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Chapter 1 

AGENT-BASED COMPUTATIONAL MODELS AND 

GENERATIVE SOCIAL SCIENCE 

JOSHUA M. EPSTEIN* 

This article argues that the agent-based computational model permits a distinctive 

approach to social science for which the term “generative” is suitable. In defend

ing this terminology, features distinguishing the approach from both “inductive” 

and “deductive” science are given. Then, the following specific contributions to 

social science are discussed: The agent-based computational model is a new tool 

for empirical research. It offers a natural environment for the study of connection

ist phenomena in social science. Agent-based modeling provides a powerful way 

to address certain enduring—and especially interdisciplinary—questions. It allows 

one to subject certain core theories—such as neoclassical microeconomics—to 

important types of stress (e.g., the effect of evolving preferences). It permits one to 

study how rules of individual behavior give rise—or “map up”—to macroscopic 

regularities and organizations. In turn, one can employ laboratory behavioral 

research findings to select among competing agent-based (“bottom up”) models. 

The agent-based approach may well have the important effect of decoupling 

individual rationality from macroscopic equilibrium and of separating decision 

science from social science more generally. Agent-based modeling offers powerful 

new forms of hybrid theoretical-computational work; these are particularly 

relevant to the study of non-equilibrium systems. The agent-based approach 

invites the interpretation of society as a distributed computational device, and 

in turn the interpretation of social dynamics as a type of computation. This 

interpretation raises important foundational issues in social science—some related 

to intractability, and some to undecidability proper. Finally, since “emergence” 
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member of the External Faculty of the Santa Fe Institute. 
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figures prominently in this literature, I take up the connection between agent-

based modeling and classical emergentism, criticizing the latter and arguing that 

the two are incompatible. 

Generative Social Science 

The agent-based computational model—or artificial society—is a new 
scientific instrument.1 It can powerfully advance a distinctive approach 
to social science, one for which the term “generative” seems appropriate. 
I will discuss this term more fully below, but in a strong form, the central 
idea is this: To the generativist, explaining the emergence2 of macroscopic 
societal regularities, such as norms or price equilibria, requires that one 
answer the following question: 

The Generativist’s Question 

*How could the decentralized local interactions of heterogeneous 
autonomous agents generate the given regularity? 

The agent-based computational model is well-suited to the study of this 
question since the following features are characteristic:3 

heterogeneity 

Representative agent methods—common in macroeconomics—are not 
used in agent-based models (see Kirman 1992). Nor are agents 

1A basic exposure to agent-based computational modeling—or artificial societies—is 
assumed. For an introduction to agent-based modeling and a discussion of its intellectual 
lineage, see Epstein and Axtell 1996. I use the term “computational” to distinguish artificial 
societies from various equation-based models in mathematical economics, n-person game 
theory, and mathematical ecology that (while not computational) can legitimately be called 
agent-based. These equation-based models typically lack one or more of the characteristic 
features of computational agent models noted below. Equation based models are often 
called “analytical” (as distinct from computational), which occasions no confusion so 
long as one understands that “analytical” does not mean analytically tractable. Indeed, 
computer simulation is often needed to approximate the behavior of particular solutions. 
The relationship of agent-based models and equations is discussed further below. 

2The term “emergence” and its history are discussed at length below. Here, I use the term 
“emergent” as defined in Epstein and Axtell (1996, 35), to mean simply “arising from the 
local interaction of agents.” 

3The features noted here are not meant as a rigid definition; not all agent-based models 
exhibit all these features. Hence, I note that the exposition is in a strong form. The point is 
that these characteristics are easily arranged in agent-based models. 
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aggregated into a few homogeneous pools. Rather, agent populations 
are heterogeneous; individuals may differ in myriad ways—genetically, 
culturally, by social network, by preferences—all of which may change 
or adapt endogenously over time. 

autonomy 

There is no central, or “top-down,” control over individual behavior 
in agent-based models. Of course, there will generally be feedback 
from macrostructures to microstructures, as where newborn agents 
are conditioned by social norms or institutions that have taken shape 
endogenously through earlier agent interactions. In this sense, micro 
and macro will typically co-evolve. But as a matter of model speci
fication, no central controllers or other higher authorities are posited 
ab initio. 

explicit space 

Events typically transpire on an explicit space, which may be a landscape 
of renewable resources, as in Epstein and Axtell (1996), an n-dimensional 
lattice, or a dynamic social network. The main desideratum is that the 
notion of “local” be well posed. 

local interactions 

Typically, agents interact with neighbors in this space (and perhaps with 
environmental sites in their vicinity). Uniform mixing is generically not 
the rule.4 It is worth noting that although this next feature is logically 
distinct from generativity, many computational agent-based models also 
assume: 

bounded rationality 

There are two components of this: bounded information and bounded 
computing power. Agents do not have global information, and they 
do not have infinite computational power. Typically, they make use of 
simple rules based on local information (see Simon 1982 and Rubinstein 
1998). 

The agent-based model, then, is especially powerful in representing 
spatially distributed systems of heterogeneous autonomous actors with 
bounded information and computing capacity who interact locally. 

4For analytical models of local interactions, see Blume and Durlauf 2001. 
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The Generativist’s Experiment 

In turn, given some macroscopic explanandum—a regularity to be 
explained—the canonical agent-based experiment is as follows: 

**Situate an initial population of autonomous heterogeneous agents 
in a relevant spatial environment; allow them to interact according 
to simple local rules, and thereby generate—or “grow”—the macro
scopic regularity from the bottom up.5 

Concisely, ** is the way generative social scientists answer *. In  
fact, this type of experiment is not new6 and, in principle, it does not 
necessarily involve computers.7 However, recent advances in computing, 
and the advent of large-scale agent-based computational modeling, 
permit a generative research program to be pursued with unprecedented 
scope and vigor. 

Examples 

A range of important social phenomena have been generated in agent-
based computational models, including: right-skewed wealth distribu
tions (Epstein and Axtell 1996), right-skewed firm size and growth rate 
distributions (Axtell 1999), price distributions (Bak et al. 1993), spatial 
settlement patterns (Dean et al. 1999), economic classes (Axtell et al. 
2001), price equilibria in decentralized markets (Albin and Foley 1990; 
Epstein and Axtell 1996), trade networks (Tesfatsion 1995; Epstein 
and Axtell 1996), spatial unemployment patterns (Topa 1997), excess 
volatility in returns to capital (Bullard and Duffy 1998), military tactics 
(Ilachinski 1997), organizational behaviors (Prietula, Carley, and Gasser 

5We will refer to an initial agent-environment specification as a microspecification. 
While, subject to outright computational constraints, agent-based modeling permits 
extreme methodological individualism, the “agents” in agent-based computational mod
els are not always individual humans. Thus, the term “microspecification” implies 
substantial—but not necessarily complete—disaggregation. Agent-based models are nat
urally implemented in object-oriented programming languages in which agents and 
environmental sites are objects with fixed and variable internal states (called instance 
variables), such as location or wealth, and behavioral rules (called methods) governing, 
for example, movement, trade, or reproduction. For more on software engineering aspects 
of agent-based modeling, see Epstein and Axtell 1996. 

6Though he does not use this terminology, Schelling’s (1971) segregation model is a 
pioneering example. 

7In fact, Schelling did his early experiments without a computer. More to the point, one 
might argue that, for example, Uzawa’s (1962) analytical model of non-equilibrium trade 
in a population of agents with heterogeneous endowments is generative. 
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1998), epidemics (Epstein and Axtell 1996), traffic congestion patterns 
(Nagel and Rasmussen 1994), cultural patterns (Axelrod 1997c; Epstein 
and Axtell 1996), alliances (Axelrod and Bennett 1993; Cederman 
1997), stock market price time series (Arthur et al. 1997), voting 
behaviors (Kollman, Miller, and Page 1992), cooperation in spatial games 
(Lindgren and Nordahl 1994; Epstein 1998; Huberman and Glance 
1993; Nowak and May 1992; Miller 1996), and demographic histories 
(Dean et al. 1999). These examples manifest a wide range of (often 
implicit) objectives and levels of quantitative testing. 

Before discussing specific models, it will be useful to identify certain 
changes in perspective that this approach may impose on the social 
sciences. Perhaps the most fundamental of these changes involves expla
nation itself. 

Explanation and Generative Sufficiency 

Agent-based models provide computational demonstrations that a given 
microspecification is in fact sufficient to generate a macrostructure of 
interest. Agent-based modelers may use statistics to gauge the generative 
sufficiency of a given microspecification—to test the agreement between 
real-world and generated macro structures. (On levels of agreement, 
see Axtell and Epstein 1994.) A good fit demonstrates that the target 
macrostructure—the explanandum—be it a wealth distribution, segre
gation pattern, price equilibrium, norm, or some other macrostructure, 
is effectively attainable under repeated application of agent-interaction 
rules: It is effectively computable by agent society. (The view of society 
as a distributed computational device is developed more fully below.) 
Indeed, this demonstration is taken as a necessary condition for expla
nation itself. To the generativist—concerned with formation dynamics— 
it does not suffice to establish that, if deposited in some macroconfig
uration, the system will stay there. Rather, the generativist wants an 
account of the configuration’s attainment by a decentralized system of 
heterogeneous autonomous agents. Thus, the motto of generative social 
science, if you will, is: If you didn’t grow it, you didn’t explain its 
emergence. Or, in the notation of first-order logic: 

(∀x)(¬Gx ⊃ ¬Ex)  (1)  

It must be emphasized that the motto applies only to that domain 
of problems involving the formation or emergence of macroscopic 
regularities. Proving that some configuration is a Nash equilibrium, for 
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example, arguably does explain its persistence, but does not account for 
its attainment.8 

Regarding the converse of expression (1), if a microspecification, m, 
generates a macrostructure of interest, then m is a candidate explana
tion. But it may be a relatively weak candidate; merely generating a 
macrostructure does not necessarily explain its formation particularly 
well. Perhaps Barnsley’s fern (Barnsley 1988) is a good mathematical 
example. The limit object indeed looks very much like a black spleen
wort fern. But—under iteration of a certain affine function system—it 
assembles itself in a completely unbiological way, with the tip first, then 
a few outer branches, eventually a chunk of root, back to the tip, and so 
forth—not connectedly from the bottom up (now speaking literally). 

