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Mechanics of Materials: Stress

Mechanics of Materias: Stress

The Definition of Stress

L

The concept of stress originated from the study of strength and failure of solids. The stressfield isthe

distribution of internal "tractions" that balance a given set of external tractions and body forces.

A

First, we look at the external traction T that represents
the force per unit area acting at a given location on the
body's surface. Traction T is abound vector, which
means T cannot slide along itsline of action or
trandate to another location and keep the same
meaning.

In other words, atraction vector cannot be fully
described unless both the force and the surface where
the force acts on has been specified. Given both AF

The internal traction within a solid, or stress, can be
defined in asimilar manner. Suppose an arbitrary slice
Is made across the solid shown in the above figure,
leading to the free body diagram shown at right.
Surface tractions would appear on the exposed surface,
similar in form to the external tractions applied to the
body's exterior surface. The stress at point P can be
defined using the same equation aswas used for T.

Stress therefore can be interpreted as internal tractions
that act on a defined internal datum plane. One cannot
measure the stress without first specifying the datum
plane.

The Stress Tensor (or StressMatrix)

L

......

and As, thetraction T can be defined as

. AF  4F
T= lim —=—
Ms—0As ds

il ¥
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Mechanics of Materials: Stress

Surface tractions, or stresses acting on an internal datum plane, are typically decomposed into three
mutually orthogonal components. One component is hormal to the surface and represents direct
stress. The other two components are tangential to the surface and represent shear stresses.

What is the distinction between normal and tangential tractions, or equivalently, direct and shear
stresses? Direct stresses tend to change the volume of the material (e.g. hydrostatic pressure) and are
resisted by the body's bulk modulus (which depends on the Y oung's modul us and Poisson ratio).
Shear stresses tend to deform the material without changing its volume, and are resisted by the body's
shear modulus.

Defining a set of internal datum planes aligned
with a Cartesian coordinate system allows the
stress state at an internal point P to be described
relative to x, y, and z coordinate directions.

For example, the stress state at point P can be
represented by an infinitesimal cube with three
stress components on each of its six sides (one
direct and two shear components).

Since each point in the body is under static
equilibrium (no net force in the absense of any
body forces), only nine stress components from
three planes are needed to describe the stress
state at a point P.

These nine components can be organized into the
matrix:

_ X
Trr Txp Uiz
“yx Cypr Ypz

where shear stresses across the diagona areidentical (i.e. Oy = Oyy, Oy, = Oy, and 0, = 0y;) asa

result of static equilibrium (no net moment). This grouping of the nine stress components is known as
the stresstensor (or stress matrix).

The subscript notation used for the nine stress components have the following meaning:

GET] : Stress on the £ plane along n direction.

=

Direction of the stress component.
Direction of the surface normal upon which the stress acts.
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Mechanics of Materials: Stress

Note: The stress state is a second order tensor since it is a quantity associated with two
directions. As aresult, stress components have 2 subscripts.
A surface traction isafirst order tensor (i.e. vector) since it a quantity associated with only
one direction. Vector components therefore require only 1 subscript.
Mass would be an example of a zero-order tensor (i.e. scalars), which have no
relationships with directions (and no subscripts).

Equations of Equilibrium

Consider the static equilibrium of a solid subjected to the body force vector field b. Applying
Newton's first law of motion resultsin the following set of differential equations which govern the
stress distribution within the solid,

Oy aﬁ}’r Dogy
+ + +h, =10
8 &  f
e e
B Gy = F
Boy | Ppz | Bog,
by =1
&x T Gy T &z Tz

In the case of two dimensional stress, the above equations reduce to,

S, OTpx
+ +b, =10
& Gy *
|6 B
Typ N Ty th =0
&x chy
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Plane Stress and Coordinate Transformations

Plane Stress and Coordinate Transformations

Plane State of Stress

L

A class of common engineering problemsinvolving )
stressesin athin plate or on the free surface of a
structural element, such as the surfaces of thin-walled a
pressure vessels under external or internal pressure, ¥
the free surfaces of shafts in torsion and beams under
transverse load, have one principal stress that is much TJ-‘I
smaller than the other two. By assuming that this — .
small principal stressis zero, the three-dimensional g
stress state can be reduced to two dimensions. Since X l

i —

T Xy

X

the remaining two principal stressesliein aplane, 0 .y

o
these simplified 2D problems are called plane stress *
problems. I E—
Ty
Assume that the negligible principal stressis oriented e
in the z-direction. To reduce the 3D stress matrix to
the 2D plane stress matrix, remove all components T,,

with z subscripts to get,

oy Ty

where T, = Ty for static equilibrium. The sign convention for positive stress componentsin plane
stressisillustrated in the above figure on the 2D element.

Coordinate Transformations
The coordinate directions chosen to analyze a structure are usually based on the shape of the structure.
As aresult, the direct and shear stress components are associated with these directions. For example,
to analyze a bar one almost always directs one of the coordinate directions along the bar's axis.

RN RS

Nonetheless, stresses in directions that do not line up with the original coordinate set are also
important. For example, the failure plane of a brittle shaft under torsion is often at a45° angle with
respect to the shaft's axis. Stress transformation formulas are required to analyze these stresses.

The transformation of stresses with respect to the { x,y,z} coordinates to the stresses with respect to
{x.,y,z} isperformed viathe equations,
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Plane Stress and Coordinate Transformations

o+ Ty —
Tyl = * 5 LANTLIN A9 20 +Typ sin 28
oy o o — T
Tyt = IE y_ = ‘PEGSEE—TI},SiﬂEE
=.:TI +I:T.]'J —.:Txr
Ty — O
Tty :_%sin 26 + Ty £os 26

where 0 is the rotation angle between the two coordinate sets (positive in the counterclockwise
direction). This angle along with the stresses for the { x',y',Z} coordinates are shown in the figure
below,
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Principal Stress for the Case of Plane Stress

Principal Stress for the Case of Plane Stress

Principal Directions, Principal Stress

e

L

The normal stresses (0, and 0y;) and the shear stress (Tyy) vary smoothly with respect to the rotation
angle 6, in accordance with the coordinate transformation equations. There exist a couple of particular
angles where the stresses take on special values.

