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3 FLOOD PROPAGATION 
 

3.1 Reservoir routing 
 
The most important equation to describe the water balance of a reservoir is the water 
balance: 

( )= − + −
d
d
S I Q A P E
t

     Equation 3.1 

In finite differences form this equation can be written as: 

( )( ) ( )= + − + − ⋅ −1 0 1 0S S I Q A P E t t    Equation 3.2 

where P is the rainfall, E is the evaporation, A is the surface area of the reservoir, S 
is the storage, I is the inflow and Q is the reservoir release (outflow). In Equation 3.2, 
the inflow, the rainfall and the evaporation are input data; the initial storage is an 
initial condition; the time is an independent variable. To determine the storage at a 
certain time t1, the outflow and the surface area should be known. However, these 
depend on the water level in the reservoir, and thus on the storage to be computed. 
Equation 3.2, therefore, cannot be solved explicitly, but has to be solved iteratively. 
For the solution of Equation 3.2, three extra equations are necessary to relate the 
outflow, the surface area and the storage to the water level. The following types of 
equations are widely applicable. They may have to be modified somewhat for 
application in a specific case. 

( )=A A H        Equation 3.3  

∫=
H

H

HAS
0

d        Equation 3.4 

( )= −
c

cQ K H H       Equation 3.5 

Equation 3.3 is obtained from planimetering a topographical map. Often an 
exponential equation of the following type serves the purpose well: 

( )( )= −0 0expA A b H H      Equation 3.6 

where A0 is the surface area at H0. The equation plots a straight line on semi-
logarithmic paper. But also a power function of the type: 

( )= + −0 0
bA A a H H       Equation 3.7 

can often be used. The equation plots a straight line on double logarithmic paper. 
Both Equations 3.6 and 3.7 are easily integrated to yield Equation 3.4. 

Flood routing through a reservoir 
In the case of a flood passing through the reservoir, the outflow hydrograph and the 
water levels in the reservoir can be computed. At the relative small time steps used 
for flood routing, the direct rainfall on the reservoir and the evaporation from the 
reservoir can be neglected. 
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The following procedure is commonly used in spillway design to determine the 
required dimensions of the spillway. Equation 3.5 is a spillway function. In the case of 
a free overflow spillway, the exponent c = 1.5 and the coefficient K ≈ 1.5*B, where B 
is the spillway width; Hc is the crest level of the spillway. The equation can be 
modified to fit another spillway type, if required. The set of equations 3.2-3.5 can be 
solved iteratively: 
 
1. Assume a certain spillway design by determining values for K, c and Hc. In most 

cases the simulation is started with a full reservoir: 
=0 cH H  

 
2. In a first approximation, Equation 3.2 is solved assuming that the outflow Q 

remains constant over the time step: Q = Q(H0) and that the effect of local rainfall 
and precipitation can be neglected in relation to the flood flows. The storage thus 
obtained is the first estimate of the storage S*. The equation used is called the 
predictor: 

( )( ) ( )= + − ⋅ −*
1 0 0 1 0S S I Q H t t  [m3] 

 
3. On the basis of S*

1, H*
1 is computed using the inverse of Equation 3.4: 

( )=* *
1 1H H S  

 
4. With this first estimate of the waterlevel at t1, a new estimated storage at t1 can be 

made, using the corrector: 
( ) ( )= + − ⋅ −*

1 0 1 0S S I Q t t  
with  

⎛ ⎞+
= −⎜ ⎟

⎝ ⎠

*
* 1 0

2 c
H HQ K H  

 
5. The corresponding reservoir level follows from H1 = H(S1). 
 
6. If necessary steps 4 and 5 are repeated (substitutions H1 for H*

1) until no further 
significant change in S1 occurs. 

 
7. Subsequently, the procedure is repeated in step 2 for the following time step: 

( )( ) ( )= + − ⋅ −*
2 1 1 2 1S S I Q H t t  

until the full flood wave has been simulated. 
 

8. At the end of the simulation the maximum reservoir level and the maximum 
discharge are obtained corresponding to the assumed spillway design. 

 
The iterative procedure described, based on the set of Equations 3.2 through 3.5, is 
easy to perform in a spreadsheet. Figure 3.1 is an example of the output of the 
spreadsheet model RESSIMFL. 
 