It may happen that there are distinct microspecifications having 
equivalent generative power (their generated macrostructures fit the 
macro-data equally well). Then, as in any other science, one must 
do more work, figuring out which of the microspecifications is most 
tenable empirically. In the context of social science, this may dictate 
that competing microspecifications with equal generative power be 
adjudicated experimentally—perhaps in the psychology lab. 

In summary, if the microspecification m does not generate the 
macrostructure x, then m is not a candidate explanation. If m does 
generate x, it is a candidate.9 If there is more than one candidate, further 
work is required at the micro-level to determine which m is the most 
tenable explanation empirically.10 

8Likewise, it would be wrong to claim that Arrow-Debreu general equilibrium theory is 
devoid of explanatory power because it is not generative. It addresses different questions 
than those of primary concern here. 

9For expository purposes, I write as though a macrostructure is either generated or not. 
In practice, it will generally be a question of degree. 

10Locating this (admittedly informal) usage of “explanation” in the vast and contentious 
literature on that topic is not simple and requires a separate essay. For a good collection 
on scientific explanation, see Pitt 1988. See also Salmon 1984, Cartwright 1983, and 
Hausman 1992. Very briefly, because no general scientific (covering) laws are involved, 
generative sufficiency would clearly fail one of Hempel and Oppenheim’s (1948) classic 
deductive-nomological requirements. Perhaps surprisingly, however, it meets the deduction 
requirement itself, as shown by the Theorem below. That being the case, the approach 
would appear to fall within the hypothetico-deductive framework described in Hausman 
(1992, 304). A microspecification’s failure to generate a macrostructure falsifies the 
hypothesis of its sufficiency and disqualifies it as an explanatory candidate, consistent with 
Popper (1959). Of course, sorting out exactly what component of the microspecification— 
core agent rules or auxiliary conditions—is producing the generative failure is the Duhem 
problem. Our weak requirements for explanatory candidacy would seem to have much 
in common with the constructive empiricism of van Fraassen (1980). On this antirealist 
position, truth (assuming it has been acceptably defined) is eschewed as a goal. Rather, 
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For most of the social sciences, it must be said, the problem of multiple 
competing generative accounts would be an embarrassment of riches. 
The immediate agenda is to produce generative accounts per se. The  
principal instrument in this research program is the agent-based com
putational model. And as the earlier examples suggest, the effort is 
underway. 

This agenda imposes a constructivist (intuitionistic) philosophy on 
social science.11 In the air is a foundational debate on the nature of 
explanation reminiscent of the controversy on foundations of mathe
matics in the 1920s–30s. Central to that debate was the intuitionists’ 
rejection of nonconstructive existence proofs (see below): their insistence 
that meaningful “existence in mathematics coincides with constructibil
ity” (Fraenkel and Bar-Hillel 1958, 207). While the specifics are of course 
different here—and I am not discussing intuitionism in mathematics 
proper—this is the impulse, the spirit, of the agent-based modelers: If the 
distributed interactions of heterogeneous agents can’t generate it, then 
we haven’t explained its emergence. 

Generative versus Inductive and Deductive 

From an epistemological standpoint, generative social science, while 
empirical (see below), is not inductive, at least as that term is typically 
used in the social sciences (e.g., as where one assembles macroeconomic 
data and estimates aggregate relations econometrically). (For a nice 
introduction to general problems of induction, beginning with Hume, see 
Chalmers 1982. On inductive logic, see Skyrms 1986. For Bayesians and 
their critics, see, respectively, Howson and Urbach 1993 and Glymour 
1980.) 

The relation of generative social science to deduction is more subtle. 
The connection is of particular interest because there is an intellectual 
tradition in which we account an observation as explained precisely when 
we can deduce the proposition expressing that observation from other, 
more general, propositions. For example, we explain Galileo’s leaning 

“science aims to give us theories which are empirically adequate; and acceptance of a theory 
involves as belief only that it is empirically adequate” (von Fraassen 1980, 12). However, 
faced with competing microspecifications that are equally adequate empirically (i.e., do 
equally well in generating a macro target), one would choose by the criterion of empirical 
plausibility at the micro level, as determined experimentally. On realism in social science, 
see Hausman 1998. 

11Constructivism in this mathematical sense should not be confused with the doctrine 
of social constructionism sometimes identified with so-called “post-modernism” in other 
fields. 
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Tower of Pisa observation (that heavy and light objects dropped from 
the same height hit the ground simultaneously) by strictly deducing, 
from Newton’s Second Law and the Law of Universal Gravitation, the 
following proposition: “The acceleration of a freely falling body near 
the surface of the earth is independent of its mass.” In the present 
connection, we seek to explain macroscopic social phenomena. And we 
are requiring that they be generated in an agent-based computational 
model. Surprisingly, in that event, we can legitimately claim that they are 
strictly deducible. In particular, if one accepts the Church-Turing thesis, 
then every computation—including every agent-based computation—can 
be executed by a suitable register machine (Hodel 1995; Jeffrey 1991). 
It is then a theorem of logic and computability that every program can 
be simulated by a first-order language. In particular, with N denoting the 
natural numbers: 

Theorem. Let P be a program. There is a first-order language L, and 
for each a ∈ N a sentence C(a) of L, such that for all a ∈ N, the 
P-computation with input a halts ⇔ the sentence C(a) is logically valid. 

This theorem allows one to use the recursive unsolvability of the 
halting problem to establish the recursive unsolvability of the validity 
problem in first-order logic (see Kleene 1967). Explicit constructions 
of the correspondence between register machine programs and the 
associated logical arguments are laid out in detail by Jeffrey (1991) 
and Hodel (1995). The point here is that for every computation, 
there is a corresponding logical deduction. (And this holds even when 
the computation involves “stochastic” features, since, on a computer, 
these are produced by deterministic pseudo-random number generation 
(see Knuth 1969). Even if one conducts a statistical analysis over some 
distribution of runs—using different random seeds—each run is itself a 
deduction. Indeed, it would be quite legitimate to speak, in that case, of 
a distribution of theorems.)12 In any case, from a technical standpoint, 
generative implies deductive, a point that will loom large later, when 
we argue that agent-based modeling and classical emergentism are 
incompatible. 

Importantly, however, the converse does not apply: Not all deduc
tive argument has the constructive character of agent-based modeling. 
Nonconstructive existence proofs are obvious examples. These work as 
follows: Suppose we wish to prove the existence of an x with some 

12In such applications, it may be accurate to speak of an inductive statistical (see Salmon 
1984) account over many realizations, each one of which is, technically, a deduction (by 
the Theorem above). 
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property (e.g., that it is an equilibrium). We take as an axiom the so-
called Law of the Excluded Middle that (i) either x exists or x does 
not exist. Next, we (ii) assume that x does not exist, and (iii) derive 
a contradiction. From this we conclude that (iv) x must exist. But we 
have failed to exhibit x, or indicate any algorithm that would generate it, 
patently violating the generative motto (1).13 The same holds for many 
nonconstructive proofs in mathematical economics and game theory 
(e.g., deductions establishing the existence of equilibria using fixed-
point theorems). See Lewis 1985. In summary, then, generative implies 
deductive, but the converse is not true. 

Given the differences between agent-based modeling and both induc
tive and deductive social science, a distinguishing term seems appropri
ate. The choice of “generative” was inspired by Chomsky’s (1965) early 
usage: Syntactic theory seeks minimal rule systems that are sufficient 
to generate the structures of interest, grammatical constructions among 
them.14 The generated structures of interest here are, of course, social. 

Now, at the outset, I claimed that the agent-based computational 
model was a scientific instrument. A fair question, then, is whether 
agent-based computational modeling offers a powerful new way to do 
empirical research. I will argue that it does. Interestingly, one of the early 
efforts involves the seemingly remote fields of archaeology and agent-
based computation. 

Empirical Agent-Based Research 

The Artificial Anasazi project of Dean, Gumerman, Epstein, Axtell, 
Swedlund, McCarroll, and Parker aims to grow an actual 500-year 
spatio-temporal demographic history—the population time series and 
spatial settlement dynamics of the Anasazi—testing against data. The 
Artificial Anasazi computational model proper is a hybrid in which the 
physical environment is “real” (reconstructed from dendroclimatalogical 
and other data) and the agents are artificial. In particular, we are 
attempting to model the Kayenta Anasazi of Long House Valley, a small 
region in northeastern Arizona, over the period 800 to 1300 AD, at 
which point the Anasazi mysteriously vanished from the Valley. The 

13An agent-based model can be interpreted as furnishing a kind of constructive existence 
proof. See Axelrod 1997. 

