Deformation

Geology 1
G. Bertotti

Horizontal deformations
TUD

Some terminology before we begin

- stresses are applied to bodies
- if these stresses are higher that the strength of the body, this will deform

```
you can extend a body
```

you can shorten a body

Forces and deformations are NOTthe same
You can stress a body without having deformation
You can make a body longer within a general pressure

Forces/ stresses	Dimension changes
Tension (rek)	Extension (stretching)
Compression	Shortening contraction

Typic al results of experiments

cracks are closed
 cracks form
a new throughgoing fracture is established

We distinguish a life before and one after the development of a mechanic instability (through-going faulting or fold ling)

TUDelft

Before through-going faulting

The body accommodates deformation in a distributed manner, i.e. without developing instabilities (folds and/ or faults)

The amount of deformation which one can accommodate in this stage is limited $-<10-15 \%$ in the case of shortening. It is called Layer parallel shortening (LPS) $-\mathbf{5}-6 \%$ in the case of extension (rocks are weaker under tension than under compression)

The body becomes shorter and thicker
The main structures to ac complish this are

- stylolites (to decrease volume)
- veins (increase volume)
- joints (increase volume)

UPS struc tures (1): Stylolites
Solution structures where shortening is mostly ac commodated by volume loss. The main driving force is pressure-driven solution.

the enveloping surface often, not always, perpendic ular to the teeth
the "teeth" always parallel to the compression direction

This is what the surface looks like if you remove one of the blocks

Each stylolite accommodates few \% of shortening

As they oc curfrequently in bundles, they can accommodate large shortening = produce a lot of solute which is exported

Mainly found in carbonate rocks, but present also in quartz rich sandstones They leave behind a thin film of shale which form major permeability baniers

The most common stylolites are parallel to bedding (overburden)

Non bedding-parallel stylolites (e.g. phase 2) are associated with tec tonic stresses

J oints bec ome interesting when they are organized in systematic sets

J oints often affect (packages of) layers over very large regions

TuDeft

LPS (3): veins

Circ ulating fluids can precipitate calcite, quartz or other mineral forming veins.

TUDeft

Veins are fundamental systems controlling the formation of ore deposits Millions of cubic meters of fluids must pass through a rock to leave signific ant quantities of cements and/or ores

GOLD!

$100 \mu \mathrm{~m}$

The position, distribution and orientation of veins is controlled by larger scale struc tures (faults, folds etc).
Structural geology is crucial in mining!

TUDelft

When the body needs to become shorter and thicker, veins and stylolites can develop at the same time

A story of this rock?

TUDelft

But then...too much is too much and instabilities develop

old cracks propagate, new cracks form

old cracks propagate, new cracks form

a new throughgoing fracture is established

TUDelft

Fault : a zone of localized deformation = it separates blocks with little deformation

In the extensional domain

Distributed deformation is the opposite end member of localized deformation

Geometric elements of faults fault plane and the displacement vector and other features

The position in space of faults, and other planar features, is defined by a direction (strike or dip direction) and a dip angle

(d) Horizontal

rossen LUIU

Faults are classified on the basis of the relative movements of the blocks

Dip slip faults:

Slip (displacement vector) is parallel to the dip of the fault plane (the steepest direction).

strike slip faults:

TUDelft

Displacement vectors are often expressed as sc ratc hes and striations on the fault plane
growth of new mineral
mechanic al scratches

Rake angle
Strike-slip compone

How to identify the kind of fault?

1) Trace the same stratigraphic horizon on the two sides of the fault has the body in consideration become longer or shorter?
2) Look at the suc cession of rocks across the fault In a reverse fault one has a repetition, in a normal fault, some of the rocks are missing (stratigraphic cut off)

Drill

TUDelft

Remember

- names such as nomal, reverse... only define relative movements of the two blocks; they say nothing on absolute movements (for instance with respect to sea level)
- these definitions refer to the present position! Pay attention when layers are tilted
- stretching and shortening refer to the horizontal dimension; they are always associated with shortening and extension (respectively) in another direction (vertical or horizontal)

TU Delft

Faults can be curved. in the extensional domain:

Listric faults: The fault surface is curved and flattens at depth (in a detac hment horizon)

With increasing displacement, the hanging wall descends with respect to the footwall, rotates and forms a fold, the roll-over antic line.

Accommodation space is created!
If sediments are available in the area, they can be dumped there!

Sediment geometries in listric faults provide information on the timing of fault movement

Assuming that sediments are deposited in a horizontal position then:

- sediments deposited before the onset of faulting will have parallel layering
- sediments deposited during faulting will
o diverge (=thicken) towards the fault

o older sediments steeper than young ones (these will be subhorizontal)
- sediments deposited following rifting will be flat lying and not cut by the fault

Non-planarfaults in the contractional domain

Because rocks in the outer part of the Earth are generally stratified, contractional faults often develop a stairc ase geometry remaining parallel to soft layers (flats) and cutting hard ones (ramps)

With proceeding shortening,

- the hanging wall moves, climbs on top of the foot wall ramp and forms a fold
- Ramps become separated from each other and might be juxtaposed to flats of the other block
ramps and flats

FLAT

- (see later)

Fault systems: faults are (\ddagger) never alone

Conjugate faults: two faults develop in experiments, with an angle of -60° between them.

In extension

In contraction

Fault systems

Domino faults Sets of planar faults dipping in the same direction

Horst and graben

Sets of planar faults with opposite dips

TUDelft

Folds

A typical mechanic instability to accommodate shortening after the LPS stage

THDelft

The geometry of folds

Hinge area: the area of max c urvature between limbs
The fold axis is the direction of the hinge line. It is not loc ated in a specific point The surface containing the hinge lines is the axial plane.