Two observations can be made from studying Figure 3.1. Firstly, the inflow and the 
outflow hydrographs intersect at the point of maximum outflow; and secondly, the 
volume enclosed by the two curves left of the intersection is equal to the volume 
enclosed to the right of the intersection (assuming the water level is at the spillway 
crest at the start of the inflow hydrograph). The former volume is the part of the 
inflow, which is temporarily stored in the reservoir above the crest of the spillway, the 
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latter volume is the release of that same amount. Before the point of intersection the 
storage increases; after the point of intersection the storage decreases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

That the maximum outflow occurs at the point of intersection can be made clear by 
the following reasoning. It follows from Equation 3.1 that (neglecting the effect of 
rainfall and evaporation): 

= −
d
d
S I Q
t

       Equation 3.8 

At the point of intersection this results in: 

=
d 0
d
S
t

   

which because S = S(H), and ∂S/ ∂H ≠ 0, results in: 

=
d 0
d
H
t

 

Thus the maximum water level in the reservoir occurs when inflow equals outflow. 
Since the outflow Q = Q(H), it follows that: 

=
d 0
d
Q
t

 

Hence, the maximum outflow occurs at the maximum water level. 

Figure 3.1: Inflow and outflow hydrograph of a reservoir 
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Reservoir yield analysis 
The previous paragraphs refer to the routing of a single flood wave, for which the 
process time-scale is in the order of hours to days, depending on the size of the 
catchment and the reservoir. 
For reservoir yield analysis flood waves are also crucial, as they contain most of the 
water that a reservoir is supposed to store for later use. However the process time-
scale of reservoir yields is much longer than that of individual flood waves and is in 
the order of month to a year. Hence the time step in reservoir yield analysis generally 
varies from a week to month. Within such a month various smaller floods may have 
occurred. However at this process scale these variations are not relevant. 
In reservoir yield analysis, the same equation (Equation 3.2) is used as for flood 
routing. In this case however, the effect of rainfall and evaporation can no longer be 
disregarded. 
In yield analysis, the time series of P, E and I are known values. The variation of the 
storage S over time and the reservoir outflow, or release, Q are the unknown 
parameters. The reservoir release is composed of the draft, D, being the planned or 
envisioned release, and the spill over the spillway, L. 

= +Q D L        Equation 3.9 

The way the yield analysis is approached is by assuming a certain draft, possibly as 
a function of time, D(t), on the basis of which the reservoir simulation is made. The 
spill, L(t), follows from the reservoir operation. 
 
 
 
 

Figure 3.2: Reservoir operating rules (rule curves) and simulating storage variation by the model 
WAFLEX 
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The solution of Equation 3.2 is only possible if operating rules are used, that 
determine the release as a function of storage and a set of rule curves that can be 
functions of time: 

( )( ) ( )= 1 2, , ,........ nQ Q S RC t RC t RC     Equation 3.10 

Although, in principle, many different operating rules can be used, most reservoirs 
follow the basic operating rules of the following example. Figure 3.2 shows three 
operating rules: 
 
• The Flood Rule Curve (FRC), which is a hard boundary (meaning it may not be 

crossed1). The FRC represents storage levels, which are a function of time, 
FRC(t). If the storage is more than FRC, all additional water is spilled (L*dt=S-
FRC): 

If S > FRC, then Q = D + (S - FRC)/dt and S = FRC 
 
• The Utility Rule Curve, URC(t), which is a soft boundary (it may be crossed). If 

the storage reaches, or crosses, the URC, the release from the reservoir is 
reduced by a certain rationing percentage r: 

  If S < URC, then Q = r * D and the water balance is redone with  
Q = r * D 

 
• The Dead Storage Curve, DSC(t), which is a hard boundary. The storage may 

never drop below this level as a result of releases, only due to evaporation. The 
dead storage requirement is often for environmental or ecological reasons. If, as 
a result of the draft, the storage drops below the DSC, then the release is 
reduced in the following way: 

If S < DSC, then Q = Max (0, D - (DSC - S)/dt) and redo water balance 
with this release. 
As a result of evaporation it is possible that D - (DSC - S)/dt < 0. In 
that case the release is zero and the water balance results in storage 
below DSC. 