14See Chomsky 1965, 3. The “syntactic component of a generative grammar,” he writes, 
is concerned with “rules that specify the well formed strings of minimal syntactically 
functioning units . . . .” I thank Samuel David Epstein for many fruitful discussions of this 
parallel. 
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enigma of the Anasazi has long been a central question in Southwestern 
archaeology. One basic issue is whether environmental (i.e., subsistence) 
factors alone can account for their sudden disappearance. Or do other 
factors—property rights, clan relationships, conflict, disease—have to be 
admitted to generate the true history? In bringing agents to bear on this 
controversy, we have the benefits of (a) a very accurate reconstruction of 
the physical environment (hydrology, aggradation, maize potential, and 
drought severity) on a square hectare basis for each year of the study 
period, and (b) an excellent reconstruction of household numbers and 
locations. 

The logic of the exercise has been, first, to digitize the true history— 
we can now watch it unfold on a digitized map of Longhouse Valley. 
This data set (what really happened) is the target—the explanandum. 
The aim is to develop, in collaboration with anthropologists, micro-
specifications—ethnographically plausible rules of agent behavior—that 
will generate the true history. The computational challenge, in other 
words, is to place artificial Anasazi where the true ones were in 800 
AD and see if—under the postulated rules—the simulated evolution 
matches the true one. Is the microspecification empirically adequate, 
to use van Fraassen’s (1980) phrase?15 From a contemporary social 
science standpoint, the research also bears on the adequacy of simple 
“satisficing” rules—rather than elaborate optimizing ones—to account 
for the observed behavior. 

A comprehensive report on Phase 1 (environmental rules only) of this 
research is given in Dean et al. 1999. The full microspecification, includ
ing hypothesized agent rules for choosing residences and farming plots, 
is elaborated there. The central result is that the purely environmental 
rules explored thus far account for (retrodict) important features of the 
Anasazi’s demography, including the observed coupling between environ
mental and population fluctuations, as well as important observed spatial 
dynamics: agglomerations and zonal occupation series. These rules also 
generate a precipitous decline in population around 1300. However, 
they do not generate the outright disappearance that occurred. One 
interpretation of this finding is that subsistence considerations alone do 
not fully explain the Anasazi’s departure, and that institutional or other 
cultural factors were likely involved. This work thus suggests the power 

15More precisely, for each candidate rule (or agent specification), one runs a large 
population of simulated histories—each with its own random seed. The question then 
becomes: where, in the population of simulated histories is the true history? Rules that 
generate distributions with the true history (i.e., its statistic) at the mean enjoy more 
explanatory power than rules generating distributions with the true history at a tail. 
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Figure 1.1. Actual and simulated Anasazi compared. (Source: Dean et al. 1999, 
204.) 

and limits of a purely environmental account, a finding that advances the 
archaeological debate. 

Simply to convey the flavor of these simulations—which unfold as 
animations on the computer—figure 1.1 gives a comparison.16 Each dot 
is an Anasazi household. The graphic shows the true situation on the 
right and a simulation outcome on the left for the year 1144. In both 
cases, agents are located at the border of the central farming area— 
associated with a high water table (dark shade)—and the household 
numbers are interestingly related. 

The population time series (see Dean et al. 1999) comparing actual and 
simulated for a typical run is also revealing. The simulated Anasazi curve 
is qualitatively encouraging, matching the turning points, including a big 
crash in 1300, but quantitatively inaccurate, generally overestimating 
population levels, and failing to generate the “extinction” event of 
interest. 

16The complete animation is included on this book’s CD. 
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As noted earlier, one intriguing interpretation of these results is that the 
Valley could have supported the Anasazi in fact, so their departure may 
have been the result of institutional factors not captured in the purely 
environmental account. 

The claim is not that the current model has solved—or that the planned 
extensions will ultimately solve—the mystery of the Anasazi. Rather, 
the point is that agent-based modeling permits a new kind of empirical 
research (and, it might be noted, a novel kind of interdisciplinary 
collaboration). 

This is by no means the only example of data-driven empirical 
research with agents. For example, Axtell (1999) gives an agent-based 
computational model of firm formation that generates distributions of 
firm sizes and growth rates close to those observed in the U.S. economy. 
Specifically, citing the work of Stanley et al. (1996, 806), Axtell writes 
that “there are three important empirical facts that an accurate theory 
of the firm should reproduce: (a) firm sizes must be right-skewed, 
approximating a power law; (b) firm growth rates must be Laplace 
distributed; (c) the standard deviation in log growth rates as a function 
of size must follow a power law with exponent −0.15 ± 0.03.” He 
further requires that the model be written at the level of individual human 
agents—that it be methodologically individualist. Aside from his own 
agent-based computational model, Axtell writes, “. . . theories of the firm 
that satisfy all these requirements are unknown to us” (1999, 88). 

Similarly, observed empirical size-frequency distributions for traffic 
jams are generated in the agent-based model of Nagel and Rasmussen 
(1994). Bak, Paczuski, and Shubik (1996) present an agent-based trading 
model that succeeds in generating the relevant statistical distribution of 
prices. 

Axelrod (1993) develops an agent-based model of alliance formation 
that generates the alignment of seventeen nations in the Second World 
War with high fidelity. Other exercises in which agent-based models are 
confronted with data include Kirman and Vriend 1998 and Arthur et al. 
1997. 

As in the case of the Anasazi work, I am not claiming that any 
of these models permanently resolves the empirical question it ad
dresses. The claim, rather, is that agent-based modeling is a powerful 
empirical technique. In some of these cases (e.g., Axtell 1999), the 
agents are individual humans, and in others (Dean et al. 1999; Axelrod 
1993) they are not. But, in all these cases, the empirical issue is the 
same: Does the hypothesized microspecification suffice to generate the 
observed phenomenon?—be it a stationary firm size distribution, a 
pattern of alliances, or a nonequilibrium price time series. The answer 
may be yes and, crucially, it may be no. Indeed, it is precisely the 
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latter possibility—empirical falsifiability—that qualifies the agent-based 
computational model as a scientific instrument. 

In addition to “hard” quantitative empirical targets, agent-based 
computational models may aim to generate important social phenomena 
qualitatively. Examples of “stylized facts” generated in such models 
include: right-skewed wealth distributions (Epstein and Axtell 1996), 
cultural differentiation (Epstein and Axtell 1996; Axelrod 1997c), 
multi-polarity in interstate systems (Cederman 1997), new political 
actors (Axelrod 1997d), epidemics (Epstein and Axtell 1996), economic 
classes (Axtell, Epstein, and Young 2001), and the dynamics of retire
ment (Axtell and Epstein 1999) to name a few. This “computational 
theorizing,”17 if you will, can offer basic insights of the sort exemplified 
in Schelling’s (1971) pioneering models of racial segregation, and may, of 
course, evolve into models directly comparable to data. Indeed, they may 
inspire the collection of data not yet in hand. (Without theory, it is not 
always clear what data to collect.) Turning from empirical phenomena, 
the generated phenomenon may be computation itself. 

Connectionist Social Science 

Certain social systems, such as trade networks (markets), are essentially 
computational architectures. They are distributed, asynchronous, and 
decentralized and have endogenous dynamic connection topologies. For 
example, the CD-ROM version of Epstein and Axtell 1996 presents 
animations of dynamic endogenous trade networks. (For other work 
on endogenous trade networks, see Tesfatsion 1995.) There, agents are 
represented as nodes, and lines joining agents represent trades. The 
connection pattern—computing architecture—changes as agents move 
about and interact economically, as shown in figure 1.2. 

Whether they realize it or not, when economists say “the market 
arrives at equilibrium,” they are asserting that this type of dynamic 
“social neural net” has executed a computation—it has computed P*, 
an equilibrium price vector. No individual has tried to compute this, 
but the society of agents does so nonetheless. Similarly, convergence to 
social norms, convergence to strategy distributions (in n-person games), 
or convergence to stable cultural or even settlement patterns (as in the 
Anasazi case) are all social computations in this sense. 

It is clear that the efficiency—indeed the very feasibility—of a social 
computation may depend on the way in which agents are connected. 

17I thank Robert Axtell for this term. 
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Network statistics _______________ 
Transactions: 0 
Sugar traded: 0 
Spice traded: 0 

Network statistics _______________ 
Transactions: 602 
Sugar traded: 679 
Spice traded: 706 

Network statistics _______________ 
Transactions: 307 
Sugar traded: 358 
Spice traded: 373 

Network statistics _______________ 
Transactions: 242 
Sugar traded: 323 
Spice traded: 287 

Network statistics _______________ 
Transactions: 192 
Sugar traded: 230 
Spice traded: 208 

Network statistics _______________ 
Transactions: 134 
Sugar traded: 147 
Spice traded: 147 

Figure 1.2. Endogenous trade network. (Source: Epstein and Axtell 1996, 132.) 