First, there exists an angle 6, where the shear stress T,.,; becomes zero. That angle is found by setting
Tyy to zero in the above shear transformation equation and solving for 8 (set equal to 8p,). The result
IS,

AT

_ F

tat Ef?ﬁ =

The angle 8, defines the principal directions where the only stresses are normal stresses. These

stresses are called principal stresses and are found from the original stresses (expressed in the x,y,z
directions) via,

O 0o —F :

oy LTy 2

spp=——"tE ] 21| 4o
1,2 5 [ Xy
The transformation to the principal directions can beillustrated as:

1 ‘ 5 )
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Stresses in giver‘l

coordinate system Principal stresses
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Principal Stress for the Case of Plane Stress

Maximum Shear Stress Direction

L

Another important angle, 6, iswhere the maximum shear stress occurs. This is found by finding the
maximum of the shear stress transformation equation, and solving for 6. Theresult is,

T

O —
tan 26, = ——

21:1},
=8, =8, +45°

The maximum shear stressis equal to one-half the difference between the two principal stresses,

2
Sx Ty 1 O] —07
Tnaw = [T] +T:u;}= =T

The transformation to the maximum shear stress direction can be illustrated as:
Y /
a,,
¥ ‘
. /
_1-' o
) 0, +45°

O X X W, r X
el — 3 - — # -
E‘I__x. 0 /\L UIJ"J.} =
TI']'? —— iy

TJ".I /

oy

Stresses in given
coordinate system

¥

Maximum shear stress
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Mohr's Circle for Plane Stress

Mohr's Circle for Plane Stress

Mohr's Circle
Introduced by Otto Mohr in 1882, Mohr's Circle illustrates principal stresses and stress
transformations via a graphical format,

e

TX}-'

o
R

05 T avg Oy

\\H-H"'\—\_

The two principal stresses are shown inred, and the maximum shear stress is shown in orange.
Recall that the normal stesses equal the principal stresses when the stress element is aligned with the
principal directions, and the shear stress equals the maximum shear stress when the stress element is
rotated 45° away from the principal directions.

Asthe stress element is rotated away from the principal (or maximum shear) directions, the normal
and shear stress components will always lie on Mohr's Circle.

Mohr's Circle was the leading tool used to visualize relationships between normal and shear stresses,
and to estimate the maximum stresses, before hand-held cal culators became popular. Even today,
Mohr's Circleis still widely used by engineers all over the world.

Derivation of Mohr'sCircle

L

To establish Mohr's Circle, we first recall the stress transformation formulas for plane stress at a given
location,

T

g T — T
oot — - L F Cos EE—I—TI}, 2t 2
1 2 2
O —
Tyly! =—%sin 2 +T1}; cosaf

Using a basic trigonometric relation (cos?26 + sin220 = 1) to combine the two above equations we
have,
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Mohr's Circle for Plane Stress

2
+T1},

Oy T 2
&t E—

Thisisthe equation of acircle, plotted on a graph where the abscissais the normal stress and the
ordinate is the shear stress. Thisis easier to see if we interpret o, and oy, as being the two principal
stresses, and Ty, as being the maximum shear stress. Then we can define the average stress, 0,4, and
a"radius’ R (whichisjust equal to the maximum shear stress),

Tx T
Thvg = — - R=

2

The circle equation above now takes on a more familiar form,

(ﬁxr —{Tﬁvg)z -|—’|::,;.r}:.r2 ZRE

Thecircleis centered at the average stress value, and has aradius R equal to the maximum shear
stress, as shown in the figure below,

Related Topics

The procedure of drawing aMohr's Circle from a given stress state is discussed in the Mohr's Circle
usage page.

The Mohr's Circle for plane strain can also be obtained from similar procedures.

T
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Mohr's Circle Usage in Plane Stress

Mohr's Circle Usage in Plane Stress

Principal Stressesfrom Mohr's Circle

L

A chief benefit of Mohr's circleisthat the principal stresses 0, Tx}-'
and 0, and the maximum shear stress 1,,,,, are obtained
immediately after drawing the circle, P
R
[ﬂfl,z =0 pyg TR G
Thag = & T, O avg oy
where, e
ox top Ty —0yp 2 v
Thvg = 5 = Ty

Principal Directionsfrom Mohr's Circle

L

Mohr's Circle can be used to find the directions of the principal axes. To show this, first suppose that
the normal and shear stresses, oy, 0y, and Ty, are obtained at agiven point O in the body. They are
expressed relative to the coordinates XY, as shown in the stress element at right below.

Vo
(':TJ,l .
T — Xy v
Gy _,_l Gl_ ]___
l— G"'T
TJ_,I
05 o Oy
(GF,'TXF]

The Mohr's Circle for this general stress state is shown at Ieft above. Note that it's centered at 04,4 and
has aradius R, and that the two points{ gy, T,,} and {0y, -Ty,} lie on opposites sides of thecircle. The
line connecting o, and o, will be defined as L.

The angle between the current axes (X and Y) and the principal axesis defined as 6, and is equal to
one half the angle between the line L, and the o-axis as shown in the schematic below,
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Mohr's Circle Usage in Plane Stress

A set of six Mohr's Circles representing most stress state possibilities are presented on the examples
page.

Also, principal directions can be computed by the principal stress calculator.

Rotation Angleon Mohr's Circle

L

Note that the coordinate rotation angle 6, is defined positive when starting at the XY coordinates and
proceeding to the X,Y,, coordinates. In contrast, on the Mohr's Circle 8, is defined positive starting on
the principal stressline (i.e. the o-axis) and proceeding to the XY stressline (i.e. line L,y). The angle
8, has the opposite sense between the two figures, because on one it starts on the XY coordinates, and
on the other it starts on the principal coordinates.

Some books avoid this dichotomy between 8, on Mohr's Circle and 6, on the stress element by
locating (0y, -Tyy) instead of (Oy, Tyy) on Mohr's Circle. Thiswill switch the polarity of 6, on the

circle. Whatever method you choose, the bottom line is that an opposite sign is needed either in the
interpretation or in the plotting to make Mohr's Circle physically meaningful.

Stress Transform by Mohr's Circle

L
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Mohr's Circle Usage in Plane Stress
Mohr's Circle can be used to transform stresses from one coordinate set to another, similar that that
described on the plane stress page.

Suppose that the normal and shear stresses, oy, Oy, and Ty, are obtained at apoint O in the body,
expressed with respect to the coordinates XY. We wish to find the stresses expressed in the new
coordinate set X'Y', rotated an angle 6 from XY, as shown below:

Y ¥ ¥
(':TJ 4 \ 5]
o, ‘T
Ty VAT Tynr Oy X

TIJ,
Ox ‘ X 0
E‘I__I. -
T.:lj" 'f_]_-ll--'
bX X Tyry!
o .:'—]L )
EI_J_.

Stresses at given coordinate system Stresses transformed to another coordinate

To do thiswe proceed as follows:
* Draw Mohr'scircle for the given stress state (oy, 0y, and Tyy; shown below).
* Draw thelineL,, acrossthe circle from (gy, Tyy) to (0y, -Tyy).

* Rotate theline L,y by 2*6 (twice as much as the angle between XY and XY') and in the opposite
direction of 6.

* Thestressesin the new coordinates (0y, 0y, and Ty,) are then read off the circle.
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Mohr's Circle Usage in Plane Stress

T
o_T
{G}*’,'Tx’}*’) ( X, x}-'}
'}
O5 Oy
(GF,'TW} (0, Ty, )

Stress transforms can be performed using eFunda's stress transform cal culator.

http://www-ocp.wbmt.tudelft.nl/dredging/miedem...r's%20Circle%20Usage%20in%20Plane%20Stress.htm (4 of 4) [12/13/2001 13:00:03]


http://www.efunda.com/formulae/solid_mechanics/mat_mechanics/calc_stress_transform.cfm
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Examples of Mohr's Circles in Plane Stress

Casel: Ty, >0and oy, >0y

L

The principal axes are counterclockwise to the current axes (because Ty, > 0) and no more than 45°
away (because oy > 0y).

