
Intermezzo II. 
RHEOLOGICAL PARAMETERS OF 

NON-SETTLING MIXTURES 
 
 
 
II.1 DEFINITIONS 
 
An important property of a liquid or a fine homogeneous mixture (considered as 
continuum) is a law of viscosity. This quantifies a resistance of liquid/mixture to 
deformation of shearing. This is done by relating the shear stress, τ, to shear rate 
dvx/dy (sometimes called also strain rate or rate of shear strain). For Newtonian fluid 

the Newton's law of viscosity, xF d
A d
= τ = µ

v
y

 , is valid (see Fig. II.1 and Chapter 1 

for more details). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure II.1. Determination of viscosity (schematic). 
 
Non-Newtonian fluids obey a rather more complicated relationship between the shear 
stress and the shear rate. This is determined experimentally in a viscometer. Plotted 
relationship τ versus dvx/dy is known as a rheogram (see Fig. II.1). A mathematical 
function that fits a rheogram is called a rheological model. Coefficients of this 
function are the rheological parameters.  
 
The rheogram of a Newtonian liquid is a straight line that passes through an origin 
and has a slope given by the value of dynamic viscosity of the liquid. The viscosity is 
independent of the shear rate. Rheograms of non-Newtonians do not always pass 
through the origin (the shear rate remains zero until a certain yield stress τy is 
exceeded) and/or are not straight. This gives arise to different definitions of viscosity 
exploited from rheograms. The viscosity determined in the same way as in the 
Newtonian rheogram is called the secant viscosity (also apparent viscosity) ,µa, 

 

dy
xdva
τ

=µ          (II.1), 

II.1 
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the viscosity determined as the tangent to the rheogram at a certain point is the 
tangent viscosity (also differential viscosity), ηt,   
 

 









τ

=η

dy
xdvd

d
t          (II.2), 

 
(see Fig. II.2). The viscosity of non-Newtonian liquid is not constant, it is dependent 
on the shear rate.  
 

 
Figure II.2. Rheograms (flow curves) and viscosity curves (tangent viscosity versus 

shear rate dvx/dy) of various liquids (schematic, after Schramm, 1981). 
 
 
 
 
 



RHEOLOGICAL PARAMETERS OF NON-SETTLING MIXTURES                      II.3 

II.2 RHEOGRAMS 
 
II.2.1 Viscometry - a determination of rheograms 
 
The basic condition for a correct determination of the rheological parameters is a 
laminar replacement (flow) of a sheared matter in a viscometer. Basically, there are 
two types of instruments appropriate to obtain data required to plot the rheograms - a 
rotational viscometer and a tube viscometer (Figs. II.3a and b).   
 
Rotational viscometer 
 
Rotational viscometers are widely available and require only a small sample of 
mixture for testing, but they introduce much larger uncertainties than do tube 
viscometers. 
The basic concept is that fluid is sheared in a narrow zone between the rotating part 
and a stationary part of the instrument. The shear rate dvx/dy is determined from the 
angular velocity of the rotating part and the shear stress τ from the torque of the 
rotating part. Calibration formulas are required to transform the torque and speed 
readings to data plotting the rheograms. These formulas themselves are dependent on 
the rheological properties of the mixtures, and are thus subject to considerable 
uncertainties. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure II.3a. Rotational viscometers 
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Tube viscometer 
 
The pressure gradient ∆P/L and mean mixture velocity Vm are measured in the tube 
viscometer of diameter D. These data provide the pseudo-rheogram (Fig. II.4), that 

relates 
L4
PD

o
∆

=τ   with 
D
mV8  in place of τ and dvx/dy given in the normal 

rheogram. For laminar flows of non-Newtonians the pseudo-rheogram can be 
transformed to the normal rheogram by using the Rabinowitsch-Mooney 
transformation described in the paragraph II.3. 

 
(a)                                                                                           (b) 

 
Figure II.3b. Rotational viscometers of the Couette type (a)  

and capillary viscometers (b) (after Schramm,1981). 
 
Capillary viscometers use vertical capillaries (tubes of a very small diameter). The 
small diameter (usually until about 30 mm) helps to maintain the laminar regime in a 
wide range of flow rates through the tube (remember Re ≈ 2300 at the threshold 
between laminar and turbulent flow). Of course, there is a big difference in scale 
between capillaries and dredging pipelines. However, the conditions within a tube 
viscometer (Fig. II.4) must be geometrically similar to those in a dredging pipeline. 
This assures the similarity in the stress distribution across the pipe cross section. 
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Figure II.4. Distribution of laminar flow of Newtonian (N) and non-Newtonian (nN) 

liquid in a pipeline (after Schramm,1981). 
 
 
As shown in Chapter 1 the shear stress varies linearly from zero in the tube centre to    
τo at the wall. This is valid for tube flow of both Newtonian and non-Newtonian 
fluids/mixtures.  Thus the stress distribution is given by the value of wall shear stress 

τo. According to the known force balance (see Chapter 1) OoA
L
P

τ=
∆  , i.e. 