After all, information in society is not manna from heaven; it is 
collected and processed at the agent level and transmitted through in
teraction structures that are endogenous. How then does the endogenous 
connectivity—the topology—of a social network affect its performance 
as a distributed computational device, one that, for example, computes 
price equilibria, or converges to (computes) social norms, or converges 
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to spatial settlement patterns such as cities?18 Agent-based models allow 
us to pursue such connectionist social science questions in new and 
systematic ways. 

Interdisciplinary Social Science 

Many important social processes are not neatly decomposable into sep
arate subprocesses—economic, demographic, cultural, spatial—whose 
isolated analysis can be somehow “aggregated” to yield an adequate 
analysis of the process as whole. Yet this is exactly how academic 
social science is organized—into more or less insular departments and 
journals of economics, demography, anthropology, and so on. While 
many social scientists would agree that these divisions are artificial, they 
would argue that there is no “natural methodology” for studying these 
processes together, as they interact, though attempts have been made. 
Social scientists have taken highly aggregated mathematical models— 
of entire national economies, political systems, and so on—and have 
“connected” them, yielding “mega-models” that have been attacked on 
several grounds (see Nordhaus 1992). But attacks on specific models have 
had the effect of discrediting interdisciplinary inquiry itself, and this is 
most unfortunate. The line of inquiry remains crucially important. And 
agent-based modeling offers an alternative, and very natural, technique. 

For example, in the agent-based model Sugarscape (Epstein and Axtell 
1996), each individual agent has simple local rules governing movement, 
sexual reproduction, trading behavior, combat, interaction with the 
environment, and the transmission of cultural attributes and diseases. 
These rules can all be “active” at once. When an initial population of 
such agents is released into an artificial environment in which, and with 
which, they interact, the resulting artificial society unavoidably links 
demography, economics, cultural adaptation, genetic evolution, combat, 
environmental effects, and epidemiology. Because the individual is multi
dimensional, so is the society. 

Now, obviously, not all social phenomena involve such diverse spheres 
of life. If one is interested in modeling short-term price dynamics in a 
local fish market, then human immune learning and epidemic processes 
may not be relevant. But if one wishes to capture long-term social 
dynamics of the sort discussed in William McNeill’s 1976 book Plagues 
and Peoples, they are essential. Agent-based modelers do not insist that 
everything be studied all at once. The claim is that the new techniques 

18In a different context, the sensitivity to network topology is studied computationally 
by Bagley and Farmer (1992). 
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allow us to transcend certain artificial boundaries that may limit our 
insight. 

Nature-Nurture 

For example, Sugarscape agents (Epstein and Axtell 1996) engage in 
sexual reproduction, transmitting genes for, inter alia, vision (the distance 
they can see in foraging for sugar). An offspring’s vision is determined by 
strictly Mendelian (one locus–two allele) genetics, with equal probability 
of inheriting the father’s or mother’s vision. One can easily plot average 
vision in society over time. Selection will favor agents with relatively high 
vision—since they’ll do better in the competition to find sugar—and, as 
good Darwinians, we expect to see average vision increase over time, 
which it does. Now, suppose we wish to study the effect of various social 
conventions on this biological evolution. What, for example, is the effect 
of inheritance—the social convention of passing on accumulated sugar 
wealth to offspring—on the curve of average vision? Neither traditional 
economics nor traditional population genetics offer particularly natural 
ways to study this sort of “nature-nurture” problem. But they are 
naturally studied in an agent-based artificial society: Just turn inheritance 
“off” in one run and “on” in another, and compare!19 Figure 1.3 gives a 
typical realization. 

With inheritance, the average vision curve (gray) is lower: Inheritance 
“dilutes” selection. Because they inherit sugar, the offspring of wealthy 
agents are buffered from selection pressure. Hence, low-vision genes 
persist that would be selected out in the absence of this social convention. 
We do not offer this as a general law, nor are we claiming that 
agent-based models are the only ones permitting exploration of such 
topics.20 The claim is that they offer a new, and particularly natural, 
methodology for approaching certain interdisciplinary questions, includ
ing this one. Some of these questions can be posed in ways that subject 
dominant theories to stress. 

Theory Stressing 

One can use agent-based models to test the robustness of standard 
theory. Specifically, one can relax assumptions about individual—micro 

19This is shorthand for the appropriate procedure in which one would generate 
distributions of outcomes for the two assumptions and test the hypothesis that these are 
indistinguishable statistically. 

20For deep work on gene-culture co-evolution generally, using different techniques, see 
Feldman and Laland 1996. 
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Figure 1.3. Effect of inheritance on selection. (Source: Epstein and Axtell 1996, 
68.) 

level—behavior and see if standard results on macro behavior col
lapse. For example, in neoclassical microeconomic theory, individual 
preferences are assumed to be fixed for the lifetime of the agent. On 
this assumption (and certain others), individual utility maximization 
leads to price equilibrium and allocative efficiency (the First Welfare 
Theorem). But, what if individual preferences are not fixed but vary 
culturally? In Epstein and Axtell 1996, we introduce this assumption into 
trading agents who are neoclassical in all other respects (e.g., they have 
Cobb-Douglas utility functions and engage only in Pareto-improving 
trades with neighbors). The result is far-from-equilibrium markets. The 
standard theory is not robust to this relaxation in a core assumption 
about individual behavior. For a review of the literature on this central 
fixed preferences assumption, see Bowles 1998. 

Agents, Behavioral Social Science, and the

Micro-Macro Mapping


What can agent-based modeling and behavioral research do for one 
another? It is hard to pinpoint the dawn of experimental economics, 
though Simon (1996) credits Katona (1951) with the fundamental studies 
of expectation formation. In any event, there has been a resurgence 
of important laboratory and other experimental work on individual 
decision making over the last two decades. See, for example, Camerer 
1997, Rabin 1998, Camerer and Thaler 1995, Tversky and Kahneman 
1986, and Kagel and Roth 1995. This body of laboratory social science, 
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if I may call it that, is giving us an ever-clearer picture of how homo 
sapiens—as against homo economicus—actually makes decisions. How
ever, a crucial lesson of Schelling’s segregation model, and of many 
subsequent Cellular Automaton models, such as “Life”—not to mention 
agent-based models themselves—is that even perfect knowledge of indi
vidual decision rules does not always allow us to predict macroscopic 
structure. We get macro-surprises despite complete micro-knowledge. 
Agent-based models allow us to study the micro-to-macro mapping. It is 
obviously essential to begin with solid foundations regarding individual 
behavior, and behavioral research is closing in on these. However, we will 
still need techniques for “projecting up” to the macro level from there 
(particularly for spatially-distributed systems of heterogeneous individ
uals). Agent modeling offers behavioral social science a powerful way 
to do that. 

Agent-based models may also furnish laboratory research with coun
terintuitive hypotheses regarding individual behavior. Some, apparently 
bizarre, system of individual agent rules may generate macrostructures 
that mimic the observed ones. Is it possible that those are, in fact, 
the operative micro-rules? It might be fruitful to design laboratory 
experiments to test hypotheses arising from the unexpected generative 
sufficiency of certain rules. 

What does behavioral research offer agent-based modeling? Earlier, 
we noted that different agent-based models might have equal generative 
(explanatory) power and that, in such cases, further work would be 
necessary to adjudicate between them. But if two models are doing 
equally well in generating the macrostructure, preference should go 
to the one that is best at the micro level. So, if we took the two 
microspecifications as competing hypotheses about individual behavior, 
then—apropos of the preceding remark—behavioral experiments might 
be designed to identify the better hypothesis (microspecification) and, 
in turn, the better agent model. These, then, are further ways in which 
agent-based computational modeling can contribute to empirical social 
science research. 

Decouplings 

As noted earlier, to adopt agent-based modeling does not compel one to 
adopt methodological individualism. However, extreme methodological 
individualism is certainly possible (indeed common) in agent-based 
models. And individual-based models may have the important effect 
of decoupling individual rationality from macroscopic equilibrium. For 
example, in the individual-based retirement model of Axtell and Epstein 
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(1999), macroscopic equilibrium is attained—through a process of 
imitation in social networks—even though the vast preponderance of 
individuals are not rational. Hence—as in much evolutionary modeling— 
micro rationality is not a necessary condition for the attainment of macro 
equilibrium.21 Now, we also have agent-models in which macroscopic 
equilibrium is not attained despite orthodox utility maximization at the 
individual level. The non-equilibrium economy under evolving prefer
ences (Epstein and Axtell 1996) noted earlier is an example. Hence, 
micro rationality is not a sufficient condition for macro equilibrium. 
But if individual rationality is thus neither necessary nor sufficient for 
macro equilibrium, the two are logically independent—or decoupled, 
if you will. 

Now, the fraction of agents in an imitative system (such as the 
retirement model) who are rational will definitely affect the rate at which 
any selected equilibrium sets in. But the asymptotic equilibrium behavior 
per se does not depend on the dial of rationality, despite much behavioral 
research on this latter topic. Perhaps the main issue is not how much 
rationality there is (at the micro level), but how little is enough to 
generate the macro equilibrium. 