RN RS

Case2: T1,,<0andoy >0y

L

The principal axes are clockwise to the current axes (because T, < 0) and no more than 45° away
(because oy > 0y).

RN RS

Y0, v
NIAS
c, v
Oy X
/ G}é__ﬂ
G, Xy e

Case3: Ty, >0and o, <oy
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Examples of Mohr's Circles in Plane Stress

T

ot
L

The principal axes are counterclockwise to the current axes (because Ty, > 0) and between 45° and 90°
away (because o, < o).

(ﬁx,Txr

oF.

Case4: T, <0andoy<oy

The principal axes are clockwise to the current axes (because Ty, < 0) and between 45° and 90° away

T

(because oy < Oy).

); ﬂ .
T GI g fE"
7 O1 \Y
(_ d_.|-'
JE GI &)
(G%TW]

Case5: Ty, =0and oy >0y

L
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Examples of Mohr's Circles in Plane Stress

The principal axes are aligned with the current axes (because oy > oy, and T,y = 0).

LIP

Case6: 1, =0and o, <oy

i e
L

The principal axes are exactly 90° from the current axes (because oy < oy and Ty, = 0).

T
Y|X,
ﬁjl,, 0, = w2
O3 15____53 Il .
(0,,0) (c.0) ¥, L&l o2 X
l“l
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Mechanics of Materias: Strain

Global 1D Strain

L

X Consider arod withinitial length L which is stretched

0 to alength L'. The strain measure €, a dimensionless
h— L —] ratio, is defined as the ratio of elongation with respect
to the original length,
x . L'—1r
0 L

o L' —

Infinitessimal 1D Strain

L

The above strain measure is defined in aglobal sense. The strain at each point may vary dramatically
If the bar's elastic modulus or cross-sectional area changes. To track down the strain at each point,
further refinement in the definition is needed.

T

- [ - Consider an arbitrary point in the bar P, which hasa
p X position vector x, and its infinitesimal neighbor dx.
0 Point P shiftsto P', which has a position vector x', after
bat—X e fon—— the stretch. In the meantime, the small "step” dx is
e stretched to dx'.
The strain at point p can be defined the same asin the
0 ...T.._lp' X global strain measure,
! ! e '— o
t—— X el o= x
A
L r
| | Since the displacement ; = x'— x, the strain can
hence be rewritten as,
. dx —dx  du
cdx %

General Definition of 3D Strain

L
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Mechanics of Materials: Strain

Asin the one dimensional strain derivation, suppose that point P in a body shifts to point P after
deformation.

Undefﬂrmﬁ/ S
S
X -

X

The infinitesimal strain-displacement relationships can be summarized as,

1| By _|_'ﬂ”,i‘

2 Iﬁ'}fj Ei‘xj

where u is the displacement vector, x is coordinate, and the two indicesi and j can range over the
three coordinates{ 1, 2, 3} in three dimensional space.

Expanding the above equation for each coordinate direction gives,

Eﬂ:% L =l @-l—% =z

Sx P2 oley ) ¥
£ =% £ =l Iﬁl_u—'—ﬁl_w =
K 8y 08z Bx =
£ =I:r:.::l_‘|.-ll-:I £ =l E—'—% ==
Z 8 LAY T

where u, v, and w are the displacements in the x, y, and z directions respectively (i.e. they are the
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Mechanics of Materials: Strain

components of u).

3D Strain Matrix

L

There are atotal of 6 strain measures. These 6 measures can be organized into a matrix (ssmilar in
form to the 3D stress matrix), shown here,

e

Engineering Shear Strain

L

T

Focus on the strain €, for amoment. The expression inside the parentheses can be rewritten as,

where Vip =&xp +E},I =2£1}, . Called the engineering shear strain, v, isatotal measure of

shear strain in the x-y plane. In contrast, the shear strain €, is the average of the shear strain on the X
face aong they direction, and on the y face along the x direction.

Y

dy i
P dx | X
Shear strain tensor is the average Engineer shear strain is the total
of two strains, i.e., shear strain, i.e.,,
g = (v dx+iuiix)/2 = e ¥ = WiEx+EUEx
Y Y Xy

Engineering shear strain is commonly used in engineering reference books. However, please beware
of the difference between shear strain and engineering shear strain, so asto avoid errorsin
mathematical manipulations.

Compatibility Conditions
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Mechanics of Materials: Strain

In the strain-displacement relationships, there are six strain measures but only three independent
displacements. That is, there are 6 unknowns for only 3 independent variables. As aresult there exist

3 constraint, or compatibility, equations.

These compatibility conditions for infinitesimal strain reffered to rectangular Cartesian coordinates
are,

SEEH _|_5IEE._P._P _ 2'5'25:[}: aEEH _ a . 5'-5},3 _|_I5IEEI +5IEI}J
5|:,,-2 B Gxch il dx Hx s Oz
E'IEE.P.F 8ey _5 5"25}’3 E'IEE.P.P _ 0| Pepr By n O xy
Az ayz Gz Gztx  Oy| dx e Oz
5'2533 " ﬁzsﬂ _5 5'2533,: 5'2533 _ & 5Eyg N Bepe 5'5:,._},
S 8z Oz Ox Oxdy k| Ox Gy s

In two dimensional problems (e.g. plane strain), all zterms are set to zero. The compatibility
eguations reduce to,

52
o+ —
By Bx Oty

Note that some references use engineering shear strain (*yl}, =Eyyp + Epy = 251}, ) when referencing
compatibility equations.
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Plane Strain and Coordinate Transformations

Plane State of Strain

L

Some common engineering problems such as a dam
subjected to water loading, atunnel under external
pressure, a pipe under internal pressure, and a
cylindrical roller bearing compressed by forcein a
diametral plane, have significant strain only in a
plane; that is, the strain in one direction is much less
than the strain in the two other orthogonal directions.

If small enough, the smallest strain can be ignored
and the part is said to experience plane strain.

Assume that the negligible strain is oriented in the
z-direction. To reduce the 3D strain matrix to the 2D

plane stress matrix, remove al components with z
subscripts to get,

fr By
fpx Ey

where €,y = €, by definition.

The sign convention here is consistent with the sign convention used in plane stress analysis.

Coordinate Transfor mation

L

T

The transformation of strains with respect to the {x,y,z} coordinates to the strains with respect to

{x.y,z} isperformed viathe equations,

The rotation between the two coordinate sets is shown here,

£y & £Er—&
P : P 2L cos28 4y 5in28
£y & £ — &
| &= a 5 y_F ¥ c&sEE—El},sinEE
=&y tep —&y
£ —
Exi},r:—%sinﬁf?—l—sl}, cog 28
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Plane Strain and Coordinate Transformations

8]
X
EI:I.-" EJ-"_}_"
%lj,r

where 0 is defined positive in the counterclockwise direction.
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Principal Strain for the Case of Plane Strain

Principal Strain for the Case of Plane Strain

Principal Directions, Principal Strain

e

L

The normal strains (€, and &) and the shear strain (€yy) vary smoothly with respect to the rotation

angle 0, in accordance with the transformation equations given above. There exist a couple of
particular angles where the strains take on special values.