 
The areas between the curves are generally called zones, and the drawing of rule 
curves is also called zoning of the reservoir storage. In Figure 3.2, zone 1 is the area 
under DSC; zone 2 is the area between DSC and URC; zone 3 is the area between 
URC and FRC; and zone 4 is the area above FRC. The line indicated by the symbols 
is the storage variation as simulated by the spreadsheet model WAFLEX (Savenije, 
1995b). 
 
 
 

                                                
1 The FRC is only a hard boundary at the time scale used for reservoir simulation (a time step 
of a week, decade or month). During day-to-day operation, the FRC can be crossed 
temporarily during the spilling operation. 
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During the simulation, the following steps are followed: 
 
1. Establish a draft pattern D(t) and assume that the release Q=D(t). The inflow I is 

taken as the average over the time step dt=(t1-t0). 
2. Solve the water balance equation 3.2 in numerical form: 

( )( ) ( )( ) ( )= + − − + − −1 0 1 0 1 0 0S S I Q t t P E t t A H   Equation 3.11 

where S1 = S(t1) and A(H0) is the inundated area at water level H(t0). Although it 
would be more correct to use the inundated area as a function of the average 
water level between t1 and t0, which would require an extra iteration in the 
computation, such a procedure is generally not necessary as the error made by 
the rainfall and evaporation term is expected to be small. 

3. Check the operating rules. If necessary the release Q and the storage S1 should 
be adjusted according to the operating rules. 

4. Now that S1 and Q are known, the computation for the next time step can be 
started similar to step 2: 

( )( ) ( ) ( ) ( )= + − − + − −2 1 2 1 2 1 1S S I Q t t P E t t A H  
5. The above steps are repeated until the end of the data series is reached. At the 

end of the simulation the shortage of water is computed, as well as the amount of 
water spilled. On the basis of this information a decision can be taken to adjust 
the release pattern, D(t), or to use other rule curves. 

 
The order to be able to draw quantitative conclusions from the reservoir yield 
analysis, the starting value of the storage, S0, should be equal to the end value, Sn. 
This can generally be achieved by one iteration where ”lay” Sn is used as S0, 
provided the reservoir volume is not too large in relation to the inflow. 
 
 

3.2 Flood routing in natural channels 
 
The volume of water in a channel at any instant is called channel storage S. The 
most direct determination of S is by measurement of channel volume from 
topographic maps. However lack of adequately detailed maps plus the need to 
assume or compute a water-surface profile for each possible condition or flow in the 
channel makes this approach generally unsatisfactory. Since Equation 3.2 involves 
only S ( S = S1 - S0), absolute values of storage need not be known. Values of S can 
be found by solving Equation 3.2, using actual values of inflow and outflow (Figure 
3.3). For flood routing, the effect of rainfall and evaporation on the storage in the 
channel reach can be disregarded. The hydrographs of inflow and outflow for the 
reach are divided into short time intervals, average values of I and Q are determined 
for each period, and values of S computed by subtracting Q from I. 
 
Storage volumes are computed by summing the increments of storage from any 
arbitrary zero point. 
 
When values of S computed as just described are plotted against simultaneous 
outflow (Figure 3.4), it usually appears that storage is relatively higher during rising 
stages than during falling stages. As a wave front passes through a reach, some 
storage increase occurs before any increase in outflow. After the crest of the wave 
has entered the reach, storage may begin to decrease although the outflow is still 
increasing. Nearly all methods of routing stream flow relate storage to both inflow and 
outflow in order to allow for these variations. 
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Figure 3.4: Relation between outflow and storage for the data of Figure 3.3 

 
A very widely utilized assumption is that storage is a function of weighted inflow and 
outflow, which yields the Muskingum equation: 

( )⎡ ⎤= + −⎣ ⎦1S K xI x Q      Equation 3.12 

where S, I, and Q are simultaneous values of storage, inflow, and outflow over a 
reach ∆x. The dimensionless constant x indicates the relative importance of I and Q 
in determining storage, and K is a storage constant with the dimension of time. The 
value of K approximates the time of travel of the wave through the reach. If the 
celerity of propagation of the wave is c, and the length of the reach considered is ∆x , 
then K= ∆x/c.  A flood wave in a river behaves as a mass wave with the equation: 