In passing, it is worth noting that this is of course a huge issue 
for policy, where “fad creation” may be far more effective than real 
education. Often, the aim is not to equip target populations with the data 
and analytical tools needed to make rational choices; rather, one displays 
exemplars and then presses for mindless imitation. “Just say no to drugs” 
not because it’s rational—in a calculus of expected lifetime earnings—but 
because a famous athlete says “no” and it’s a norm to imitate him. The 
manipulation of uncritical imitative impulses may be more effective in 
getting to a desired macro equilibrium than policies based on individual 
rationality. The social problem, of course, is that populations of uncritical 
imitators are also easy fodder for lynch mobs, witch hunts, Nazi parties, 
and so forth. Agent-based modeling is certainly not the only way to study 
social contagion (see, for example, Kuran 1989), but it is a particularly 
powerful way when the phenomenon is spatial and the population in 
question is heterogeneous. 

Relatedly, agent-based approaches may decouple social science from 
decision science. In the main, individuals do not decide—they do not 
choose—in any sensible meaning of that term, to be ethnic Serbs, to 
be native Spanish speakers, or to consider monkey brain a delicacy. 
Game theory may do an interesting job explaining the decision of one 

21More precisely, micro rationality is not necessary for some equilibrium, but it may a 
different equilibrium from the one that would occur were agents rational. 
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ethnic group to attack another at a certain place or time, but it doesn’t 
explain how the ethnic group arises in the first place or how the ethnic 
divisions are transmitted across the generations. Similarly for economics, 
what makes monkey brain a delicacy in one society and not in another? 
Cultural (including preference) patterns, and their nonlinear tippings, are 
topics of study in their own right with agents.22 See Axelrod 1997b and 
Epstein and Axtell 1996. 

Analytical-Computational Approach to Non-Equilibrium

Social Systems


For many social systems, it is possible to prove deep theorems about 
asymptotic equilibria. However, the time required for the system to 
attain (or closely approximate) such equilibria can be astronomical. 
The transient, out-of-equilibrium dynamics of the system are then of 
fundamental interest. A powerful approach is to combine analytical 
proofs regarding asymptotic equilibria with agent-based computational 
analyses of long-lived transient behaviors, the meta-stability of certain 
attractors, and broken ergodicity in social systems. 

One example of this hybrid analytical-computational approach is 
Axtell, Epstein, and Young 2001. We develop an agent-based model to 
study the emergence and stability of equity norms in society. (In that 
article, we explicitly define the term “emergent” to mean simply “arising 
from decentralized bilateral agent-interactions.”) Specifically, agents 
with finite memory play Best Reply to Recent Sample Evidence (Young 
1995, 1998) in a three-strategy Nash Demand Game, and condition on 
an arbitrary “tag” (e.g., a color) that initially has no social or economic 
significance—it is simply a distinguishing mark. Expectations are gener
ated endogenously through bilateral interactions. And, over time, these 
tags acquire socially organizing salience. In particular, tag-based classes 
arise. (The phenomenon is akin to the evolution of meaning discussed in 
Skyrms 1998.) 

Now, introducing noise, it is possible to cast the entire model as a 
Markov process and to prove rigorously that it has a unique stationary 
strategy distribution. When the noise level is positive and sufficiently 
small, the following asymptotic result can be proved: The state with the 
highest long-run probability is the equity norm, both between and within 
groups. 

22Again, as a policy application, agent-based modeling might suggest ways to operate 
on—or “tip”—ethnic animosity itself. 
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Salutary as this asymptotic result may appear, the transition from 
inequitable states to these equitable ones can be subject to tremendous 
inertia. Agent-based models allow us to systematically study long-lived 
transient behaviors. We know that, beginning in an inequitable regime, 
the system will ultimately “tip” into the equity norm. But how does the 
waiting time to this transition depend on the number of agents and on 
memory length? In this case, the waiting time scales exponentially in 
memory length, m, and exponentially in N, the number of agents. Over
all, then, the waiting time is immense for m= 10 and merely N= 100, 
for example. 

Speaking rigorously, the equity norm is stochastically stable (see Young 
1998). The agent-based computational model reveals, however, that— 
depending on the number of agents and their memory lengths—the 
waiting time to transit from an inequitable regime to the equitable one 
may be astronomically long. 

This combination of formal (asymptotic) and agent-based (non-
equilibrium) analysis seems to offer insights unavailable from either 
approach alone, and to represent a useful hybrid form of analytical-
computational study. For sophisticated work relating individual-based 
models to analytical ones in biology, see Flierl et al. 1999. 

Foundational Issues 

We noted earlier that markets can be seen as massively parallel spatially 
distributed computational devices with agents as processing nodes. To 
say that “the market clears” is to say that this device has completed 
a computation. Similarly, convergence to social norms, convergence to 
strategy distributions (in n-person games), or convergence to stable 
cultural or settlement patterns, are all social computations in this sense. 
Minsky’s (1985) famous phrase was “the Society of Mind.” What I’m 
interested in here is “the Society as Mind,” society as a computational 
device. (On that strain of functionalism which would be involved in 
literally asserting that a society could be a mind, see Sober 1996.) 

Now, once we say “computation” we think of Turing machines (or, 
equivalently, of partial recursive functions). In the context of n-person 
games, for example, the isomorphism with societies is direct: Initial 
strategies are tallies on a Turing machine’s input tape; agent interactions 
function to update the strategies (tallies) and thus represent the machine’s 
state transition function; an equilibrium is a halting state of the machine; 
the equilibrium strategy distribution is given by the tape contents in the 
halting state; and initial strategy distributions that run to equilibrium are 
languages accepted by the machine. The isomorphism is clear. Now, we 
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know what makes for an intractable, or “hard,” computational problem. 
So, given our isomorphism, is there a computational answer to the 
question, “What’s a hard social problem?” 

A Computational Characterization of Hard Social Problems 

In the model of tag-based classes discussed earlier (Axtell, Epstein, and 
Young 2001), we prove rigorously that, asymptotically, the equity norm 
will set in. However, beginning from any other (meta-stable) equilibrium, 
the time to transit into the equitable state scales exponentially in the 
number of agents and exponentially in the agents’ memory length. If we 
adopt the definition that social states are hard to attain if they are not 
effectively computable by agent society in polynomial time, then equity 
is hard. (The point applies to this particular setup; I am emphatically 
not claiming that there is anything immutable about social inequity.) In 
a number of models, the analogous point applies to economic equilibria: 
There are nonconstructive proofs of their existence but computational 
arguments that their attainment requires time that scales exponentially 
in, for instance, the dimension of the commodity space.23 On our 
tentative definition, then, computation of (attainment of) economic 
equilibria would qualify as another hard social problem. 

So far we have been concerned with the question, “Does an initial 
social state run to equilibrium?” or, equivalently, “Does the machine halt 
given input tape x?” Now, like satisfiability, or truth-table validity in 
sentential logic, these problems are in principle decidable (that is, the 
equilibria are effectively computable), but not on time scales of interest 
to humans. (Here, with Simon [1978], we use the term “time” to denote 
“the number of elementary computation steps that must be executed to 
solve the problem.”) 

Gödelian Limits 

But there are social science problems that are undecidable in principle, 
now in the sense of Gödel or the Halting Problem. Rabin (1957) showed 
that “there are actual win-lose games which are strictly determined for 
which there is no effectively computable winning strategy.” He continues, 
“Intuitively, our result means that there are games in which the player 
who in theory can always win, cannot do so in practice because it 
is impossible to supply him with effective instructions regarding how 

23See, for example, Hirsch et al. 1989. 
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he should play in order to win.” Another nice example, based on the 
unsolvability of Hilbert’s Tenth Problem, is given by Prasad (1997): 

For n-player games with polynomial utility functions and natural number 
strategy sets the problem of finding an equilibrium is not computable. There 
does not exist an algorithm which will decide, for any such game, whether 
it has an equilibrium or not . . . When the class of games is specified by a 
finite set of players, whose choice sets are natural numbers, and payoffs are 
given by polynomial functions, the problem of devising a procedure which 
computes Nash equilibria is unsolvable. 

Other results of comparable strength have been obtained by Lewis (1985, 
1992a, and 1992b).24 

Implications for Rational Choice Theory 

Here lies the deepest conceivable critique of rational choice theory. There 
are strategic settings in which the individually optimizing behavior is 
uncomputable in principle. A second powerful critique is that, while 
possible in principle, optimization is computationally intractable. As 
Duncan Foley summarizes, “The theory of computability and compu
tational complexity suggest that there are two inherent limitations to 
the rational choice paradigm. One limitation stems from the possibility 
that the agent’s problem is in fact undecidable, so that no computational 
procedure exists which for all inputs will give her the needed answer in 
finite time. A second limitation is posed by computational complexity in 
that even if her problem is decidable, the computational cost of solving 
it may in many situations be so large as to overwhelm any possible 
gains from the optimal choice of action” (see Albin 1998, 46). For a 
fundamental statement, see Simon 1978. 

These possibilities are disturbing to many economists. They implicitly 
believe that if the individual is insufficiently rational it must follow 
that decentralized behavior is doomed to produce suboptimality at the 
aggregate level. The invisible hand requires rational fingers, if you will. 
There are doubtless cases in which this holds. But it is not so in all cases. 
As noted earlier, in the retirement model of Axtell and Epstein (1999), as 
well as in much evolutionary modeling, an ensemble of locally interacting 
agents—none of whom are canonically rational—can nonetheless attain 
efficiency in the aggregate. Even here, of course, issues of exponential 

24The important Arrow Impossibility Theorem (Arrow 1963) strikes me as different in 
nature from these sorts of results. It does not turn—as these results do—on the existence of 
sets that are recursively enumerable but not recursive. 
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waiting time arise (as in the classes model above). But it is important to 
sort the issues out. 

