Introduction to Biomechanics

Prof. Dr. ir. Richard Goossens
Dr. Y. Song (Wolf)
Faculty of Industrial Design Engineering
Delft University of Technology

Aim

Knowledge

To develop a basic understanding of biomechanics and its applications in product designs

Insight

To demonstrate that such a system might be modeled so as to provide useful data for designs

Communication

To communicate with experts in their professional languages

Contents

- Biomechanics & Design
- Musculoskeletal system
- Body mass segments
- Case study in biomechanics
- Models of human perception

Biomechanics

Biomechanics

Biomechanics is the study of the structure and function of biological systems by means of the methods of mechanics.

- Humans
- Animals
- Plants
- Organs and
- Cells

Biomechanics contributes to industrial design

Improving performance from both equipment and user point of views

Understanding ourselves

Repeat: Human systems

Anatomy of musculoskeletal system Skeletal system

Musculoskeletal system Musculoskeletal system A musculoskeletal system is a system that gives animals and humans the ability to move using the muscular and skeletal systems. Form Support It provides the to the body Stability and Movement

The Skeletal System

The Skeletal System

Bones – skeleton

Joints

Cartilages

Ligaments - bone to bone

Tendon - bone to muscle

Support of the body

- Protection of soft organs
- Movement due to attached skeletal muscles
- Storage of minerals and fats
- Blood cell formation

Courtesy of Essentials Of Human Anatomy Physiology 8th Edition, Pearson Education, Inc. publishing as Benjamin Cummings

Classification of Bones on the Basis of Shape

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Bones of the Human Body

The skeleton has 206 bones

Two basic types of bone tissue

Compact bone

Homogeneous

Spongy bone

- Small needle-like pieces of bone
- Many open spaces

Spongy bone

Inside bones

- Osteocytes
- Osteoclasts
- Osteoblasts

Mechanical properties of bones

Anisotropic behavior of bone

Some other aspects of bone

Ageing

Bone fracture

Bone fracture is a break in a bone

Closed (simple) fracture

- break that does not penetrate the skin

Open (compound) fracture

broken bone penetrates through the skin

Possible treatments

- Conservative
- Surgical

Courtesy of https://en.wikipedia.org/wiki/Bone_fracture

Joints – Anatomy

Joints

A joint, or articulation, is the place where two bones come together.

Fibrous – immovable:

- connect bones, no movement. (skull and pelvis).

Cartilaginous – slightly movable:

- bones are attached by cartilage, a little movement (spine or ribs).

Synovial - freely movable;

 Much more movement than cartilaginous joints. Cavities between bones are filled with synovial fluid. This fluid helps lubricate and protect the bones.

Courtesy of http://medical-dictionary.thefreedictionary.com/gomphoses, http://rozeklaw.com/wp-content/uploads/2013/03/facet-joint.jpg; http://www.m-a-i.in/joints.html

Inside the Synovial Joint

The Synovial Joint

The most common and most movable type of joint in the body of a mammal. As with most other joints, synovial joints achieve movement at the point of contact of the articulating bones.

Courtesy of http://en.wikipedia.org/wiki/Synovial_joint, Picture Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings, Courtesy of http://classroom.sdmesa.edu/eschmid/Chapter7-Zoo145.htm, http://en.wikipedia.org/wiki/Plane joint

- 1. Biaxial
- 2. Allow movement in the sagittal and frontal planes
- 3. Example: Carpometacarpal joint

Ligament and tendon

□ Band of fibrous

connective tissue

Tendon

☐ Connects muscle to bone and is capable of withstanding tension

Function

- -Transfer muscle force
- -Transfer energy from one joint to another (through biarticular muscle)
- -Store and release energy for
- Efficient locomotion
- Increased power output
- Increased contraction velocity

