + m_{coke}c_{p_{coke}}(T_{final} - T_{coke_initial}) = 0$$

We choose

C_{pice}

=2050

$$(0 - T_{ice_initial}) + m_{ice}L_{ice} + m_{ice}c_{p_{water}}(T_{final} - 0)] + m_{coke}c_{p_{coke}}(T_{final} - T_{coke_initial}) = 0$$

We choose

- The initial temperature of ice is -15 °C
- The specific heat capacity of ice is 2050 J/kg*k
- The density of ice is 916 kg/m³
- The length of ice cube is 1.6 cm, ice melts at 0°C
 - The specific latent heat of ice changing to water is 334 000J/kg
 - The specific heat capacity of water is 4181 J/kg*k
 - The density and the heat capacity of coke are same as water
- The initial temperature of coke is the same as tap water, which is 10°C

$$(0 - T_{ice_initial}) + m_{ice}L_{ice} + m_{ice}c_{p_{water}}(T_{final} - 0)] + m_{coke}c_{p_{coke}}(T_{final} - T_{coke_initial}) = 0$$

We choose

- The initial temperature of ice is -15 °C
- The specific heat capacity of ice is 2050 J/kg*k
- The density of ice is 916 kg/m³
- The length of ice cube is 1.6 cm, ice melts at 0°C
- The specific latent heat of ice changing to water is 334 000J/kg
- The specific heat capacity of water is 4181 J/kg*k
- The density and the heat capacity of coke are same as water
- The initial temperature of coke is the same as tap water, which is 10°C

Solving – we try 5 ice cubes

The next step

Design Brief

No! American coke is too hot!

ncrease the number of ice cubes per touch of the button

The relation between ice cubes & coke temperature according to our model

Experiments?

Experiment

f we want to create real "ice" coke

Or when we are satisfied !

curiosity is fun

knowledge is power

science is easy

computers are tools

experience can be harnessed

hard work is the way to success

modelling is the way to wisdom

Challenge the future 61

Challenge the future 62