The agent-based approach forces on us the interpretation of society 
as a computational device, and this immediately raises foundational 
specters of computational intractability and undecidability. Much of 
the economic complexity literature concerns the uncomputability of 
optimal strategies by individual rational agents, surely an important 
issue. However, our central concern is with the effective computability 
(attainment) of equilibria by societies of boundedly rational agents. 
In that case, it is irrelevant that equilibrium can be computed by 
an economist external to the system using the Scarf, or other such, 
algorithm. The entire issue is whether it can be attained—generated— 
through decentralized local interactions of heterogeneous boundedly 
rational actors. And the agent-based computational model is a powerful 
tool in exploring that central issue. In some settings, it may be the only 
tool. 

Equations versus Agent-Based Models 

Three questions arise frequently and deserve treatment: Given an agent-
based model, are there equivalent equations? Can one “understand” 
one’s computational model without such equations? If one has equations 
for the macroscopic regularities, why does one need the “bottom-up” 
agent model? 

Regarding the first question—are there equivalent equations for every 
computational model—the answer is immediate and unequivocal: absol
utely. On the Church-Turing Thesis, every computation (and hence 
every agent-based model) can be implemented by a Turing machine. For 
every Turing machine there is a unique corresponding and equivalent 
Partial Recursive Function (see Rogers 1967). Hence, in principle, for 
any computation there exist equivalent equations (involving recursive 
functions). Alternatively, any computer model uses some finite set of 
memory locations, which are updated as the program executes. One 
can think of each location as a variable in a discrete dynamical system. 
In principle, there is some—perhaps very high dimensional—set of 
equations describing those discrete dynamics. Now, could a human write 
the equations out? Solve them or even find their equilibria (if such exist)? 
The answer is not clear. If the equations are meant to represent large 
populations of discrete heterogeneous agents coevolving on a separate 
space, with which they interact, it is not obvious how to formulate the 
equations, or how to solve them if formulated. And, for certain classes 
of problems (e.g., the PSPACE Complete problems), it can be proved 
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Figure 1.4. Oscillatory population time series. Black vertical spikes represent 
births. (Source: Epstein and Axtell 1996, 161.) 

rigorously that simulation is—in a definite sense—the best one can do in 
principle (see Buss, Papadimitriou, and Tsitsiklis 1991). But that does not 
mean—turning to the second question—we have no idea what’s going on 
in the model. 

To be sure, a theorem is better than no theorem. And many complex 
social phenomena may ultimately yield to analytical methods of the 
sort being pioneered by Young (1998), Durlauf (1997b), and others. 
But an experimental attitude is also appropriate. Consider biology. No 
one would fault a “theoremless” laboratory biologist for claiming to 
understand population dynamics in beetles when he reports a regularity 
observed over a large number of experiments. But when agent-based 
modelers show such results—indeed, far more robust ones—there’s a 
demand for equations and proofs. These would be valuable, and we 
should endeavor to produce them. Meanwhile, one can do perfectly 
legitimate “laboratory” science with computers, sweeping the parameter 
space of one’s model, and conducting extensive sensitivity analysis, and 
claiming substantial understanding of the relationships between model 
inputs and model outputs, just as in any other empirical science for which 
general laws are not yet in hand.25 

The third question involves confusion between explanation and descr
iption, and might best be addressed through an example. In Epstein and 
Axtell 1996, spatially distributed local agent interactions generate the 
oscillatory aggregate population time series shown in figure 1.4. 

The question then arises: Could you not get that same curve from 
some low-dimensional differential equation, and if so, why do you 
need the agent model? Let us imagine that we can formulate and 
analytically solve such an equation, and that the population trajectory 
is exactly P(t) = A + B Sin(Ct) for constants A, B, and C. Now, what 
is the explanatory significance of that descriptively accurate result? 

25Here, we are discussing regularities in model output alone, not the relationship of 
model output to some real-world data set, as in the Anasazi project. 
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It depends on one’s criteria for explanation. If we are generativists, 
the question is: How could the spatially decentralized interactions of 
heterogeneous autonomous agents generate that macroscopic regularity? 
If that is one’s question, then the mere formula P(t) = A + B Sin(Ct) is 
devoid of explanatory power despite its descriptive accuracy. The choice 
of agents versus equations always hinges on the objectives of the analysis. 
Given some perfectly legitimate objectives, differential equations are 
the tool of choice; given others, they’re not. If we are explicit as to 
our objectives, or explanatory criteria, no confusion need arise. And it 
may be that hybrid models of a second sort are obtainable in which 
the macrodynamics are well described by an explicit low-dimensional 
mathematical model, but are also generated from the bottom up in a 
model population of heterogeneous autonomous agents. That would be 
a powerful combination. In addition to important opportunities, the field 
of agent-based modeling, like any young discipline, faces a number of 
challenges. 

Challenges 

First, the field lacks standards for model comparison and replication of 
results; see Axtell et al. 1996. Implicit in this is the need for standards 
in reportage of assumptions and certain procedures. Subtle differences 
can have momentous consequences. For example, how, exactly, are 
agents being updated? The Huberman and Glance (1993) critique of 
Nowak and May (1992) is striking proof that asynchronous updating of 
agents produces radically different results from synchronous updating. 
Huberman and Glance show that Nowak and May’s main result—the 
persistence of cooperation in a spatial Prisoner’s Dilemma game— 
depends crucially on synchronous updating. When, ceteris paribus, 
Huberman and Glance introduce asynchronous updating into the 
Nowak and May model, the result is convergence to pure defection. 
(For a spatial Prisoner’s Dilemma model with asynchronous updating 
in which cooperation can persist, see Epstein 1998.) The same sorts 
of issues arise in randomizing the agent call order, where various 
methods—with different effects on output—are possible. 

It is also fair to say that solution concepts are weak. Certainly, hitting 
the “Go” button and watching the screen does not qualify as solving 
anything—any more than an evening at the casino solves the Gambler’s 
Ruin Problem from Markov Theory. An individual model run offers 
a sample path of a (typically) stochastic process, but that is not a 
general solution—a specific element of some well defined function space 
(e.g., a Hilbert or Sobolev space). As noted earlier, it is often possible 
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to sweep the parameter space of one’s model quite systematically and 
thereby obtain a statistical portrait of the relationship between inputs 
and outputs, as in Axelrod 1997c or Epstein 1998. But it is fair to say 
that this practice has not been institutionalized. 

A deeper issue is that sweeping a model’s numerical parameter space 
is easier than exploring the space of possible agent behavioral rules 
(e.g., “If a neighboring agent is bigger than you, run away” or “Always 
share food with kin agents”). For artificial societies of any complexity 
(e.g., Sugarscape), we have no efficient method of searching the space 
of possible individual rules for those that exhibit generative power. 
One can imagine using evolutionary approaches to this. First, one 
would define a metric such that, given a microspecification, the distance 
from model outputs (generated macrostructures) to targets (observed 
macrostructures) could be computed. The better the match (the smaller 
this distance) the “fitter” is the microspecification. Second, one would 
encode the space of candidate micro specifications and turn, say, a 
Genetic Algorithm (GA) (see Holland 1992; Mitchell 1998) loose on 
it. The GA might turn up counterintuitive boundedly rational rules that 
are highly “fit” in this sense of generating macrostructures “close” to 
the targets. (These then become hypotheses for behavioral research, as 
discussed earlier.) 

This strikes me as a far more useful application of GAs than the 
usual one: finding hyper-rational individual strategies, which we now 
have strong experimental evidence are not being employed by humans. 
The problem is how to encode the vast space of possible individual 
rules (not to mention the raw computational challenge of searching it 
once encoded). In some restricted cases, this has been done successfully 
(Axelrod 1987; Crutchfield and Mitchell 1995), but for high dimen
sional agents engaged in myriad social interactions—economic, cultural, 
demographic—it is far from clear how to proceed. 

One of the central concepts in dynamics is sensitivity. Sensitivity 
involves the effect on output (generated macrostructure) of small changes 
in input (microspecification). To assess sensitivity in agent models, we 
have to do more than encode the space of rules—we have to metrize it. 
To clarify the issue, consider the following agent rules (methods of agent-
objects): 

Rule a = Never attack neighbors.

Rule b = Attack a neighbor if he’s green.

Rule c = Attack a neighbor if he’s smaller than you.


Which rule—b or c—represents a “smaller departure from” Rule a? 
Obviously, the question is ill-posed. And yet we speak of “small changes 
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in the rules” of agent-based models. Some areas (e.g., Cellular Automata) 
admit binary encodings of rule space for which certain metrics—taxicab 
or Hamming distance—are natural. But for artificial societies generally, 
no such simple avenues present themselves. What then constitutes a small 
rule change? Without some metric, we really cannot develop the ana
logue, for agent-based models, of structural stability—or equivalently, of 
bifurcation theory—in dynamical systems. 

Some challenges are sociological. Generating collective behavior that 
to the naked eye “looks like flocking” can be extremely valuable, but it is 
a radically different enterprise from generating, say, a specific distribution 
of wealth with parameters close to those observed in society. Crude 
qualitative caricature is a perfectly respectable goal. But if that is one’s 
goal, the fact must be stated explicitly—perhaps using the terminology 
proposed in Axtell and Epstein 1994. This will avert needless resistance 
from other fields where “normal science” proceeds under established 
empirical standards patently not met by cartoon “boid” flocks, however 
stimulating and pedagogically valuable these may be. On the pedagogical 
value of agent-based simulation generally, see Resnick 1994. 