Connections

Strong tendon weak muscle tendon sheets - aponeursoses

Deltiod muscle to humerus and claivicula

Connections

Ligament and tendon

Ligament The fibrous tissue Acromion of scapula Connects bones to other bones Ligament Joint cavity containing synovial fluid Bursa Ligament **Articular** (hyaline) cartilage Tendon sheath **Function** Synovial membrane Prevent joint dislocation Fibrous articular Tendon of capsule Limit joint excursion biceps muscle Guide joint motion Humerus Constrain tendon paths

Ligament in the finger

Ligament in the leg

Applications: Exo-L

Types of movements

Abduction

- movement away from longitudinal axis

Adduction

- movement toward longitudinal axis

Flexion

- reduces angle of articulating elements in anterior-posterior plane

Extension

-increases angle of elements in anteriorposterior plane

Courtesy of http://droualb.faculty.mjc.edu/Lecture%20Notes/Unit%202/chapter_8_articulations%20with%20figures.htm, http://encyclopedia.lubopitko-bg.com/Joints_Articulations.html

Anatomy of musculoskeletal system Muscle

Classification of Bones on the Basis of Shape

The muscle The human body is comprised of 324 muscles Muscle makes up 30-35% (in women) and 42-47% (in men) of Bone body mass. Periosteum There are three types of muscles Tendon Fascia Sketetal-muscle Perimyslum Epimysium Muscles are attached to bones by tendons. Fascicle-Endomysium

Courtesy of http://en.wikipedia.org/wiki/Human_musculoskeletal_system

Muscle fiber

Classification of Bones on the Basis of Shape

The muscle

- The human body is comprised of 324 muscles
- Muscle makes up 30-35% (in women) and 42-47% (in men) of body mass.
- There are three types of muscles

Produce movement or tension

Generate heat

Muscle cells are excitable

Classification of Bones on the Basis of Shape

The muscle The human body is comprised of 324 muscles Muscle makes up 30-35% (in women) and 42-47% (in men) of body mass. There are three types of muscles Skeletal (Striated) Muscle Smooth Muscle Cardiac Muscle

Components of skeletal muscle

Muscle properties

Contractility

 Ability of a muscle to shorten with force

Extensibility

 Muscle can be stretched to its normal resting length and beyond to a limited degree

Excitability

 Capacity of muscle to respond to a stimulus

Elasticity

 Ability of muscle to recoil to original resting length after stretched

Types of Muscle Contraction

Concentric contraction

- Length of muscle shortens
- Muscle force is greater than the resistance

Static or Isometric contraction

- No change in muscle length
- Muscle force is equal to the resistance

Eccentric contraction

- Muscle lengthens
- Muscle force is less than the resistance

Eccentric contraction

Muscle Contraction: twitch

cross section of myofilement

Active muscle force is proportional to number of active actin/myosin binding sites.

The number of sites available for actin/myosin binding depends on the muscle's length.

The greatest number of actin-myosin binding sites are available when the muscle fiber is at an intermediate length

Courtesy of http://faculty.weber.edu/nokazaki/Human_Biology/Chp%206-muscular-system.htm

Length vs. Tension Curve

Mass segment of human body

Centre of gravity (c.g.) of body segments

Centre of gravity (c.g.) of body segments

Mass of body segment

Following Biomechanics and Motor Control of Human Movement

Segment	<u>Segment</u> Total Body Weight	<u>Centre of Mass</u> Segment length	Centre of Mass Segment length
		Proximal	Distal
Hand	0.006	0.506	0.494
Forearm	0.016	0.43	0.57
Upper arm	0.028	0.436	0.564
F'arm+hand	0.022	0.682	0.318
Upper limb	0.05	0.53	0.47
Foot	0.0145	0.5	0.5
Shank	0.0465	0.433	0.567
Thigh	0.1	0.433	0.567
Foot + shank	0.061	0.606	0.394
Lower Limb	0.161	0.447	0.553
Head, neck, trunk	0.578	0.66	0.34
Head, neck, arms, trunk	0.678	0.626	0.374
Head and neck	0.081		

Ref. http://books.google.nl/books?id=_bFHL08IWfwC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=snippet&q=mass%20segment&f=false