Other important terms: wavelength, amplitude...

Names for different fold shapes

On the basis of the interlimb angle

interlimb angles	
$0-10^{\circ}$	Isoclinal
$10-60^{\circ}$	Tight
$60-120^{\circ}$	Open
$120-180^{\circ}$	gentle

on the basis of orientation of hinge line and axial surface

Upright horizontal

Inclined horizontal

Recumbent

Upright plunging

Inclined plunging

The (a)symmetry of folds

Symmetric folds have axial planes whic h are perpendic ular to the enveloping surface. Symmetric folds result from pure shear shortening

In asymmetric folds the axial plain is oblique to the enveloping surface. Relative movement between "upper" and "lower" block is required. This is called simple shear

Geometry is not all: geological layers have a bottom (old) and a top (young)!

Antic lines have old rocks in the core and close upward
Sync lines have young rocks in the core and close downward

TWO FUNDAMENTALY DIFTERENTMECHANISMS OF FOLDING:

- Buckling (active folding)
- Fault-related folding (passive folding)

BUCKLE FOLDS

Folding of layer or series of layers by a compressive stress directed along the layer
The shape and dimensions of the fold are controlled by the mechanics of the layer (or multilayer)

In a single layer, wave length and amplitude depend on:

- the thickness of the layer
- the strength contrast between layers

layers have different strength
μ_{2} or VISCOSITY μ
μ_{1}
μ_{2}
$\mu_{1}>\mu$
viscosity of the layer is greater than the matrix
vornvonor

$\lambda=$ wavelength
$\mathbf{t}=$ thick kness of competent
layer
$\mu=$ viscosity

PASSIVE FOLDS

The shape and dimensions of the fold are controlled by the geometry of fault surfaces undemeath the folded body

In layered bodies (typical for sediments) the thrust surface will tend to follow soft horizons (flats) and cut through hard formations (ramps).

Ramps are those segments of the fault which cut the layers. Ramp angle are typically $<\mathbf{2 0}$.

Evolution of fault-bend folds (the most common passive fold)

Onset of movement
The upper block starts climbing on top of the foot-wall ramp

The hanging-wall ramp reaches the top of the foot-wall ramp
Folds grow especially in height

The hanging-wall ramp moves on top of the foot-wall flat
Folds do not grow in height and expand laterally (increase distance)
TUDelft

Position of ramps and flats after deformation
ramps and flats of the hanging-wall
ramps and flats of the foot-wall

At the onset of deformation, the HW ramp is juxtaposed to the FW ramp. With proceeding deformation, they will be displaced and a HW ramp may come to lay on top of a FW flat or viceversa.
When talking about ramps and flats, you must always spec ify the fault block you are refering to

Geometric characteristics

In these areas layers in the hanging-wall and foot-wall have different positions

In the same areas older rocks overly younger rocks (inverted stratigraphy) In the other areas this is not the case!

Ramp-folds can accommodate very large deformations!
A. pre-tectonic sedimentation

B. syn-tectonic sedimentation

Pre-tectonic sediments are
c cut by faults

- have constant thic kness
- deformed by fold

SYN-TECTONIC layers are cut by the fault and "feel" the activity of the fault (thic kness and/ or geometry and/orfacies)

C. post-tectonic sedimentation

POST-TECTONIC layers are flat They adapt to the morphology existing at the end of deformation: they seal the faults if everything is flat

Sources of figures

http://users.telenet.be/pieter.slootmaekers1/platentektoniek 2.jpg
http://wap.sciencenet.cn/blog.aspx?mod=space\&uid=51597\&do=blog\&id=544504
http://wordwomanpartialellipsisofthesun.blogspot.nl/2013/12/styling-stylolites.html
http://www.gly.uga.edu/railsback/PDFimage0106.html
http://www.gly.uga.edu/railsback/PDFimageHS002.html
http://folk.uio.no/torgeir/Strukturgeo/Forelesninger/12.forelesn.html
http://www.gbertotti-geology.eu/research/fractures-tools
http://blogs.agu.org/mountainbeltway/2011/02/26/waterfall-formation-outcrops/
http://virtualexplorer.com.au/special/meansvolume/contribs/bons/text/2 2.html
http://www.barkervillegold.com/s/QwikReport.asp?lsPopup=Y\&printVersion=now\&XBOC=395145,397753,39 7754,397756
http://www.geol.ucsb.edu/faculty/hacker/geo102C/lectures/part11.html
http://www.as.edu.au/gderrin/Investigating Earth/Task 4.html

Sources of figures

http://flickrhivemind.net/Tags/normalfault/Interesting
http://geologyfieldcourse.eduweb20.com/2013/04/11/strike-and-dip/
http://quizlet.com/19333863/final-with-all-structural-geology-e-flash-cards/
http://gsi.ir/General/Lang en/Page 66/Groupld 01-09/Datald 531/Action Pn4/STRIKE.SLIP.FAULTS.html
http://www.earthscienceworld.org/images/search/results.html?Keyword=Slickensides
http://structuralgeology.50webs.com/pagef21.htm
http://www.ed.ac.uk/schools-departments/geosciences/research/research-institutes/earth-planetary-science/rock-physics-chem
http://www.geosci.usyd.edu.au/users/prey/ACSGT/EReports/eR.2003/GroupB/Report1/structures.html
http://www.earthscienceworld.org/images/search/results.html?Keyword=Sheep\ Mountain
http://www.see.leeds.ac.uk/structure/subalps/regional cross section.htm
http://geografie.startpagina.nl/
http://sanuja.com/blog/geometry-of-folds

Sources of figures

http://sanuja.com/blog/geometry-of-folds
http://br.docsity.com/pt-docs/Geologia Estrutural - Dobras - Apostilas - Geologia Parte3