A number of other challenges include building community and sharing 
results and are covered in Axelrod 1997a. In addition to foundational, 
procedural, and other scientific challenges, the field of “complexity” and 
agent-based modeling faces terminological ones. In particular, the term 
“emergence” figures very prominently in this literature. It warrants an 
audit. 

“Emergence” 

I have always been uncomfortable with the vagueness and occasional 
mysticism surrounding this word and, accordingly, tried to define it 
quite narrowly in Epstein and Axtell 1996. There, we defined “emergent 
phenomena” to be simply “stable macroscopic patterns arising from local 
interaction of agents.”26 Many researchers define the term in the same 
straightforward way (e.g., Axelrod 1997a). Since our work’s publication, 
I have researched this term more deeply and find myself questioning its 
adoption altogether. 

“Emergence” has a history, and it is an extremely spotty one, beginning 
with classical British emergentism in the 1920s and the works of Samuel 

26As we wrote there, “A particularly loose usage of ’emergent’ simply equates it with 
‘surprising,’ or ‘unexpected,’ as when researchers are unprepared for the kind of systematic 
behavior that emanates from their computers.” We continued, “This usage obviously begs 
the question, ‘Surprising to whom?’” (Epstein and Axtell 1996, 35). 
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Alexander (Space, Time, and Deity, 1920), C. D. Broad (The Mind 
and Its Place in Nature, 1925), and C. Lloyd Morgan (Emergent 
Evolution, 1923). The complexity community should be alerted to this 
history. There is an unmistakably anti-scientific—even deistic—flavor to 
this movement, which claimed absolute unexplainability for emergent 
phenomena. In the view of these authors, emergent phenomena are un
explainable in principle. “The existence of emergent qualities . . . admits 
no explanation,” wrote Alexander (1920).27 As philosopher Terence 
Horgan recounts, emergent phenomena were to be “accepted (in Samuel 
Alexander’s striking phrase) ‘with natural piety.’” 

Striking indeed, this sort of language, and classical emergentism’s 
avowedly vitalist cast (see Morgan 1923) stimulated a vigorous—and to 
my mind, annihilative—attack by philosophers of science. In particular, 
Hempel and Oppenheim (1948) wrote, “This version of emergence . . . is 
objectionable not only because it involves and perpetuates certain logical 
confusions but also because not unlike the ideas of neovitalism, it encour
ages an attitude of resignation which is stifling to scientific research. No 
doubt it is this characteristic, together with its theoretical sterility, which 
accounts for the rejection, by the majority of contemporary scientists, of 
the classical absolutist doctrine of emergence.” 

Classical absolute emergentism is encapsulated nicely in the following 
formalization of Broad’s (1925, 61): 

Put in abstract terms the emergent theory asserts that there are certain 
wholes, composed (say) of constituents A, B, and C in a relation R to 
each other . . . and that the characteristic properties of the whole R(A,B,C) 
cannot, even in theory, be deduced from the most complete knowledge of 
the properties of A, B, and C in isolation or in other wholes which are not 
in the form R(A,B,C). (Emphasis in original) 

Before explicating the logical confusion noted by Hempel and Oppen
heim, we can fruitfully apply a bit of logic ourselves. Notice that we 
have actually accumulated a number of first-order propositions. For 
predicates, let C stand for classically emergent, D for deducible, E for 
explained, and G for generated (in a computational model). Then, if x is 

27Although many contemporary researchers do not use the term in this way, others 
assume that this is the generally accepted meaning. For example, Jennings, Sycara, and 
Woolridge (1998) write that “. . . the very term ‘emerges’ suggests that the relationship 
between individual behaviors, environment, and overall behavior is not understandable,” 
which is entirely consistent with the classical usage. 
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a system property, we have: 

(1) (∀x)(Cx ⊃ ¬Dx) Broad (emergent implies not deducible)28 

(2) (∀x)(Cx ⊃ ¬Ex) Alexander (emergent implies not explainable) 
(3)	 (∀x)(¬Gx ⊃ ¬Ex) Generativist Motto (not generated


implies not explained)

(4) (∀x)(Gx ⊃ Dx) Theorem (generated implies deduced) 

Although a number of derivations are possible,29 the essential point 
involves (1) and (4). By the earlier Theorem (4), if x is generable, then 
it is deducible. But, by Broad (1), if x is emergent, it is not deducible. 
But it then follows that if x is generable, then it cannot be emergent!30 

In particular, if x is generated in an agent-based model, it cannot be 
classically emergent. Agent-based modeling and classical emergentism are 
incompatible. Further incompatibilities between agent-based modeling 
and classical emergentism will be taken up below. 

Logical Confusion 

Now, the logical confusion noted earlier is set forth clearly in Hempel 
and Oppenheim 1948, is discussed at length in Nagel 1961, and is 
recounted more recently by Hendriks-Jansen 1996. To summarize, like 
Broad, emergentists typically assert things like, “One cannot deduce 
higher properties from lower ones; macro properties from micro ones; 
the properties of the whole from the parts’ properties.” But, we do not 
deduce properties. We deduce propositions in formal languages from 
other propositions in those languages.31 This is not hair-splitting: If the 
macro theory contains terms (predicates, variable names) that are not 
terms of the micro theory, then of course it is impossible to deduce 

28To highlight the chasm between this classical and certain modern usages, while Broad 
defines emergence as undeducible, Axelrod (1997c, 194) writes that “there are some 
models . . . in which emergent properties can be formally deduced.” 

29For example, note that we can deduce Alexander’s Law (2) from the others. By Broad 
(1), if x is classically emergent then it is not deducible; but then by (4) and modus tollens, 
x is not generable; and then by the Motto (3), x is not explainable. So, by hypothetical 
syllogism, we obtain Alexander (2). In a punctilious derivation, we would of course invoke 
universal instantiation first; then rules of an explicit sentential calculus (e.g., Copi 1979), 
and then use universal generalization. 

30Filling in for any x, (4) is Gx ⊃ Dx; but Dx = ¬(¬Dx), from which ¬Cx follows from 
(1) by modus tollens. 

31Formal systems are closed under their rules of inference (e.g., modus ponens) in the  
sense that propositions in a formal system can only be deduced from other propositions of 
that system. 
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macro claims involving those terms from propositions of the micro 
theory. It is logically impossible. So the “higher emergent” property of 
water, “translucence,” is trivially not deducible from the micro theory 
of oxygen (O) and hydrogen (H) since “translucent” is not a term of 
the micro theory. Many so called “emergent properties” of “wholes” are 
not deducible from “parts” for this purely logical reason. So emergence, 
as nondeducibility, is always relative to some theory (some set of well-
formed formulae and inference rules); it is not absolute as the classicals 
would have it. 

A relative version of emergence due to Hempel and Oppenheim (1948) 
is formalized in Stephan 1992 as follows. Consider a system with 
constituents C1, . . .  ,Cn  in  relation  O  to  one  another (analogous to 
Broad’s A, B, C, and R). “This combination is termed a microstructure 
[C1, . . . Cn;O]. And let T be a theory. Then, a system property P is 
emergent, relative to this microstructure and theory T, if: 

(a). There is a law LP which holds: for all x, when x has microstructure 
[C1. . . . Cn;O] then x has property P, and 

(b). By means of theory T, LP cannot be deduced from laws governing the 
Cl. . . . Cn in isolation or in other microstructures than the given.” 

Stephan continues, “By this formulation the original absolute claim 
has been changed into a merely relative one which just states that at 
a certain time according to the available scientific theories we are not 
able to deduce the so-called emergent laws” (1992, 39).32 But now, 
as Hempel and Oppenheim write, “If the assertion that life and mind 
have an emergent status is interpreted in this sense, then its import can 
be summarized approximately by the statement that no explanation, in 
terms of microstructure theories, is available at present for large classes of 
phenomena studied in biology and psychology” (emphases added). This 
quite unglamorous point, they continue, would “appear to represent the 
rational core of the doctrine of emergence.” Not only does this relative 
formulation strip the term of all higher Gestalt harmonics, but it suggests 
that, for any given phenomenon, emergent status itself may be fleeting. 

32Contemporary efforts (see Baas 1994) to define a kind of relative (or hierarchical) 
emergence by way of Gödel’s First Theorem (see Smullyan 1992) seem problematic. 
Relative to a given (consistent and finitely axiomatized) theory, T, Baas calls undecidable 
sentences “observationally emergent.” However, we are presumably interested in generat
ing “emergent phenomena” in computational models. And it is quite unclear from what 
computational process Baas’s observationally emergent entities—undecidable sentences of 
T—would actually emerge since, by Tarski’s Theorem, the set of true and undecidable 
propositions is not recursively enumerable (Hodel 1995, 310, 354). 
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Scientific Progress 

As scientific theories progress, in other words, that which was unex
plainable and “emergent” ceases to be. The chemical bond—a favorite of 
the British emergentists—is an excellent example. Here, Terrence Horgan 
(1993) is worth quoting at length: 

When Broad wrote, “Nothing that we know about Oxygen by itself or in its 
combination with anything but Hydrogen would give us the least reason to 
suppose that it would combine with Hydrogen at all. Nothing that we know 
about Hydrogen by itself or in its combinations with anything but Oxygen 
would give us the least reason to expect that it would combine with Oxygen 
at all” (1925, pp. 62–63), his claim was true. Classical physics could not 
explain chemical bonding. But the claim didn’t stay true for long: by the 
end of the decade quantum mechanics had come into being, and quantum-
mechanical explanations of chemical bonding were in sight. 