Figure 3.3: Inflow and outflow hydrographs for a reach of river, showing method of calculating channel 
storage 
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v
h
qc 671.

d
d

≈=       Equation 3.13 

where q is the discharge per unit width, v is the cross-sectional average flow velocity 
and h is the cross-sectional average depth of flow. If the discharge obeys Mannings 
formula in a rectangular cross-section, then the wave celerity is about 60-70% higher 
than the average flow velocity v. Hence the wave celerity depends on the flow 
velocity and K is not constant: it is larger for larger floods. 
 
determination of x 
In theory, the constant x varies from 0 to 0.5.  Cunge (1969) showed that x can be 
related to physical parameters: 

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
0.5 1

b

qx
S cL

      Equation 3.14 

where Sb is the bottom slope. 
 
Since dS/dt = I-Q, differentiating Equation 3.12 yields 

( )⎡ ⎤− = = + −⎢ ⎥⎣ ⎦
1dS dI dQI Q K x x

dt dt dt
    Equation 3.15 

If I = Q, then at the point of intersection: 

=
−

dQ dtx
dQ dt dI dt

      Equation 3.16 

which permits estimating x from concurrent inflow and outflow records. For a 
reservoir where Q = f(S), dS/dt and dQ/dt must be zero when I = Q. Therefore x for 
this case is zero. A value of zero indicates that the outflow alone determines storage 
(as in a reservoir). When x = 0.5, inflow and outflow have equal influence on storage. 
In natural channels x usually varies between 0.1 and 0.3. 
  
Values of K and x for a reach are usually determined by trial. Values of x are 
assumed, and storage is plotted against xI + (1-x)Q. The value of x which results in 
the data conforming most closely to a straight line is selected (Figure 3.5). The travel 
time K is the slope of the line relating S to xI+(1-x)Q. 
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Figure 3.5: Method of determining K and x for the Muskingum method of routing 

 
The Muskingum routing equation is found by substituting Equation 3.11 and solving 
for Q2, 

= + +2 0 2 1 1 2 1Q c I c I c Q       Equation 3.17 

− + ∆
=

− + ∆0
2 /

2(1 ) /
x t Kc
x t K

      Equation 3.18a 

+ ∆
=

− + ∆1
2 /

2(1 ) /
x t Kc

x t K
   Equation 3.18b 

 

  
− − ∆

=
− + ∆2

2(1 ) /
2(1 ) /

x t Kc
x t K

      Equation 3.18c 

+ + =0 1 2 1c c c        Equation 3.18d 

The significance of Equation 3.18d may be seen if it is noted that, for steady flow (I1 = 
I2 = Q1 = Q2), Equation 3.17 can be correct only when the sum of the constants is 
unity. It is important that K and t be in the same units when used in Equations 3.18. 
When Q and I are in m3/s and storage is computed in cubic meters, the units of K 
and t are seconds. 
Table 3.1: Application of the Muskingum method 

Date Hour I, m3/sec C0I2 C1I1 C2Q1 Q, m3/sec 

4/9 6 a.m. 1000 … … … 1000 

 Noon 2400 -408 530 640 762* 

 6 p.m. 3900 -663 1272 488 1097 

 Midnight 5000 -850 2067 702 1919 

4/10 6 a.m. 4900 -833 2650 1228 3045 

 Noon 4000 -680 2597 1949 3866 
Note: Computed values are in Italic. Coefficients used are c0 = -0.17, c1 = 0.53 and c2 = 0.64. 
* The first computed outflow often drops when inflow increases sharply. This is simply disregarded. 
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The application of the Muskingum method is illustrated in Table 3.1. Values of c0, c1 
and c2 were computed by substituting K = 0.82 day, x= 0.3 (Figure 3.5), and ∆t = 6 hr 
in Equation 3.16a, b, c. Values of I are tabulated, and the products c0I2 and c1I1 are 
computed. With an initial value of Q1 given or estimated, the product c2Q1 is 
calculated and the three products added to obtain Q2. The computed value of Q2 
becomes Q1 for the next routing period, and another value of Q2 can be determined. 
The process continues as long as values of I are known. This routing is easily 
performed in a spreadsheet. 
 
