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Longitudinal Static Stability           
 

 

Some definitions 

 

 

  pitching moment without dimensions 

            (so without influence of ρ, V and S) 

            it is a ‘shape’ parameter which 

            varies with the angle of attack.  

  Note the chord c in the denominator because of the unit Nm! 

 

 

   For the wing+aircraft we use the 

              surface area of the wing S! 

 

 

 

 

          For the tail we use the surface of the tail: SH ! 

 

 

 

 

 

 

Definition of aerodynamic center of a wing: 

 

The aerodynamic center (a.c.) is the point around which the moment does not 

change when the angle of attack changes. We can therefore use Cmac as a constant 

moment for all angles of attack.  

 

The aerodynamic center usually lies around a quarter chord from the leading edge. 
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Criterium for longitudinal static stability (see also Anderson § 7.5):  

 

We will look at the consequences of the position of the center of gravity, the wing and the 

tail for longitudinal static stability. 

 

 

 
 

For stability, we need a negative change of the pitching moment if there is a positive 

change of the angle of attack (and vice versa), so: 
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Graphically this means Cm(α) has to be descending: 

 

 

 
For small changes we write: 
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We also write this as:     
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When Cm(α) is descending, the Cm0 has to be positive to have a trim point where Cm = 0 

and there is an equilibrium: 

 

 
 

 

So two conditions for stability: 

 

1) Cm0 > 0; if lift = 0; pitching moment has to be positive (nose up) 

 

2) 0mdC

d
      ( or   0mC


  ); pitching moment has to become more negative when 

the angle of attack increases 

 

 

Condition 1 is easy to check. But what is the consequence of condition 2? For this we 

have to study what happens when the angle of attack changes. Therefore we have to look 

at the derivatives to the angle of attack and then use this to predict what the change in 

pitching moment will be. For this we will first look at the tail and then look at the effect 

on the whole configuration. 
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The horizontal tail surface 

 

The angle of attack of the horizontal tail αH : 

 
 

The wing has pushed air down and 

decreased the angle of attack 

with ε, the downwash angle. 

 

The relation between α and αH now becomes: 

 

 H Hi      

 

So the change in αH due to a change in angle of attack α now can be calculated: 
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The term 
d

d




basically means: the change in downwash due to the change in angle of 

attack. Typical values are around 0.10 for tails that do not have a T-configuration. 
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Calculate change in pitching moment due to a change in angle of attack α: the Cmα 

 

 
 

In this figure LH  is drawn upward. In reality it could just as well be pointed downwards, 

but the sign convention is that the lift is positive upward, and therefore we draw it like 

this. 

 

Moment around center of gravity: 

 

Pitching moment: 

 

 ( )
Wac W cg H H cgM M M L l L l l        

With: 

 

WacM  = Moment of wing around aerodynamic center, so constant for all α ! 

W cgL l = Wing (and fuselage)  lift force times arm relative to c.g., positive (clockwise) 

- ( )H H cgL l l  = Moment of tail lift force rel. to c.g., is negative (counter clockwise) 

 

We can simplify the moment equation by using the total lift force L: 

 

 L=LW + LH 
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Now make this pitching moment dimensionless with  21

2
V Sc  : 

 

 
2 2 2 21 1 1 1

2 2 2 2

Wac cg H H
M L l L lM
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 
    

 

We can now simplify this enormously by using the definitions in the start (Note how the 

difference in moments and forces all work out alright). One complication however is that 

the lift coefficient of the tail surface is defined using the area of the tail surface, so SH 

instead of S: 
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Using all this transforms the moment equation into its dimensionless form: 
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The ratio VH (the tail area times the arm divided by the wing area times the chord) is 

called the tail volume VH (even though it is dimensionless): 
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We want to know mdC

d
; so differentiate to α : 

 

Hac w
m Lcgm L

H

dC dCldC dC
V

d d d c d   
      

 

 

A number of observations can be made: 

 

The moment around the aerodynamic center does not change when the 

angle of attack α changes. So this term is zero by definition and 

disappears. 

 

Note how the tail volume VH is independent of the angle of attack, and so it can be treated 

as constant.: 
 

What we’re left with is this: 

 

HLcgm L
H

dCldC dC
V

d d c d  
     

 

 

 

The 
LdC

d
 is simply a characteristic of the aircraft 

shape: the steepness of the CL-α curve: 

 

 

 

 

 

We normally should have similar data for the tail airfoil, however then the the angle of 

attack of the tail surface αH is on the x-axis. So we know the HL

H

dC

d
 and not the HLdC

d
. 

But we have seen: 

               H Hi             and therefore:      1Hd d

d d
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So we substitute HLdC

d
with 1HL

H

dC d

d d
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 
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 

: 
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Both 
LdC

d
and HL

H

dC

d
are constants for any given shape, and indicate the steepness of the 

CL-α curve. They are also written as a and ta  , where the index t refers to the tail. When 

also writing 
dCm

d
 as mC


we can write the last equation above as follows: 
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And we concluded for static stability that this mC


should be less than zero, so the aircraft 

will be stable if: 
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So for the tail this means: 
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From this relation we can not only conclude the following: 

 

- A larger tail will contribute to static stability 

- A longer distance between tail and wing will contribute to stability 

- A center of gravity that is just after the wing or even before the wing contributes 

to stability (forward cg => more stable, aft c.g. less stable) 
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From this equation we can, for a given aircraft configuration, calculate what c.g. position 

is just on the edge of stability. This point is called the neutral point . If the c.g. is before 

this point the aircraft will be stable, if the c.g. is after this point the aircraft will be 

unstable. We can calculate this by solving the borderline case between stability and 

instability. 

 

So at neutral point: cg npl l  and 0mC

 : 

 

 

 

 

 

 

The neutral point then is: 

 

 

 

 

 

 

 

 

The distance between the neutral point and the center of gravity is called the static 

margin: 

 

 
 

 

Exercise 

A similar analysis can be done for a canard plane. Would a forward c.g. there also be a 

benefit or would everything reverse? We leave that as an exercise for the reader. 

 

 

 

Normal configuration         Canard configuration  

     (Beech 99)        (Beech Rutan Starship 2000) 
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