The chemical bond no longer seemed mysterious and “emergent.” 
Another example was biology, for the classical emergentists a rich source 
of higher “emergent novelties,” putatively unexplainable in physical 
terms. Horgan continues, 

Within another two decades, James Watson and Francis Crick, drawing 
upon the work of Linus Pauling and others on chemical bonding, explained 
the information-coding and self-replicating properties of the DNA molecule, 
thereby ushering in physical explanations of biological phenomena in 
general. 

As he writes, “These kinds of advances in science itself, rather than 
any internal conceptual difficulties, were what led to the downfall of 
British emergentism, as McLaughlin (1992) persuasively argues.” Or, as 
Herbert Simon (1996) writes, “Applied to living systems the strong claim 
[quoting the “holist” philosopher J. C. Smuts] that ‘the putting together 
of their parts will not produce them or account for their characters 
and behaviors’ implies a vitalism that is wholly antithetical to modern 
molecular biology.” 

In its strong classical usage, the term “emergent” simply “baptizes our 
ignorance,” to use Nagel’s phrase (1961, 371). And, when de-mystified, 
it can mean nothing more than “not presently explained.” But, this is 
profoundly different from “not explainable in principle,” as Alexander 
and his emergentist colleagues would have it, which is stifling, not to 
mention baseless empirically. As Hempel and Oppenheim wrote, 

Emergence is not an ontological trait inherent in some phenomena; rather 
it is indicative of the scope of our knowledge at a given time; thus it has 
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no absolute, but a relative character; and what is emergent with respect 
to the theories available today may lose its emergent status tomorrow. 
(1948, 263) 

Good Questions 

Now, all the questions posed by agent-based modelers and complexity 
scientists in this connection are fine: How do individuals combine to form 
firms, or cities, or institutions, or ant colonies, or computing devices? 
These are all excellent questions. The point is that they are posable— 
indeed most productively posed—without the imprecise and possibly self-
mystifying terminology of “emergence,” or “supervenience,” as Morgan 
called it. Obviously, “wholes” may have attributes or capabilities that 
their constituent parts cannot have (e.g., “whole” conscious people 
can have happy memories of childhood while, presumably, individual 
neurons cannot). Equally obvious, the parts have to be hooked up right— 
or interact in specific, and perhaps complicated, ways—for the whole to 
exhibit those attributes.33 We at present may be able to explain why 
these specific relationships among parts eventuate in the stated attributes 
of wholes, and we may not. But, unlike classical emergentists, we do not 
preclude such explanation in principle. 

Indeed, by attempting to generate these very phenomena on computers 
or in mathematical models, we are denying that they are unexplainable 
or undeducible in principle—we’re trying to explain them precisely by 
figuring out microrules that will generate them. In short, we agent-
based modelers and complexity researchers actually part company with 
those, like Alexander and company, whose terminology we have, perhaps 
unwittingly, adopted. Lax definitions can compound the problem. 

Operational Definitions 

Typical of classical emergentism would be the claim: No description of 
the individual bee can ever explain the emergent phenomenon of the 
hive. How would one know that? Is this a falsifiable empirical claim, 
or something that seems true because of a lax definition of terms? 
Perhaps the latter. The mischievous piece of the formulation is the 
phrase “description of the individual bee.” What is that? Does “the 

33There is no reason to present these points as if they were notable, as in the 
following representative example: “. . . put the parts of an aeroplane together in the correct 
relationship and you get the emergent property of flying, even though none of the parts can 
fly” Johnson (1995, 26). 
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bee’s” description not include its rules for interacting with other bees? 
Certainly, it makes little sense to speak of a Joshua Epstein devoid of 
all relationships with family, friends, colleagues, and so forth. “Man 
is a social animal,” quoth Aristotle. My “rules of social interaction” 
are, in part, what make me me. And, likewise, the bee’s interaction 
rules are what make it a bee—and not a lump. When (as a designer of 
agent objects) you get these rules right—when you get “the individual 
bee” right—you get the hive, too. Indeed, from an operationist (Hempel 
1956) viewpoint, “the bee” might be defined as that x which, when put 
together with other x’s, makes the hive (the “emergent entity”). Unless 
the theoretical (model) bees generate the hive when you put a bunch 
of them together, you haven’t described “the bee” adequately. Thus, 
contrary to the opening emergentist claim, it is precisely the adequate 
description of “the individual bee” that explains the hive. An admirable 
modeling effort along precisely such lines is Theraulaz, Bonabeau, and 
Deneubourg 1998. 

Agent-Based Modeling Is Reductionist 

Classical emergentism holds that the parts (the microspecification) 
cannot explain the whole (the macrostructure), while to the agent-
based modeler, it is precisely the generative sufficiency of the parts 
(the microspecification) that constitutes the whole’s explanation! In 
this particular sense, agent-based modeling is reductionist.34 Classical 
emergentism seeks to preserve a “mystery gap” between micro and 
macro; agent-based modeling seeks to demystify this alleged gap by 
identifying microspecifications that are sufficient to generate—robustly 
and replicably—the macro (whole). Perhaps the following thoughts of 
C. S. Peirce (1879) are apposite: 

One singular deception . . . which often occurs, is to mistake the sensation 
produced by our own unclearness of thought for a character of the object 
we are thinking. Instead of perceiving that the obscurity is purely subjective, 
we fancy that we contemplate a quality of the object which is essentially 
mysterious; and if our conception be afterward presented to us in a clear 
form we do not recognize it as the same, owing to the absence of the feeling 
of unintelligibility. 

34The term “reductionist” admits a number of definitions. We are not speaking here of 
the reduction of theories, as in the reduction of thermodynamics to statistical mechanics. 
See Nagel 1961, Garfinkel 1991, and Anderson 1972. 
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Explanation and Prediction 

A final point is that classical emergentism traffics on a crucial (and to this 
day quite common) confusion: between explanation and prediction. It 
may well be that certain phenomena are unpredictable in principle (e.g., 
stochastic). But that does not mean—as classical emergentists would 
have it—that they are unexplainable in principle. Plate tectonics explains 
earthquakes but does not predict their occurrence; electrostatics explains 
lightning but does not predict where it will hit; evolutionary theory 
explains species diversity but does not predict observed phenotypes. In 
short, one may grant unpredictability without embracing “emergence,” 
as absolute unexplainability, à la Alexander and colleagues.35 And, of 
course, it may be that in some cases prediction is a perfectly reasonable 
goal. (For further distinctions between prediction and explanation, see 
Scheffler 1960; Suppes 1985; and Newton-Smith 1981.) 

In its strong classical usages—connoting absolute nondeducibility 
and absolute unexplainability—“emergentism” is logically confused and 
antiscientific. In weak level-headed usages—like “arising from local agent 
interactions”—a special term hardly seems necessary. For other attempts 
to grapple with the term “emergent,” see Cariani 1992, Baas 1994, 
Gilbert 1995, and Darley 1996. At the very least, practitioners—and 
I include myself—should define this term carefully when they use it 
and distinguish their, perhaps quite sensible, meaning from others with 
which the term is strongly associated historically. To anyone literate 
in the philosophy of science, “emergence” has a history, and it is one 
with which many scientists may—indeed should—wish to part company. 
Doubtless, my own usage has been far too lax, so this admonition is 
directed as much at myself as at colleagues. 

Recapitulation and Conclusion 

I am not a soldier in an agent-based methodological crusade. For some 
explanatory purposes, low dimensional differential equations are perfect. 
For others, aggregate regression is appropriate. Game theory offers deep 
insight in numerous contexts and so forth. But agent-based modeling is 
clearly a powerful tool in the analysis of spatially distributed systems 
of heterogeneous autonomous actors with bounded information and 
computing capacity. It is the main scientific instrument in a generative 
approach to social science, and a powerful tool in empirical research. It 

35On fundamental sources of unpredictability, see Gell-Mann 1997. 
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is well suited to the study of connectionist phenomena in social science. 
It offers a natural environment for the study of certain interdisciplinary 
questions. It allows us to test the sensitivity of theories, such as neo
classical microeconomics, to relaxations in core assumptions (e.g., the 
assumption of fixed preferences). It allows us to trace how individual 
(micro) rules generate macroscopic regularities. In turn, we can employ 
laboratory behavioral research to select among competing multiagent 
models having equal generative power. The agent-based approach may 
decouple individual rationality from macroscopic equilibrium and sep
arate decision science from social science more generally. It invites a 
synthesis of analytical and computational perspectives that is particularly 
relevant to the study of non-equilibrium systems. Agent-based models 
have significant pedagogical value. Finally, the computational interpre
tation of social dynamics raises foundational issues in social science— 
some related to intractability, and some to undecidability proper. Despite 
a number of significant challenges, agent-based computational modeling 
can make major contributions to the social sciences. 
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