H-L-3 Biomechanics case study

The Modelling Team Faculty of Industrial Design Engineering Delft University of Technology

Case brief

Case brief

To explore how much torque a

person applied on his/her shoulder

joint in an abduction movement.

Courtesy of http://medical-dictionary.thefreedictionary.com/adduction

Modelling - Sketch

Modelling - Model $-(M1L1^2 + M2L3^2 + M3L5^2)\frac{d^2\theta(t)}{dt^2} - (M1gL1 + M2gL3 + M3gL5)sin\theta(t) + T = 0$

TUDelft

The digital human Model

The model - Components

The model

A design table driven DHM: Assembly

TUDelft

For an individual part

A design table driven DHM: Part

TUDelft

The source of data

dined.io.tudelft.nl/dined/

A simplified version

Attention:

Check the validity of your model

- 1. It is simplification of DINED data;
- 2. It is a linear approximation, the most accurate region is 1473mm~1981mm

TUDelft

How to setup customized data

The exc	el file	e (ea	ch pa	art)				Usage
Design Table for: Hull (Romp)			1 1					
Parameters	X	W	K P	Q	T2	Y		1 100
MV-1200	3	12 252	156 3	12 240	228	290		T. INPU
MV-1700	4	42 357	221 4	42 340	323	411		Dogior
MV-1800	4	68 378	234 4	68 360	342	436		Regioi
MV-1850	4	81 389	241 4	81 370	352	448		2 Con
MV-1900	4	94 399	247 4	94 380	361	460		2. Cop
MV-2000	5	20 420	260 5	20 400	380	484		docian
MV-2100	5	46 441	273 5	46 420	399	508		uesign
Size	4	81 389	241 4	81 370	352	448		rachar
1							J	resher

481

494

481

247

260 520

380 484

370 351.5

447.7

459.8

447.7

the desired stature in the blue of excel the data of "size" to the

able of each part,

vely (use paste values option).

Display States (linked)

§ 🖀 😫 🔶

Tables

Desig

S MV-1200 S MV-1700

MV-1800

AN MV-1850

- MV-1900

- MV-2100 Size

Romp Configuration(s) (Siz

1

MV-1200

MV-1850

MV-1900

8 MV-2000

9 MV-2100

H + + H Blad1 🧐

481

494

520

481

388.5 240.5

399 420

388.5 240.5

4 MV-1700 5 MV-1800

Sizing - Customize

Direct Sizing – In Assembly

TUDelft

TUDelft

Measuring length

Measuring length

Body mass segments

Mass of body segment

Following Biomechanics and Motor Control of Human Movement

Segment	<u>Segment</u>	<u>Centre of Mass</u>	Centre of Mass				_
3	Total Body Weight	Segment length	Seament lenath	Seament	Segment	Centre of Mass	Centre of Mass
		Proximal	Distal	ocyment	Total Body Weight	Segment length	Segment length
Hand	0.006	0.506	0.494			Proximal	Distal
Forearm	0.016	0.43	0.57	Hand	0.006	0.506	0.494
Upper arm	0.028	0.436	0.564	Forearm	0.016	0.43	0.57
F'arm+hand	0.022	0.682	0.318	Upper arm	0.028	0.436	0.564
Upper limb	0.05	0.53	0.47	F'arm+hand	0.022	0.682	0.318
Foot	0.0145	0.5	0.5	Upper limb	0.05	0.53	0.47
Shank	0.0465	0.433	0.567	F001 Chark	0.0145	0.0	0.5
Thigh	0.1	0.433	0.567		0.0405	0.433	0.567
Foot + shank	0.061	0.606	0.394	Foot + shank	0.061	0.606	0.394
Lower Limb	0.161	0.447	0.553	Lower Limb	0.161	0.447	0.553
Head, neck, trunk	0.578	0.66	0.34	Head, neck, trunk	0.578	0.66	0.34
Head, neck, arms,	0.670	0.626	0.074	Head, neck, arms,	0.678	0.626	0.374
trunk	0.078	0.020	0.374	trunk	0.004		
Head and neck	0.081			Head and neck	0.081		

Ref. http://books.google.nl/books?id=_bFHL08IWfwC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=snippet&q=mass%20segment&f=false

Mass of body segment

by Zatsiorskji and Selujanov (1979), based on athlete's data

			Mass (kg)
Mass of the segment (kg)	$m_i = B_0$	$+B_1m+B_2H$	Height (cm)
Coefficient			
Segment name	B ₀ [kg]	B ₁	B ₂ [kg/cm]
Head+neck	1.296	0.0171	0.0143
Hand	-0.1165	0.0036	0.00175
Forearm	0.3185	0.01445	-0.00114
Upperarm	0.25	0.03012	-0.0027
Leg	-0.829	0.0077	0.0073
Shank	-1.592	0.03616	0.0121
Thigh	-2.649	0.1463	0.0137
Trunk			
Upper part of the trunk	8.2144	0.1862	-0.0584
Middle part of the trunk	7.181	0.2234	-0.0663
Lower part of the trunk	-7.498	0.0976	0.04896