First, there exists an angle 6, where the shear strain €,,; vanishes. That angleis given by,

251},

tan EEF =

This angle defines the principal directions. The associated principal strains are given by,

2
2
—I—E;g;

Ev +& Ep —C
ey =——"% [I ’

2

The transformation to the principal directions with their principal strains can be illustrated as:

] 5 );

Eaqs \
: 0
’ 1 €1 P | !
N
————
c

]

, xy 0
Ex L X /<F
-—l 0 —— T
£, | <
Exy 1-,1;-‘/
Cyx \
g
€y,
Strains in given Strains transformed to
coordinate system principal directions

Maximum Shear Strain Direction

L

RN RS
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Principal Strain for the Case of Plane Strain

Another important angle, O, iswhere the maximum shear strain occurs and is given by,

Ly — &
tan 26, =——

251},
=8 =8, £45°

The maximum shear strain is found to be one-half the difference between the two principal strains,

2
Ep —E —
Eynan = [—I > ‘F] Ty =l 252

The transformation to the maximum shear strain direction can be illustrated as:

% ¥ /
£y, F
EI_'_I-"I
E_I'Jr ‘""-mh_____h
Sy X —— X
—— 0 - — —
Ey U -43°
Eyy
EJ_.

Strains in given

coordinate system Maximum shear strain
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Mohr's Circle for Plane Strain

Mohr's Circle for Plane Strain

Mohr'sCircle
Strains at a point in the body can be illustrated by Mohr's Circle. The idea and procedures are exactly
the same as for Mohr's Circle for plane stress.

e

£,y
:J:_,_,._:-"_
R

1'13 EA'.-"Q 1'11
e

The two principal strains are shown in red, and the maximum shear strain is shown in orange. Recall
that the normal strains are equal to the principal strains when the element is aligned with the principal
directions, and the shear strain is equal to the maximum shear strain when the element is rotated 45°
away from the principal directions.

Asthe element is rotated away from the principal (or maximum strain) directions, the normal and
shear strain components will alwayslie on Mohr's Circle.

Derivation of Mohr'sCircle

L

To establish the Mohr's circle, we first recall the strain transformation formulas for plane strain,

e

o £, —E&
£t — A ‘Fcc:-525'+51}, sin 2F
‘ 2 2
£ — &
Expl = * 5 L sin 28 +eyp cos 28

Using a basic trigonometric relation (cos?20 + sin226 = 1) to combine the above two formulas we
have,

2

2
-I-.E“:,;P

2
£x tEy
S S X'y

2

2 |5x "5y
e i i = —
: [ :

This equation is an equation for a circle. To make this more apparent, we can rewrite it as,
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Mohr's Circle for Plane Strain

where,

2
Shve = R= ey

&y ey [EI —£y
Z

Thecircleis centered at the average strain value €4, and has aradius R equal to the maximum shear
strain, as shown in the figure below,

Related Topics

T

The procedure of drawing Mohr's Circle from a given strain state is discussed in the Mohr's Circle
usage and exampl es pages.

The Mohr's Circle for plane stress can also be obtained from similar procedures.

http://www-ocp.wbmt.tudelft.nl/dredging/miedem...-%20Mohr's%20Circle%20for%20Plane%20Strain.htm (2 of 2) [12/13/2001 13:00:11]



Mohr's Circle Usage in Plane Strain

Mohr's Circle Usage in Plane Strain

Principal Strainsfrom Mohr'sCircle

L

A chief benefit of Mohr's circle isthat the principal strains €, and Ex}-'
€, and the maximum shear strain €,y\ax are obtained
immediately after drawing the circle, P
R

£,2 =fayg TR e

" Max R €2 avg 1
where, [

EI +E.P -5'1- E.]'J 2 7
Shvg =T R= Ty

Principal Directionsfrom Mohr's Circle

Mohr's Circle can be used to find the directions of the principal axes. To show this, first suppose that
the normal and shear strains, gy, €y, and &y, are obtained at a given point O in the body. They are
expressed relative to the coordinates XY, as shown in the strain element at right below.

V|
£,
vl
E — 'IJ.'
M £y || L[}——F
X 9] e
— X
:—.J,I l
€5 . EJ-‘
(Eh'ﬁxr}

The Mohr's Circle for this general strain state is shown at |eft above. Note that it's centered at €44 and
has aradius R, and that the two points (g, &,y) and (g, -€,y) lie on opposites sides of the circle. The
line connecting €, and €y, will be defined as L.

The angle between the current axes (X and Y) and the principal axesis defined as 6, and is equal to
one half the angle between the line L,y and the e-axis as shown in the schematic below,
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Mohr's Circle Usage in Plane Strain

l X — {}u

A set of six Mohr's Circles representing most strain state possibilities are presented on the examples
page.

Also, principal directions can be computed by the principal strain calculator.

Rotation Angleon Mohr's Circle

Note that the coordinate rotation angle 6, is defined positive when starting at the XY coordinates and
proceeding to the X,Y,, coordinates. In contrast, on the Mohr's Circle 8, is defined positive starting on
the principal strain line (i.e. the e-axis) and proceeding to the XY strain line (i.e. line L,y). The angle 6,

has the opposite sense between the two figures, because on one it starts on the XY coordinates, and on
the other it starts on the principa coordinates.

Some books avoid the sign difference between 6, on Mohr's Circle and 6,, on the stress element by
locating (gy, -€xy) instead of (gy, €y,) on Mohr's Circle. Thiswill switch the polarity of 8, on the circle.

Whatever method you choose, the bottom line is that an opposite sign is needed either in the
interpretation or in the plotting to make Mohr's Circle physically meaningful.

Strain Transform by Mohr'sCircle
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Mohr's Circle Usage in Plane Strain

Mohr's Circle can be used to transform strains from one coordinate set to another, similar that that
described on the plane strain page.

Suppose that the normal and shear strains, €, €, and €,,, are obtained at a point O in the body,
expressed with respect to the coordinates XY. We wish to find the strains expressed in the new
coordinate set X'Y', rotated an angle 6 from XY, as shown below:

}.-
EJ"
F'I_].’.l'
—
o
:—:IJ,
EI_].’.I
EJ"

Strains at the given coordinate

Exy

c

To do thiswe proceed as follows:

ro ¥

N
£ ¥ F
1 ?.l ! e

X

Strains transformed to another coordinate

* Draw Mohr'scirclefor the given strain state (gy, €y, and &,y; shown below).

* Draw thelineL,, acrossthe circle from (g, €,y) tO (g, -€y).

* Rotate theline L,y by 2*6 (twice as much as the angle between XY and XY') and in the opposite

direction of 6.