Mass of body segment

by Zatsiorskji and Selujanov (1979), based on athlete's data

Coefficient

Segment name	B ₀ [kg]	B ₁	B ₂ [kg/cm]
Head+neck	1.296	0.0171	0.0143
Hand	-0.1165	0.0036	0.00175
Forearm	0.3185	0.01445	-0.00114
Upperarm	0.25	0.03012	-0.0027
Leg	-0.829	0.0077	0.0073
Shank	-1.592	0.03616	0.0121
Thigh	-2.649	0.1463	0.0137
Trunk			
Upper part of the trunk	8.2144	0.1862	-0.0584
Middle part of the trunk	7.181	0.2234	-0.0663
Lower part of the trunk	-7.498	0.0976	0.04896

Courtesy of http://biomech.ftvs.cuni.cz/pbpk/kompendium/biomechanika/geometrie_hmotnost_en.php

Case study: Mass segments of a child throws a ball

Case studies

Case study: Yoga elastic band

Yoga elastic band

Consider using an elastic yoga band in the yoga lesson:

What is the angular velocity of her leg if she applies a 32 Nm torque on her hips joint?

We choose:

- Her height is 170cm;
- Her mass is 60 kg;
- She is a Dutch;
- The spring constant of the elastic band is 100N/m
- Every part of her body is fixed except the hip joint;
- The elastic band is fixed around the ankle

Courtesy of http://www.physio-pedia.com/Musculoskeletal_Physiotherapy_Courses

Explore geometric relations

$$\alpha = \frac{\pi}{2} - \theta(t) + \tan^{-1} \frac{L5 - L5\cos\theta(t)}{L1 + L5\sin\theta(t)}$$

$$L8 = \sqrt{(L5 - L5\cos(\theta(t))^2 + (L1 + L5\sin(\theta(t))^2)}$$

Courtesy of http://www.physio-pedia.com/Musculoskeletal_Physiotherapy_Courses

Modelling

Mass of the thigh, shank and foot

Inertia force

$$(-m_{thigh}L2^2 - m_{shank}L4^2 - m_{foot}L6^2)\frac{d^2\theta(t)}{dt^2}$$

Gravity of the thigh, shank and foot

Resist to the movement

$$(-m_{thigh}gL2 - m_{shank}L4 - m_{foot}gL6)cos\theta(t)$$

Spring

Resist to the movement

$$-k(L8 - L1)L5\sin\alpha$$

User

Trigger the movement

$$M_{user}$$

Establish relations

3D human model based on Dined data

To be introduced in H-L-3 lecture

Establish relations

Establish relations

From objective perceptions to subjective perceptions

The human: Two worlds

> L1 = 0.14858 LI:=0.14858 > L3 == 0.4114; > L4 == L5 + 0.4012 0.43 L5 == L5 + 0.4012 $L6 := L5 + 0.115 \cdot 0.5$

Objective perceptions: physical world

- Units
- Additive
- cognitive process

Subjective perceptions: introspection

- Units?
- rules?
- sensory process

Just noticeable difference

Just noticeable difference

The smallest detectable difference between a starting and secondary level of a particular sensory stimulus

☐ Test methods:

Simple up-down method (Boff 1932)

Weber's Law:

It states that the ratio of the increment threshold to the background intensity is a constant

Constant
To be determined by
experiment

Increment

Background intensity

Weber's law & Fechner's law

Weber's Law:

Mathematically, Webers' law and Fechner's law are equivalent

Steven's power law

Constant: depends on the type of stimulation & Units Constant: depends on the type of stimulation

Magnitude of the physical stimulus

Types	Exponent
Loudness	0.67
Vibration	0.95
Brightness	0.33
Smell	0.6
Cold	1
Discomfort, cold	1.7
Discomfort, warm	0.7
Muscle force	1.7
Electric shock	3.5

Industrial design applications

Industrial design applications

Thank You

Prof. Dr. ir. Richard Goossens
Dr. Wolf Y. Song
Faculty of Industrial Design Engineering
Delft University of Technology