Courtesy of http://biomech.ftvs.cuni.cz/pbpk/kompendium/biomechanika/geometrie_hmotnost_en.php

TUDelft

The tracker

Tracker

Tracker

The Tracker is a free video

analysis and modeling tool built

on the Open Source

Physics(OSP) Java framework. It

is designed to be used in physics

education

Extract position (angle), velocity

(angular) and acceleration

(angular) of an object in the video

Tracker	
Download	
http://www.cabrillo.edu/~dbrown/tracker/	
Tracker Video Analysis and × S Google ×	-
← → C [^] www.cabrillo.edu/~dbrown/tracker/	☆ (
Tracker Home Help Share OSP Home Email Doug english v Tracker Jone Tracker Video Analysis and Modeling Tool	
Download Tracker 4.80 installer for: <u>Windows</u> <u>Mac OS X</u> <u>Linux 32-bit</u> <u>Linux 64-bit</u>	

Note regarding Java security concerns: Tracker does NOT run in a browser and CANNOT execute malicious code. We recommend you update to the latest version of Java but do NOT uninstall it or Tracker will no longer run at all.

Now with <u>radial distortion (fisheye) filter</u>, convenient <u>Tracker ZIP Files</u> and improved <u>Digital Library Browser</u>. Please check your Xuggle version--if not 3.4.1012, reinstall Xuggle.

What is Tracker?

Tracker is a free video analysis and modeling tool built on the <u>Open Source Physics</u> (OSP) Java framework. It is designed to be used in physics education.

Tracker video modeling is a powerful new way to combine videos with computer modeling. For more information see <u>Particle Model Help</u> or AAPT Summer Meeting posters <u>Video Modeling</u> (2008) and <u>Video Modeling with Tracker</u> (2009).

Tracker Features

Tracking:

- Manual and automated object tracking with position, velocity and acceleration overlays and data.
- · Center of mass tracks.
- · Interactive graphical vectors and vector sums.
- RGR line profiles at any angle time dependent RGR regions

Prepare a video for Tracker

Background Uniform & different from the subject Origin marker Increase the contrast

Camera range: Enough room to cover the movements

Camera direction: Perpendicular

Frame rate: At least 24p Resolution: as high as possible The dumbbell You can also use marker to increase the contrast

TUDelft

Procedure

TUDelft

TUDelft

Procedure

TUDelft

Procedure

TUDelft

TUDelft

TUDelft

The calculation

$$\begin{bmatrix} > restart; with(plots) : \\ > model := -(m1 \cdot L1^2 + m2 \cdot L3^2 + m3 \cdot L5^2) \cdot diff(theta(t), t\$2) - (m1 \cdot g \cdot L1 + m2 \cdot g \cdot L3 + m3 \cdot g \cdot L5) sin(theta(t)) + T = 0 : \\ > T := (m1 \cdot L1^2 + m2 \cdot L3^2 + m3 \cdot L5^2) \cdot diff(theta(t), t\$2) + (m1 \cdot g \cdot L1 + m2 \cdot g \cdot L3 + m3 \cdot g \cdot L5) sin(theta(t)) : \\ > T := subs(diff(theta(t), t\$2) = angleA, T) : \\ > T := subs(theta(t) = angle, T) : \\ > T := unapply(T, (angle, angleA)); \\ T := (angle, angleA) \rightarrow (m1L1^2 + m2L3^2 + m3L5^2) angleA + (m1gL1 + m2gL3 + m3gL5) sin(angle) \\ \end{bmatrix}$$

fUDelft

Input parameter (from model & biomechanics)

- > upperArmLength := 0.272;
- ForeArmLength := 0.238;
- > WristHandCenter := 0.07;
- > L1 := upperArmLength 0.436;
- L3 := upperArmLength + ForeArmLength 0.43;
- L5 := upperArmLength + ForeArmLength + WristHandCenter,
- > ml := 1.68
- > m2 := 0.96
- > m3 := 0.36 + 3; g := 9.81

we add 3 kilo to m3 to add the weight

H-A-1 assignments

H-A-1-F

H-A-1-F

In the new set of dumbbells, CAP Barbell® want to specify the optimal weight and training positions in the manual.

For this, they have asked you to help them to explore the relations between the mass of the dumbbells, the maximum angular velocity, the torques applied on the elbow joints and the start position (angle) as in the figure.

Report – Logical: Grading Criteria

Success!

The Modelling Team Faculty of Industrial Design Engineering Delft University of Technology