* Thestrainsin the new coordinates (g, €, and &) are then read off the circle.
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Mohr's Circle Usage in Plane Strain

(s, ) (e o)

Strain transforms can be performed using eFunda's strain transform calculator.
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Examples of Mohr's Circles in Plane Strain

Casel: g, >0andg, >¢,

L

The principal axes are counterclockwise to the current axes (because €,,, > 0) and no more than 45°
away (because g, > €,).

RN RS

Case2: g, <0andg, >¢g,

L

The principal axes are clockwise to the current axes (because €, < 0) and no more than 45° away
(because g, > €y).

RN RS

I.?'

Case3: g, >0andg, <g,
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Examples of Mohr's Circles in Plane Strain

T

ot
L

The principal axes are counterclockwise to the current axes (because €,y > 0) and between 45° and 90°

away (because g < g,).

Case4: g, <0ande, <eg,

The principal axes are clockwise to the current axes (because €, < 0) and between 45° and 90° away

T

(because g, < gy).

¥ EI v
= 1 1"3 fE"
..-“”

":2 Q/
Ey \Y

Case5: g, =0andg,>¢,

L
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Examples of Mohr's Circles in Plane Strain

The principal axes are aligned with the current axes (because €, > €, and €, = 0).

Ef‘-’}"

LIP

- YX €
Er | L |t 2
)
I &1 f'fl,,.!ﬂ]
€5 Bp =0

Case6: &y =0ande, <g,

L

T

The principal axes are exactly 90° from the current axes (because €, < €, and &,y = 0).

e
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Mechanics of Materials: Hooke's Law

Mechanics of Materials: Hooke's Law

One-dimensional Hooke's L aw

L

Robert Hooke, who in 1676 stated,

The power (sic.) of any springy body isin the same proportion with
the extension.

announced the birth of elasticity. Hooke's statement expressed mathematically is,
F=ku

where F isthe applied force (and not the power, as Hooke mistakenly suggested), u is the deformation
of the elastic body subjected to the force F, and k is the spring constant (i.e. the ratio of previous two
parameters).

Generalized Hooke's Law (Anisotropic Form)

mmmmm

L

Cauchy generalized Hooke's law to three dimensional elastic bodies and stated that the 6 components
of stress are linearly related to the 6 components of strain.

The stress-strain relationship written in matrix form, where the 6 components of stress and strain are
organized into column vectors, is,

gcc| 311 Sz 813 S1a S5 S ||9w
pp | [Sa1 S22 Saz B4 Sas S ||Twy

or,

where C isthe stiffness matrix, Sisthe compliance matrix, and S= C-1.

http://www-ocp.wbmt.tudelft.nl/dredging/miede...echanics%200f%20Materials%20Hooke's%20Law.htm (1 of 2) [12/13/2001 13:00:15]



Mechanics of Materials: Hooke's Law

In general, stress-strain relationships such as these are known as constitutive relations.

In general, there are 36 stiffness matrix components. However, it can be shown that conservative
materials possess a strain energy density function and as a result, the stiffness and compliance
matrices are symmetric. Therefore, only 21 stiffness components are actually independent in Hooke's
law. The vast mgjority of engineering materials are conservative.

Please note that the stiffness matrix is traditionally represented by the symbol C, while Sisreserved
for the compliance matrix. This convention may seem backwards, but perception is not always
reality. For instance, Americans hardly ever use their feet to play (American) football.
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Hooke's Law for Orthotropic Materials

Hooke's Law for Orthotropic Materials

Orthotropic Definition

e

Some engineering materials, including certain piezoelectric materials (e.g. Rochelle salt) and 2-ply
fiber-reinforced composites, are orthotropic.

By definition, an orthotropic material has at least 2 orthogonal planes of symmetry, where material
properties are independent of direction within each plane. Such materials require 9 independent
variables (i.e. elastic constants) in their constitutive matrices.

In contrast, a material without any planes of symmetry is fully anisotropic and requires 21 elastic

constants, whereas a material with an infinite number of symmetry planes (i.e. every planeis aplane
of symmetry) isisotropic, and requires only 2 elastic constants.

Hooke'sLaw in Compliance Form

L

By convention, the 9 elastic constants in orthotropic constitutive equations are comprised of 3
Young's modulii E,, Ey, E,, the 3 Poisson's ratios vy, V,, Vyy, and the 3 shear modulii Gy, G, Gyy.

T

The compliance matrix takes the form,
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B, B, &
R P S 0 0
Sxx B, Hy E. b
c o
Tl Y2 1 0 0 0 Y
fzz | | Ay £y E, o
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Exy 2 pg “zx
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20
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Hooke's Law for Orthotropic Materials

Note that, in orthotropic materials, there is no interaction between the normal stresses oy, o, 0, and
the shear strains &, €, €y

The factor 2 multiplying the shear modulii in the compliance matrix results from the difference
between shear strain and engineering shear strain, where ¥y =&yp +Epy = 251}, , etc.

Hooke'sLaw in Stiffness Form

L

The stiffness matrix for orthotropic materials, found from the inverse of the compliance matrix, is
given by,

T

[ 1—vpeVep  Vpr Pz Ve vy ] , )
N B, E,A B, E,A N
o Vi ViV 1— vy vy Vep TVmeVap ) ) 0 |ley
ol B A E E_A B A ”
Tzx P tY i Sz
- (] (] i EG},E (] (] .
e 0 0 0 0 23, o [N
() (] 0 () () EGI}, |
where,

I= VoV —Vpe¥ep —VerViz — Vg Vpz Vax

E By B,

A=

The fact that the stiffness matrix is symmetric requires that the following statements hold,

Vpx T VerVpz Vg + Vo Ve

By E, i B B A

Vep T Vexvep _ Vay + Ve Ve
E B4 EIEFEL

Vor TVpeVgp Vi ¥ Vez
Hy B b He Bph

The factor of 2 multiplying the shear modulii in the stiffness matrix results from the difference
between shear strain and engineering shear strain, where ¥y =&yp +Epy = 251}, , etc.
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Hooke's Law for Orthotropic Materials

http://www-ocp.wbmt.tudelft.nl/dredging/miedema...oke's%20Law%20for%200rthotropic%20Materials.htm (3 of 3) [12/13/2001 13:00:16]



Hooke's Law for Transversely Isotropic Materials

Hooke's Law for Transversely |sotropic
Materials

Transverse | sotropic Definition

L

A special class of orthotropic materials are those that have the same properties in one plane (e.g. the
x-y plane) and different properties in the direction normal to this plane (e.g. the z-axis). Such materials
are called transver se isotropic, and they are described by 5 independent elastic constants, instead of

9 for fully orthotropic.

T

Examples of transversely isotropic materials include some piezoelectric materials (e.g. PZT-4, barium
titanate) and fiber-reinforced composites where al fibers arein paralléel.

Hooke'sLaw in Compliance Form

L

By convention, the 5 elastic constants in transverse isotropic constitutive equations are the Young's
modulus and poisson ratio in the x-y symmetry plane, E, and vy, the Y oung’s modulus and poisson

ratio in the z-direction, E,, and v,,, and the shear modulusin the z-direction G,

T

The compliance matrix takes the form,
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E, E, £
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e 14
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Hooke's Law for Transversely Isotropic Materials

The factor 2 multiplying the shear modulii in the compliance matrix results from the difference
between shear strain and engineering shear strain, where ¥y =¢yp +Epy =28y , €lc.

