G-L-7 Advanced Simulation

Dr. Y. Song (Wolf) Faculty of Industrial Design Engineering Delft University of Technology

Challenge the future 1

The real & virtual world

The real & virtual world

We need a bridge

Courtesy of centech.com.pl and http://www.clipsahoy.com/webgraphics4/as5814.htm

For simple problems

NCAP car crash test: VW Golf 6

VW Golf

The power of modelling Case study: PAM Crash

Case study: The diving board

Case brief: Design a jump-off diving board for the Olympic game.

Requirement:

When the athlete stands still at the tip of the board, the deformation should be between 7~15cm

Analysis

System

System

System consists of a set of interacting or interdependent system components (or subsystems)

-Structure & interconnectivity -Boundary -Input & Output -Surroundings

The design

Modelling

Challenge the future 12

The purpose of models

The purpose of models is not to fit the data but to sharpen the questions.

Samuel Karlin

National medal of science

Our model: Choices

Phenomenon Statics

Model Simplification & adjustment

Boundary conditions

- 1. Materials
- 2. Fixture
- 3. Force
- 4. Component interaction

Simulation

Analytical solution of a beam

TUDelft

Analytical solution of the beam

restart; > deflection := $-\frac{F \cdot L^3}{3 \cdot E \cdot II}$ deflection := $-\frac{1}{3} \frac{FL^3}{FU}$ > $E := 2.1 \cdot 10^{11}$ $E := 2.10000000010^{11}$ > F := 1; L := 0.1;F := 1L := 0.1> $II := \frac{\mathbf{B} \cdot \mathbf{H}^3}{12}$ $H := \frac{1}{12} B H^3$ *B* := 0.01; B := 0.01 > H := 0.004;H := 0.004> deflection -0.00002976190476

Introducing numerical solutions

$$-\rho_{water} \cdot Length_{bathub} \cdot 2 \cdot \sqrt{R^2 - (R - h(t))^2} \cdot \frac{dh(t)}{dt} = n_{orifices} \cdot C_d \cdot \rho_{water} \cdot A_{orifices} \cdot \sqrt{2 \cdot g \cdot h(t)}$$

$$[> sol := dsolve(\{equ, ics\}, theta(t));$$

$$sol :=$$
Solve it numerically
$$sol := dsolve(\{equ, ics\}, theta(t), type = numeric, output = listprocedure);$$

$$sol := dsolve(\{equ, ics\}, theta(t), type = numeric, output = listprocedure);$$

$$sol := [t = proc(t) \dots end proc, \theta(t) = proc(t) \dots end proc, \frac{d}{dt} \theta(t) = proc(t) \dots end proc]$$

An example of numerical solution Using Euler method to solve an ODE

The Finite Element Method (FEM)

A numerical technique for finding approximate solutions of partial differential equations (PDE)

> Eliminating the differential equation or rendering the PDE into an ODE

Widely adopted in **CAE** software as The *de facto* standard

Ref. http://en.wikipedia.org/wiki/Finite_element_method

FEM

Depending on the validity of the assumptions made in reducing the physical problem to a numerical algorithm, the computer output may provide a detailed picture of the true physical behavior or it may not even remotely resemble it.

Ray W. Clough

Founder of FEM National medal of science

Courtesy of http://www.padtinc.com/blog/post/2011/08/26/CAE_Market_Size.aspx

Simulation @ Solidworks®

The types of elements

Implementation of nodes in Solidworks®

Mesh generation

SolidWorks

Typical implementation in Solidworks

Solution of the "small" board

Case study: Mesh control

The quality of mesh

Aspect ratio – An illustration

Case study: the support

The Jacobian ratio

The Jacobian calculation is done at the integration points of elements commonly known as Gauss Point. At each integration point, Jacobian Determinant is calculated, and the Jacobian ratio is found by the ratio of the maximum and minimum determinant value.

Solver selection

Size of the problem. In general, FFEPlus is faster in solving problems with degrees of freedom (DOF) over 100,000. It becomes more efficient as the problem gets larger.

Challenge the future 40

Solver selection

Computer resources. The Direct Sparse solver in particular becomes faster with more memory available on your computer.

Solver selection

Material properties. When the moduli of elasticity of the materials used in a model are very different (like Steel and Nylon), then iterative solvers are less accurate than direct methods.

The direct solver is recommended in such cases.

SolidWorks

Evaluation

The complexity

Fools ignore complexity.

Pragmatists suffer it.

Some can avoid it.

Geniuses remove it.

