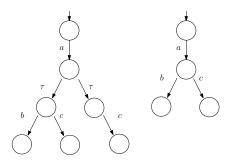
System Validation (IN4387) November 2, 2012, 14:00-17:00

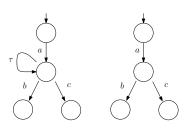
Important Notes. The examination comprises 5 exercises in 4 pages. Please give complete explanation and do not confine yourself to giving the final answer. **Good luck!**

Exercise 1 (20 points) In each of the following items determine whether the specified equivalence holds for the given LTSs. For each and every item provide a complete line of reasoning why a certain equivalence does or does not hold:

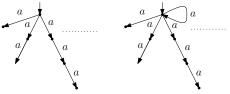
1. Strong bisimilarity:



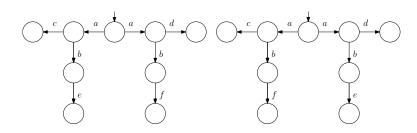
2. Branching bisimilarity:



3. Strong bisimilarity (the dotted lines represent traces of a's with length n, for each and every n > 3):



4. Branching bisimilarity:



Exercise 2 (20 points) Consider the following two modal formulae:

 $[request]\langle true^* response \rangle true$

and

$$[request](\mu X.\langle true \rangle true \land [\overline{response}]X)$$

- 1. Explain in words what each of the two formulae means. (10 points)
- 2. Give a labeled transition system in which one of the two formulae holds and the other one does not hold. (You can freely choose the one to hold.) (10 points)

Exercise 3 (20 points) Define a sort (data type) ToDoList, where each element of this sort is either the empty list, or a non-empty list of prioritized tasks. A prioritized task is a pair (i, t) where i is a positive natural number determining the priority and t is an element of a sort Task, which contains a constant (constructor) noTask and is not specified any further.

- Give the formal definition of *ToDoList* and its constructors. (5 points)
- Define a function (map) *toDoNow*, which takes a *ToDoList* as its parameter, and returns the task with the highest priority in the list, if it is non-empty, or *noTask*, otherwise. If needed, you may define and use other auxiliary functions in the definition of *toDoNow*. (15 points)

Exercise 4 (20 points) Prove the following equations using the axioms provided in the appendix. Mention the name of the axiom used for each and every step.

- 1. $(a(1) | b(2)) \setminus (c(2) | b(3)) = a(1) | b(2)$ (5 points),
- 2. $(a+b) \cdot c \parallel \delta = a \cdot c \cdot \delta + b \cdot c \cdot \delta$ (5 points), and
- 3. $(c \land d) \rightarrow a \subseteq c \rightarrow a$ (Recall $x \subseteq y$ if and only if x + y = y) (10 points).

Exercise 5 (20 points) Specify the following system of two parallel processes:

The first process represents a temperature sensor, which can issue two types of actions: $snd_temp(n)$ and snd_defect . The sensor can send any natural number between 0 and 200 as the parameter of snd_temp and may non-deterministically choose to send the snd_defect action, after which it deadlocks.

The second process represents a thermostat, which receives the temperature from the sensor and if the received value is in the range between 0 and 50, it issues action *on* to the outside world; if the value is between 51 and 100 it sends action *off* to the outside world; if the received value is outside these ranges, it ignores the value. The thermostat keeps on listening to the sensor at any case. Upon synchronizing with *snd_defect*, the thermostat will issue an *alarm* action and terminate.

The action names that are not specified in the above-given description can be chosen at will.

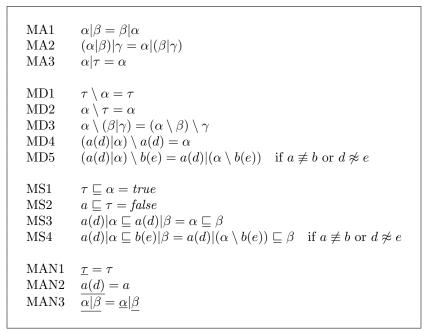


Table 1: Axioms for multi-actions

Note that a(d) and b(e) range over (parameterized) actions, α and β range over (multi)actions and x, y and z range over processes.

A1	x + y = y + x
A2	x + (y + z) = (x + y) + z
A3	x + x = x
A4	$(x+y)\cdot z = x\cdot z + y\cdot z$
A5	$(x \cdot y) \cdot z = x \cdot (y \cdot z)$
A6	$x + \delta = x$
A7	$\delta \cdot x = \delta$
Cond1	$true \rightarrow x \diamond y = x$
Cond2	$false \rightarrow x \diamond y = y$
SUM1	$\sum_{d:D} x = x$
SUM3	$\sum_{d:D} X(d) = X(e) + \sum_{d:D} X(d)$
SUM4	$\sum_{d:D} (X(d) + Y(d)) = \sum_{d:D} X(d) + \sum_{d:D} Y(d)$
SUM5	$\left(\sum_{d:D} X(d)\right) \cdot y = \sum_{d:D} X(d) \cdot y$

Table 2: Axioms for the basic operators

М	$x \parallel y = x \parallel y + y \parallel x + x y$
LM1	$\alpha \parallel x = \alpha \cdot x$
LM2	$\delta \parallel x = \delta$
LM3	$\alpha \bar{x} \parallel y = \alpha (x \parallel y)$
LM4	$(x+y) \parallel z = x \parallel z + y \parallel z$
LM5	$(\sum_{d:D} \overline{X}(d)) \parallel y = \sum_{d:D} \overline{X}(d) \parallel y$
S1	x y = y x
S2	(x y) z = x (y z)
S3	x au = x
S4	$lpha \delta=\delta$
S5	$(\alpha \cdot x) \beta = \alpha \beta \cdot x$
$\mathbf{S6}$	$(\alpha \cdot x) (\beta \cdot y) = \alpha \beta \cdot (x \parallel y)$
S7	(x+y) z=x z+y z
$\mathbf{S8}$	$\left(\sum_{d:D} X(d)\right) y = \sum_{d:D} X(d) y$
TC1	$(\overline{x \parallel y}) \parallel z = x \parallel (\overline{y \parallel z})$
TC2	$x \parallel \delta = x \cdot \delta$
TC3	$(x \overline{ } y) \parallel z = x (y \parallel z)$

Table 3: Axioms for the parallel composition operators

_