Hooke'sLaw in Stiffness Form
The stiffness matrix for transverse isotropic materials, found from the inverse of the compliance
matrix, is given by,

RN RS

- l=vprvey  Vp tVgpVpz  Vep TRV ) )
By By A By B A By By A
w| B mea apa R
T pp ZTF 2TF : Z F‘E Epp
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o 2 2 2

Typz Eﬁ i\ Eﬁ i\ Eﬁ i\ £ypz
Czx 0 0 0 2Py 0 0|52
w4 0 0 0 0 2G, 0 ("%

E

0 0 0 00 z

1-I—vﬁ_
where,

2

b= :
By Ey

The fact that the stiffness matrix is symmetric requires that the following statements hold,

Vyp +Vep Vs _Vp TV pzVay
Ep B H By
2

Ve -I-vzﬁvﬁ _ Vep -|-va
B By Eﬁzﬂ

Vep +vﬁvzﬁ _ Vpz +vﬁvﬁz
EﬁEEﬁ‘ Eﬁzﬁ.

The factor of 2 multiplying the shear modulii in the stiffness matrix results from the difference

http://www-ocp.wbmt.tudelft.nl/dredging/miedema/...20for%20Transversely%20lIsotropic%20Materials.htm (2 of 3) [12/13/2001 13:00:17]



Hooke's Law for Transversely Isotropic Materials

between shear strain and engineering shear strain, where ¥y =&yp +Epy = 251}, , etc.
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Hooke's Law for Isotropic Materials

Hooke's Law for |sotropic Materials

| sotr opic Definition
Most metallic alloys and thermoset polymers are considered isotr opic, where by definition the
material properties are independent of direction. Such materials have only 2 independent variables
(i.e. elastic constants) in their stiffness and compliance matrices, as opposed to the 21 elastic constants
In the general anisotropic case.

e

The two elastic constants are usually expressed as the Y oung's modulus E and the Poisson's ratio v.
However, the alternative elastic constants K (bulk modulus) and/or G (shear modulus) can also be
used. For isotropic materials, G and K can be found from E and v by a set of equations, and
vice-versa.

Hooke'sLaw in Compliance Form

L

Hooke's law for isotropic materials in compliance matrix form is given by,

e

o] (1 -y —v 0 0 e
Epp — 1 —v 0 0 0 [Ty
frz | 1| —v 1 0 0 || 7zz
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Hooke'sL aw in Stiffness Form

L

The stiffness matrix is equal to the inverse of the compliance matrix, and is given by,

e

& xx =y v vy 0 0 0 lex|
& pyp v o 1l—v ¥ 0 0 0 ||5wp
Ogz B V v 1= 0 0 0 ||ezx
opz| [Av)1=2) 0 0 0 1=2v 0 0 |l
. 0 0 0 0 1-2v 0 |,
e o 0 0 0 0 1-2v)|ey |

Visit the elastic constant calculator to see the interplay amongst the 4 elastic constants (E, v, G, K).
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Hooke's Law for Plane Stress

Hooke's Law for Plane Stress

Hooke's Law for Plane Stress

L

For the simplification of plane stress, where the stresses in the z direction are considered to be

e

negligible, ozz =0 pr =05 = 0, the stress-strain compliance rel ationship for an isotropic material

becomes,
Exx (1 —v —v 0 0 1[oxx]
Epp - 1 —v 0 0 0 & pyp
fzz| 1l —v 1 0 i ()
gpz| E[0 0 0 14v 0 0
- R B o 14v 0
23 R B 0 0 14w Oy

The three zero'd stress entries in the stress vector indicate that we can ignore their associated columns
in the compliance matrix (i.e. columns 3, 4, and 5). If we also ignore the rows associated with the
strain components with z-subscripts, the compliance matrix reduces to a simple 3x3 matrix,

Exre 1 1 = 0 ||loo
£pp =E — 1 y] T pp
29 0 o 14w o

The stiffness matrix for plane stressis found by inverting the plane stress compliance matrix, and is
given by,

. P [ C N O | -
T yy =1_P3 v 10 ey
o] 0 0 1—1:_5:?

Note that the stiffness matrix for plane stressisNOT found by removing columns and rows from the
general isotropic stiffness matrix.

Plane Stress Hooke's Law via Engineering Strain

mmmmm

L
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Hooke's Law for Plane Stress

Some reference books incorporate the shear modulus G and the engineering shear strain vy, related to
the shear strain gy via,

Vi =Exp —|—ny =251},

The stress-strain compliance matrix using G and vy are,

1 ¥ 4
£y & & Ty
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The stiffness matrix is,
Ji) v 0
- 2 2 _
oy 11—y 1—w Ere
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The shear modulus G isrelated to E and v via,
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Hooke's Law for Plane Strain

Hooke's Law for Plane Strain

Hooke's L aw for Plane Strain

L

For the case of plane strain, where the strains in the z direction are considered to be negligible,
(1, the stress-strain stiffness relationship for an isotropic material becomes,

e

feg =fpr =8z =

T l—v ¥ v 0 0 0 Jleec
“ry v o l-v v 0 0 0 ||Epy
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The three zero'd strain entries in the strain vector indicate that we can ignore their associated columns
in the stiffness matrix (i.e. columns 3, 4, and 5). If we also ignore the rows associated with the stress
components with z-subscripts, the stiffness matrix reduces to a simple 3x3 matrix,

T 7 l—v v 0 e
Tpp | = o 1= EI £ pp

[l—l—vjllil—ivjl . 0 1—ov

Py |

The compliance matrix for plane stressis found by inverting the plane stress stiffness matrix, and is
given by,

£ 1—v —v Ol
e _l—I—v : . =
i i 1
| “xp | 7 |

Note that the compliance matrix for plane stressisNOT found by removing columns and rows from
the general isotropic compliance matrix.

Plane Strain Hooke's L aw via Engineering Strain

.....

L
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Hooke's Law for Plane Strain

The stress-strain stiffness matrix expressed using the shear modulus G and the engineering shear

Srain ¥y =exp +Epx =24 s,

The compliance matrix is,
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Finding Young's Modulus and Poisson's Ratio

Finding Y oung's Modulus and Poisson's Ratio

Y oungs Modulus from Uniaxial Tension

e

L

When a specimen made from an isotropic material is subjected to uniaxial tension, say in the x
direction, oy, is the only non-zero stress. The strainsin the specimen are obtained by,

ghes (1 - —v 0 0 ][
& pp —v 1 —» 0 0 0 0
Sy 1= — 1 [ 0 y y
epz| E|0 0 0 14v 0 0 [0
- 00 0 0 14v 0|0
eyl L0 0 0 0 0 14v0]

The modulus of elasticity in tension, also known as Young's modulus E, isthe ratio of stressto strain
on the loading plane along the loading direction,

Common sense (and the 2nd Law of Thermodynamics) indicates that a material under uniaxial tension
must elongate in length. Therefore the Y oung's modulus E is required to be non-negative for all
materials,

E>0

Poisson's Ratio from Uniaxial Tension

T

L

A rod-like specimen subjected to uniaxial tension will exhibit some shrinkage in the lateral direction
for most materials. The ratio of lateral strain and axial strain is defined as Poisson'sratio v,

_w

v

1=

The Poisson ratio for most metals falls between 0.25 to 0.35. Rubber has a Poisson ratio close to 0.5
and is therefore almost incompressible. Theoretical materials with a Poisson ratio of exactly 0.5 are
truly incompr essible, since the sum of all their strains leads to a zero volume change. Cork, on the
other hand, has a Poisson ratio close to zero. This makes cork function well as a bottle stopper, since
an axially-loaded cork will not swell laterally to resist bottle insertion.