D
o4

L
P τ
=

∆  ,  there is a direct relationship between ∆P/L (measured in a tube 

viscometer) and τo. The value of the shear rate dvx/dy at the tube wall is related to 
Vm (also measured in a tube viscometer). The relationship between dvx/dy at the 
pipeline wall and Vm requires an analysis. For laminar flows of Newtonian liquids 

this is given by 
D
mV8  (see Eq. 1.13 in Chapter 1). For non-Newtonians the value of 

dvx/dy is no longer equal to 
D
mV8 , but it is proportional to that quantity, as 

determined by Rabinowitsch and Mooney.   
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Figure II.5. Logarithmic plot of τo versus 8Vm/D for data from a tube viscometer, 

(after Wilson et al., 1997). 

 
Figure II.6. Rheogram obtained for data of Fig. II.4 using Mooney-Rabinowitsch 

technique (after Wilson et al., 1997). 
 



RHEOLOGICAL PARAMETERS OF NON-SETTLING MIXTURES                      II.7 

II.2.2 Rabinowitsch-Mooney transformation 
 
The Rabinowitsch-Mooney transformation transforms the pseudo-rheogram (the 
rheogram based on the pipe-wall values of shear stress and shear rate, Fig. II.5) to the 
normal rheogram (based on local values of shear stress and shear rate at an arbitrary 
position within a pipe) for a laminar flow of non-Newtonians (see Fig. II.6). The 
transformation is equally applicable in the opposite direction. 
 
According to the transformation  

the pseudo-rheogram data points  [τo , 
D
mV8 ]  are transformed to  

the normal rheogram points  [τ , 
dy

xdv ]  using the following rules: 

 

τ = τo                      and                   
dy

xdv = 
D
mV8

'n4
1'n3






 + .  

 

This means that for each data point the x-ordinate shifts from 
D
mV8  to 

D
mV8

'n4
1'n3





+


  

and the y-ordinate remains unchanged.  The parameter n' is the local tangent of the 

pseudo-rheogram in the logarithmic plot, i.e. ( )









τ
=

D
mV8lnd

olnd'n .  

 
 
On Fig. II.4 the measured points are fitted by the pseudo-rheogram that gives n’= 0.11 

and thus 3 ' 1
4 '
n

n
+


 


 =3.023. The measured points of the pseudo-rheogram are 

transformed into the points of the normal rheograms (Fig. II.5) using τ =  τo and  

du/dy = dvx/dy = 3.023
D
mV8 . The normal rheogram is a line that fits the points in the 

τ versus du/dy (strain rate) plot. 
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II.3 RHEOLOGICAL MODELS 
 
The simplest rheological model is the Newtonian fluid, represented by equation  
 

 
dy

xdv
µ=τ           (II.3) 

 
with a single rheological parameter, µ. It is given by flow curve (1) in Fig. II.1. 
 
 
II.3.1 Two-parameter models 
 
Bingham-plastic model contains rheological parameters τy, ηB. The rheogram of 
Bingham plastic mixtures is linear and passes through τy (yield stress) at dvx/dy = 0 
(i.e. the imposed shear stress must be higher than  τy to cause flow). The rheogram 
has a slope ηB (called plastic viscosity or tangent viscosity)  
 

dy
xdv

By η+τ=τ        (II.4). 

 
This behavior is the most usual for concentrated homogeneous mixtures that are 
dredged (aqueous mixtures of non-cohesive clay etc.). 
 
Power-law model approximates rheograms which pass through origin (i.e. any 
imposed shear stress causes flow) but they are not a straight  line [flow curves (2) and 
(3) in Fig. II.1]. The model has parameters K and n, 
 

 
n

dy
xdvK 







=τ        (II.5). 

 
Different types of fluid behavior may occur: 
0 < n < 1: pseudo plastic (“shear-thinning”) fluid (becomes thinner under the 

increasing shear rate) 
n > 1: dilatant (“shear-thickering”) fluid (becomes thicker under the 

increasing shear rate). 
 
 
II.3.2 Three-parameter model 
 
Yield-power-law model (Buckley-Herschel) with parameters τy, K, n 
 

 
n

dy
xdvKy 







+τ=τ        (II.6). 

 
It is given by flow curve (4) in Fig. II.1. 
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REMARK:  
 
The above considered rheological models are the time-independent models. However, 
a full description of rheological behavior also includes variation with time, because 
many homogeneous mixtures exhibit time-dependent behaviour. The mixtures can 
exhibit either the thixotropic behaviour or the rheopectic behaviour. 
 
The mixture is thixotropic if the viscosity of the mixture subjected to shearing under 
the constant shear rate dvx/dy (e.g. in the rotational viscometer) diminishes in time. 
This is shown schematically on Fig. II.7. The rheopectic mixtures become gradually 
more viscous if subjected to shearing of constant value for some time. 

 

 
Figure II.7. Behaviour of a thixotropic mixture (after Schramm,1981). 

(Legend: Viscosity = apparent viscosity, D = dvx/dy = shear rate, Sol = solution) 
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