Storage in a river reach actually depends on water depths. The assumption that 
storage is correlated with rates of flow is a valid approximation only when stage and 
discharge relations are closely correlated. Because of the hysteresis effect, this is not 
completely correct. In streams, with a complex slope-stage-discharge relation, more 
complex routing methods (and more data, particularly on geometry) are required to 
obtain satisfactory accuracy. The methods described in the preceding sections 
assume that the longitudinal profile of the water surface in a reach is the same every 
time a given combination of inflow and outflow occurs. This is also an approximation 
but is usually sufficiently precise if the reach is not excessively long. In general, the 
methods, which have been described, are satisfactory on the great majority of 
streams. 
 
In making a Muskingum routing, one has to take into account the value of the 
Courant number: NCr=c∆t/∆x, which should always be less than 1. If the flood wave 
can travel through the reach ∆x in a time less than the time step ∆t, then 
computational instabilities may occur. Hence: 

1≤
∆
∆

=
x
tc

CrN , or with K=∆x/c: 

 

K
c
xt ≤

∆
≤∆  

 

Kinematic routing 
Kinematic routing involves the simultaneous solution of the continuity equation: 

∆
= −

∆
AQ I L
t

       Equation 3.19 

and a flow equation such as the Manning equation: 

= 2 3 1 2Q KAR S       Equation 3.20  

where A is the cross-sectional area, L the length of the reach, and hence L∆A is the 
change in storage. In kinematic routing the energy slope S is taken as the bed slope 
Sb and an iterative solution is used until both equations yield consistent values of Q. 
A mean cross section of the reach is a required input. Kinematic routing is typically 
performed on a computer. 
 
In the form described above, kinematic routing is subject to all of the assumptions of 
hydrologic routing and its principal advantage is an ability to deal with non-linear 
storage-stage relations on the basis of a measured cross section. The reliability of 
kinematic and hydrologic routing are roughly the same. Neither method works well on 
very flat slopes where second-order terms in the energy equation may exceed the 
bed slope, nor on very steep slopes where supercritical flow occurs. 
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The rate of convergence of the solution depends on how well Q2 is estimated for the 
first trial. Many assumptions are possible such as Q2 = Q1 or Q2 = Q1 + (Q1 - Q0). 
Another possibility is to use a very short routing period such that Q is small and 
eliminate the iteration. 

Local inflow 
The previous discussion has considered the routing of inflow entering at the head of 
a reach. In almost all streams there is additional inflow from tributaries, which enter 
the main stream between the inflow and outflow points of the reach. Occasionally this 
local inflow is small enough to be neglected, but often it must be considered. The 
conventional procedures are (1) add the local inflow to the mainstream inflow, and 
consider the total as I in the routing operation, or (2) route the main-stream inflow 
through the reach, and add the estimated local inflow to the computed outflow. The 
first method is used when the local inflow enters the reach near its upstream end, 
while the second method is preferred if the greater portion of the tributary flow joins 
the main stream near the lower end of the reach. The local inflow might also be 
divided into two portions, one part combined with the mainstream inflow and the 
remainder added to the computed outflow. 
 
If the lateral inflow is known, one can use the four-point Muskingum method where 
there is a c3 to be multiplied with the lateral inflow QL (see Ponce, 1979). 

= + + +2 0 2 1 1 2 1 3 LQ c I c I c Q c Q      Equation 3.21 

( ) Ktx
Ktc3 /12

/2
∆+−

∆
=       Equation 3.22 

The hydrograph of lateral inflow may be estimated by comparison with stream flow 
records on tributary streams or by use of rainfall-runoff relations and unit 
hydrographs. In working with past data, the total volume of local inflow should be 
adjusted to equal the difference between the reach inflow and outflow, with proper 
allowance for any change in channel storage during the computation period. Since 
local inflow may be a small difference between two large figures, slight errors in the 
stream flow record may result in large errors in local inflow, even to the extreme of 
indicating negative local inflows. 
 
There also is a so-called three parameter Muskingum method which allows for lateral 
inflow or lateral seepage loss as a percentage of the flow (O’Donnell, 1985): 

( )α= + −
d 1
d
S I Q
t

      Equation 3.23 

[ ]α= + + −(1 ) (1 )S K x I x Q      Equation 3.24 
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