The Poisson'sratio is bounded by two theoretical limits: it must be greater than -1, and |ess than or
equal to 0.5,
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Finding Young's Modulus and Poisson's Ratio

—1{v£l
2

The proof for this stems from the fact that E, G, and K are all positive and mutually dependent.

However, it israre to encounter engineering materials with negative Poisson ratios. Most materials
will fall in the range,

Divil
2
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Finding the Shear Modulus and the Bulk Modulus

Finding the Shear Modulus and the Bulk
Modulus

Shear Modulus from Pure Shear

L

When a specimen made from an isotropic material is subjected to pure shear, for instance, a
cylindrical bar under torsion in the xy sense, oy isthe only non-zero stress. The strainsin the
specimen are obtained by,

T

Exr (1 - —v o o ][0]
pp —v 1 —» 0 0 0 0
Egr 1—v — 1 0 0 0
epz| E|0 0O 0 14v 0 0 [0
- 0 0 0 0 14w 0|0
e 00 0 0 0 l4v|og

The shear modulus G, is defined as the ratio of shear stress to engineering shear strain on the loading
plane,

o Trp _ Trp :’51}
Exp -I—sFI EEI}, iy
. i)
B Elil—l—vjl

where ¥pp =&pp +Epy =261 .
The shear modulus G is aso known as the rigidity modulus, and is equivalent to the 2nd Lamé

constant L mentioned in books on continuum theory.

Common sense and the 2nd Law of Thermodynamics require that a positive shear stress leadsto a
positive shear strain. Therefore, the shear modulus G is required to be nonnegative for all materials,

G>0

Since both G and the elastic modulus E are required to be positive, the quantity in the denominator of
G must also be positive. This requirement places alower bound restriction on the range for
Poisson'sratio,

v>-1

Bulk Modulus from Hydrostatic Pressure
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Finding the Shear Modulus and the Bulk Modulus

ot
L

T

When an isotropic material specimen is subjected to hydrostatic pressure o, all shear stresswill be

zero and the normal stresswill be uniform, oy =&y =0z =o . Thestrainsin the specimen are

given by,
e (1 —v —v 0 0 ||«
Epp — 1 —v 0 0 0 ||
fzz | 1|=v —v 1 0 0 0 ||
gpz| E|0 0 0 14v O o |0
Epr o0 0 0 14+ 0 |0
Exp o0 0 0 0 14| 0]

In response to the hydrostatic load, the specimen will change its volume. Itsresistanceto do sois
quantified as the bulk modulus K, also known as the modulus of compression. Technically, K is
defined as the ratio of hydrostatic pressure to the relative volume change (which is related to the direct

strains),

. o . o
CAVIV e tepy Feg
K

R,

Common sense and the 2nd Law of Thermodynamics require that a positive hydrostatic load leads to a
positive volume change. Therefore, the bulk modulus K is required to be nonnegative for all materials,

K>0

Since both K and the elastic modulus E are required to be positive, the following requirement is
placed on the upper bound of Poisson'sratio by the denominator of K,

v<1/?2

Relation Between Relative Volume Change and Strain

T

L
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Finding the Shear Modulus and the Bulk Modulus
For smplicity, consider arectangular block of material with dimensions ag, by, and c;. Its volume V
IS given by,

Vo = apdpeg

When the block is loaded by stress, its volume will change since each dimension now includes a direct
strain measure. To calculate the volume when loaded V;, we multiply the new dimensions of the

block,

Ve =aghpcr =lag (1+eg )] [bo(1+ep |l (1462 )]
=V {1 +exr ) (1Hepy |(14+ez)
=1 (1+.9H +epy ezt Eppnr FeazEr Tty —I-EHE},},EEE)
mlp (14 e +epp +6z |

Products of strain measures will be much smaller than individual strain measures when the overall
strain in the block issmall (i.e. linear strain theory). Therefore, we were able to drop the strain

products in the equation above.

The relative change in volume is found by dividing the volume difference by the initial volume,

AV V=1
¥ i

o] EH +E}:|}:| +EEE

Hence, the relative volume change (for small strains) is equal to the sum of the 3 direct strains.
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Failure Criteria

Fallure Criteria

Stress-Based Criteria

L

The purpose of failure criteriaisto predict or estimate the failure/yield of machine parts and
structural members.

e

A considerable number of theories have been proposed. However, only the most common and
well-tested theories applicable to isotropic materials are discussed here. These theories, dependent on

the nature of the material in question (i.e. brittle or ductile), are listed in the following table:

Material

Failure Theories
Type

Ductile Maximum shear stress criterion, von Mises criterion

Brittle Maximum normal stress criterion, Mohr's theory

All four criteria are presented in terms of principal stresses. Therefore, al stresses should be
transformed to the principal stresses before applying these failure criteria

Note: 1. Whether amaterial is brittle or ductile could be a subjective guess, and often depends on
temperature, strain levels, and other environmental conditions. However, a 5%
elongation criterion at break is areasonable dividing line. Materials with alarger
elongation can be considered ductile and those with alower value brittle.

Another distinction is a brittle material's compression strength is usually significantly
larger than its tensile strength.

2. All popular failure criteriarely on only a handful of basic tests (such as uniaxial tensile
and/or compression strength), even though most machine parts and structural members
are typically subjected to multi-axial loading. This disparity is usually driven by cost,
since complete multi-axial failure testing requires extensive, complicated, and expensive
tests.

Non Stress-Based Criteria

L
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Failure Criteria

The success of al machine parts and structural members are not necessarily determined by their
strength. Whether a part succeeds or fails may depend on other factors, such as stiffness, vibrational
characteristics, fatigue resistance, and/or creep resistance.

For example, the automobile industry has endeavored many years to increase the rigidity of passenger
cages and install additional safety equipment. The bicycle industry continues to decrease the weight
and increase the stiffness of bicycles to enhance their performance.

In civil engineering, a patio deck only needs to be strong enough to carry the weight of several people.
However, a design based on the "strong enough" precept will often result abouncy deck that most
people will find objectionable. Rather, the stiffness of the deck determines the success of the design.