Alan Perlis

Computer scientist 1st ACM A.M. Turing Award (1966)

The influence of choice

Using sensitivity analysis to evaluate complicated problem

Gradient of the metric (f) w.r.t. inputs / parameters $(p_1, p_2, ..., p_n)$

$$\nabla f = \left(\frac{\partial}{\partial p_1} f(p_1, p_2, \dots, p_n), \frac{\partial}{\partial p_2} f(p_1, p_2, \dots, p_n), \dots, \frac{\partial}{\partial p_n} f(p_1, p_2, \dots, p_n)\right)$$

Evaluation

Reflection

Linear Dynamics

Transient and steady state

Time dependent

Ref. William Palm III, System Dynamics, McGraw-Hill Science/Engineering/Math; 2 edition, January 26, 2009

From Statics to Dynamics

Damping – Modal damping

Modal Damping

Modal damping is

defined as a ratio of the

critical damping

Modal damping ratio

System	Viscous Damping Ratio	
Metals (in elastic range)	less than 0.01	
Continuous metal structures	0.02 - 0.04	
Metal structures with joints	0.03 - 0.07	
Aluminum / steel transmission lines	~ 0.04	
Small diameter piping systems	0.01 - 0.02	
Large diameter piping systems	0.02 -0.03	
Auto shock absorbers	~ 0.30	
Rubber	0.05	
Large buildings during earthquake	0.01 - 0.05	
Prestressed concrete structures	0.02 -0.05	
Reinforced concrete structures	0.04 -0.07	

Courtesy of Solidworks® simulation tutorial

Case study: Linear dynamics

Non-linear analysis

Challenge the future 57

Structural nonlinearities

Courtesy of CAE associations: Snap through bulking

Snap through bulking

Structural nonlinearities

Courtesy of CAE associations: Snap through bulking

Material Nonlinearities

TUDelft

Time dependent solution

Biomechanics

Approach from MoM

Complex Beam Theory

- Straight Beam
- Curved Beam
- Composite Beam

TUDelft

Courtesy of Daviddarling.info

Case study: Human Joint analysis

Computing Fluid Dynamics

Computing Fluid Dynamics

A branch of fluid mechanics that uses numerical methods and algorithms to solve and analyze problems that involve fluid flows.

CFD

Courtesy of http://www.autoracing.com.br/forum/index.php?showtopic=64512

Case study: Air drag

Drag coefficient

http://en.wikipedia.org/wiki/Automobile_drag_coefficient

Drag coefficient

http://en.wikipedia.org/wiki/Automobile_drag_coefficient

0.31	Audi A4 B5	1995
0.31	BMW 7-series	2009
0.31	Honda Civic (Sedan)	2006
0.31	Peugeot 307	2001
0.31	Porsche 997 Turbo/GT3	2006
0.31	Volkswagen GTI Mk IV	1997
0.30	Nissan 370Z Coupe (0.29 with sport package)	2009 ^[16]

Case study: Air drag – Low speed

At 120 km/hour, which design is faster?

Challenge the future 70

Case study: Air drag – Supersonic

At 350 m/s, which design is faster?

Case study: Drafting

What is drafting?

Drafting

Drafting or slipstreaming is a technique where two vehicles or other moving objects are caused to align in a close group reducing the overall effect of drag due to exploiting the lead object's slipstream.

Air drag

High Pressure - Air is compressed – a bit vacuum

To reduce air drag

Reduce the pressure here

Increase the pressure here

Drafting

404042.04	
101942.84	
- 101827.72	
- 101712.59	
- 101597.47	
- 101482.35	
- 101367.23	
101252.10	
- 101136.98	
- 101021.86	
100906.74	
Pressure (Pa)	
	-+
Out Plot 1: contours	······································

Challenge the future 76

Relations with in-between distance

L (mm)	Air Drag Cylinder 1 (N)	Air Drag Cylinder 2 (N)
40	0.292	0.06
50	0.291	0.09
60	0.288	0.115
70	0.266	0.141
80	0.276	0.15

Drag of the cylinder

cylinder behind

Who taught swan goose aerodynamics?

Natural convection

Natural convection

Heat wine by natural convection

Case study: Karman Vortex Street

Tacoma narrow bridge 1940

Case study: Karman Vortex Street

A repeating pattern of swirling vortices caused by the unsteady separation of flow of a fluid around blunt bodies

Theodore von Karman

Case study: Karman Vortex Street

Cell mesh in Flow Works

Rotation

Parrot AR Drone

Courtesy of http://www.24-7pressrelease.com/press-release/parrot-ar-drone-helicopters-now-available-for-preorder-169459.php

Simulation

Courtesy of ADE, Alec Momont, Simon Desnerck

Challenge the future 88

Case study: Fluid structure interactions (FSI)

The Senz Mini model

Courtesy of http://design-milk.com/senz-umbrella/

Challenge the future 90

The Senz Mini flow simulation

FSI in different ways

SW - Think before we start

Non-linear: Results

Real Test

Theodore von Karman

Scientists study the world as it is,

Engineers create the world that

never has been.

Theodore von Karman

National medal of science

If you can't make it good, at least

make it look good.

Thank You!

Dr. Y. Song (Wolf) Faculty of Industrial Design Engineering Delft University of Technology

Challenge the future 97