Many factors, in addition to stress, may contribute to the design requirements of a part. Together,
these requirements are intended to increase the sense of security, safety, and quality of service of the
part.

http://www-ocp.wbmt.tudelft.nl/dredging/MIEDEMA/Mohr%20Circle/0401%20-%20Failure%20Criteria.htm (2 of 2) [12/13/2001 13:00:25]



Failure Criteria for Ductile Materials

Fallure Criteriafor Ductile Materias

Maximum Shear Stress Criterion
The maximum shear stress criterion, also known as Tresca's or Guest's criterion, is often used to
predict the yielding of ductile materials.

e

Yield in ductile materialsis usually caused by the slippage of crystal planes along the maximum shear
stress surface. Therefore, a given point in the body is considered safe as long as the maximum shear
stress at that point is under the yield shear stress o, obtained from a uniaxial tensile test.

With respect to 2D stress, the maximum shear stressis related to the difference in the two principal
stresses (see Mohr's Circle). Therefore, the criterion requires the principal stress difference, along with
the principal stresses themselves, to be less than the yield shear stress,

pil=oyp. loa|<op. and oy —o3| <oy

Graphically, the maximum shear stress criterion requires that the two principal stresses be within the
green zone indicated below,

)
(':TJ,
) !
ﬁ,}"
—(':TJ,

Von MisesCriterion

L
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Failure Criteria for Ductile Materials

The von Mises Criterion (1913), also known as the maximum distortion energy criterion, octahedral
shear stress theory, or Maxwell-Huber-Hencky-von Mises theory, is often used to estimate the yield of
ductile materials.

The von Mises criterion states that failure occurs when the energy of distortion reaches the same
energy for yield/failurein uniaxial tension. Mathematically, thisis expressed as,

1

2

In the cases of plane stress, o3 = 0. The von Mises criterion reduces to,

{52

2 2 2
[:-:5'1—-:5'2;] —I—[:ﬂ'g—ﬂ'gjl +Iiﬂfj—ﬂ'1;| =Ty

-:rl2 — 77 —I-r:r% = r:r}%

This equation represents a principal stress ellipse asillustrated in the following figure,

T vion Mises
/ Maximum Shear

Also shown on the figure is the maximum shear stress criterion (dashed line). This theory is more
conservative than the von Mises criterion since it liesinside the von Mises ellipse.

In addition to bounding the principal stresses to prevent ductile failure, the von Mises criterion also
gives areasonable estimation of fatigue failure, especially in cases of repeated tensile and
tensile-shear loading.
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Failure Criteria for Brittle Materials

Fallure Criteriafor Brittle Materials

Maximum Normal Stress Criterion

L

The maximum stress criterion, also known as the normal stress, Coulomb, or Rankine criterion, IS
often used to predict the failure of brittle materials.

e

The maximum stress criterion states that failure occurs when the maximum (normal) principal stress
reaches either the uniaxial tension strength o, or the uniaxial compression strength o,

-0 <{0y, 05} <0y
where 0, and o, are the principal stresses for 2D stress.

Graphically, the maximum stress criterion requires that the two principal stresses lie within the green
zone depicted below,

G2

Mohr's Theory
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Failure Criteria for Brittle Materials
The Mohr Theory of Failure, aso known as the Coulomb-Mohr criterion or internal-friction theory, is
based on the famous Mohr's Circle. Mohr's theory is often used in predicting the failure of brittle
materials, and is applied to cases of 2D stress.

Mohr's theory suggests that failure occurs when Mohr's Circle at a point in the body exceeds the
envelope created by the two Mohr's circles for uniaxia tensile strength and uniaxial compression
strength. This envelope is shown in the figure below,

T Uniaxial
Tension

Uniaxial -~
Compression

The left circle isfor uniaxial compression at the limiting compression stress o, of the material.
Likewise, theright circleisfor uniaxial tension at the limiting tension stress o;.

The middle Mohr's Circle on the figure (dash-dot-dash line) represents the maximum allowable stress
for an intermediate stress state.

All intermediate stress states fall into one of the four categoriesin the following table. Each case
defines the maximum allowable values for the two principal stressesto avoid failure.

o Criterion
Case Principal Stresses r equirements
1 Bothintension 0,>0,0,>0 07<0} 0,<0;
2  Bothin compression 0,<0,0,<0 07>-0,0,>-0.

: : : : H T
3 opintension, o, in compression a;>0,0,<0 e IR S
O T

. . . . N r
4  0pincompression, 0, intension a;<0,0,>0 —L 422
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Failure Criteria for Brittle Materials

Graphically, Mohr's theory requires that the two principal stresses lie within the green zone depicted
below,

Maamum Stress

G2
Mohr's \ ﬂ_"

C

Also shown on the figure is the maximum stress criterion (dashed line). Thistheory isless
conservative than Mohr's theory since it lies outside Mohr's boundary.
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Techniques for Failure Prevention and Diagnosis

Techniques for Failure Prevention and
Diagnosis

There exist a set of basic techniques for preventing failure in the design stage, and for diagnosing
failure in manufacturing and later stages.

T

In the Design Stage

It is quite commonplace today for design engineers to verify design stresses with finite element (FEA)
packages. Thisis fine and good when FEA is applied appropriately. However, the popularity of finite
element analysis can condition engineersto look just for red spots in simulation output, without really
understanding the essence or funda at play.

By following basic rules of thumb, such danger points can often be anticipated and avoided without
total reliance on computer simulation.

Maximum stresses are often located at loading points, supports,

ey FElE joints, or maximum deflection points.

Stress concentrations are usually located near corners, holes, crack
tips, boundaries, between layers, and where cross-section areas
change rapidly.

Stress
Concentrations | Sound design avoids rapid changes in material or geometrical

properties. For example, when alarge hole is removed from a
structure, a reinforcement composed of generally no less than the
material removed should be added around the opening.

The addition of safety factorsto designs allow engineers to reduce
Safety Factors | sensitivity to manufacturing defects and to compensate for stress
prediction limitations.

In Post-M anufacturing Stages

L

T

Despite the best efforts of design and manufacturing engineers, unanticipated failure may occur in
parts after design and manufacturing. In order for projects to succeed, these failures must be
diagnosed and resolved quickly and effectively. Often, the failure is caused by a singular factor, rather
than an involved collection of factors.

Such failures may be caught early ininitial quality assurance testing, or later after the part is delivered
to the customer.
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Techniques for Failure Prevention and Diagnosis

Stress concentrations may be induced by inadequate manufacturing

ProCcesses.
|nduced

Stress For example, initial surface imperfections can result from sloppy
Concentrations | machining processes. Manufacturing defects such as size mismatches
and improper fastener application can lead to residual stresses and
even cracks, both strong stress concentrations.

Damages during service life can lead a part to failure. Damages such
as cracks, debonding, and delamination can result from unanticipated
resonant vibrations and impacts that exceed the design loads.
Reduction in strength can result from exposure to UV lights and
chemical corrosion.

Damage
and Exposure

Fatigue Fatigue or creep can lead a part to failure. For example, unanticipated
and Creep fatigue can result from repeated mechanical or thermal loading.
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