
System Validation (IN4387)

November 2, 2012, 14:00-17:00

Important Notes. The examination comprises 5 question in 4 pages. Give complete explanation
and do not confine yourself to giving the final answer. Good luck!

Exercise 1 (20 points) In each of the following item determine whether the specified notion
of equivalence holds between the two given labeled transition systems. For each and every item
provide a complete line of reasoning why a certain equivalence does or does not hold:

1. Strong bisimilarity:

a

τ τ

ccb

a

cb

2. Branching bisimilarity:

a

cb

τ

cb

a

3. Strong bisimilarity:

a
a

a

a

a

a

a
a

a

a

a

a

a

4. Branching bisimilarity:

a ac d

bb

e f

a ac d

bb

f e

1

2

Answer 1

1. No. They are not bisimilar. Assume that they were bimisimilar, then there would exist a
bisimulation relation which relates the initial states. Then, the first ’a’ transition on the
left-hand-side LTS can only be mimicked by the only initial ’a’ transition on the righ-hand
side. Hence, the target of the two ’a’ transition have to be related in the same relation.
However, this cannot be the case since the state in the left-hand-side can do a τ transition,
while the right-hand-side one cannot mimic it. Note that strong bisimilarity does not ignore
τ transitions.

2. Yes, they are. A branching bisimulation relation relating the initial states is given below:

a

cb

τ

cb

a

3. No, they are not bisimilar. Assume that they were bisimilar, then there would exist a
bisimulation relation which relates the initial states. The ’a’ loop in the initial state of the
right-hand-side (rhs) LTS should be mimicked by an ’a’ transition in the left-hand-side (lhs)
one. Assume that the latter ’a’ transition is the start of a trace of size n (for some arbitrary
n); then it follows that the initial state of the rhs LTS should be bisimilar to the second
state of this trace. The initial state of the rhs LTS can do an ‘a’-loop, and this can only
be mimicked by the second state in the trace of size n by performing an ‘a’ transition into
the third state in the trace. Hence, the initial state of the rhs LTS should be related to the
third state in the trace. Repeating this exercise on the second to the n-th state in the trace,
will lead to the conclusion that the last state in the trace of size n, should be bisimilar to
the initial state of the rhs LTS, which is clearly not true, because the last state of the trace
deadlocks, while the initial state of the rhs LTS can still perform ‘a’ transitions.

4. No, they are not bisimilar. Assume that they were bisimilar, then there would exist a
bisimulation relation which relates the initial states. The initial state of the lhs LTS can
make an ‘a’ transition to the left. This can be mimicked by the initial state of the rhs LTS:

• Either the initial state of the rhs LTS makes the ‘a’ transition to the left, then the states
to the left of the initial states in the lhs and rhs LTSs should be related. Consider for
example the latter state in the lhs LTS; it can perform a ‘b’ transition; this can be
mimicked in the corresponding state in the rhs LTS by performing the only enabled
‘b’ transition. Hence, the targets of the two ’b’ transitions should be related by the
same bisimulation relation. However, the latter states cannot be bisimilar because the
lhs state can perform an ‘e’ transition, which cannot be mimicked by the rhs state and
likewise, the rhs can perform an ‘f’ transition, which cannot be mimicked by the lhs
state.

• Or the initial state of the rhs LTS makes the ‘a’ transition to the right, then the state
to the left of the initial state of the lhs LTS should be related to the state to the right of
the initial state of the rhs LTS. This cannot be true however, since the former state can
perform a ‘c’ transition, which cannot be mimicked by the latter state (and likewise,
the latter state performs a ’d’ transition, which cannot be performed by the former
state).

3

Exercise 2 (20 points) Consider the following two modal formulae:

[request]〈true∗response〉true

and

[request](µX.〈true〉true ∧ [response]X)

1. Explain in words what each of the two formulae means. (10 points)

2. Give a labeled transition system in which one of the two formulae holds and the other one
doe not hold. (It does not matter which one you choose to hold.) (10 points)

Answer 2

1. The first formula states that after each ‘request’, there is at least one path leading to a
‘response’. (There may be other paths not leading to response.) The second formula states
that after each ‘request’, each path will eventually reach a ‘response’ action. (No path can
avoid doing a response.)

2. The following LTS satisfies the first formula but not the second, since it can avoid the
response by taking the τ transition infinitely many times. It also does not satisfy the second
formula, because it has a path (starting with ’a’) which can avoid the response altogether.

τ

responsea

request

4

Exercise 3 (20 points) Define a sort (data type) ToDoList, where each element of this sort is
either the empty list, or a non-empty list of prioritized tasks. A prioritized task is a pair (i, t)
where i is a positive natural number determining the priority and t is an element of a sort Task,
which contains a constant (constructor) noTask and is not specified any further.

• Give the formal definition of ToDoList and its constructors. (5 points)

• Define a function (map) toDoNow, which taks a ToDoList as its parameter, and returns
the task with the highest priority in the list, if it is non-empty, or noTask, otherwise. If
needed, you may define and use other auxiliary functions used in the definition of toDoNow.
(15 points)

Answer 3

•

sort Task ;
sort toDoList = List(Nat#Task);
cons noTask: Task;

•

map minPr: toDoList → Nat;
toDoNow: toDoList → toDoList;

var i, j: Nat;
t : Task;
l : toDoList;

eqn minPr([])= 0; (1)
minPr((i,t) � l) = min(i, minPr(l));
toDoNow((i,t) � l) = if (minPr(l) >= i, t, toDoNow(l)) ;
toDoNow([]) = noTask ;

5

Exercise 4 (20 points) Prove the following equations using the axioms provided in the appendix.
Mention the name of the axiom used for each and every step.

1. (a(1) | b(2)) \ (c(2) | b(3)) = a(1) | b(2) (5 points),

2. (a+ b) · c ‖ δ = a · c · δ + b · c · δ (5 points), and

3. (c ∧ d)→a ⊆ c→a (Hint x ⊆ y if and only if x+ y = y) (10 points).

Answer 4

1.

(a(1) | b(2)) \ (c(2) | b(3)) = (MD3)
((a(1) | b(2)) \ c(2)) \ b(3) = (MD5)
(a(1) | (b(2) \ c(2))) \ b(3) = (MA3)
(a(1) | ((b(2) | τ) \ c(2))) \ b(3) = (MA3)
(a(1) | (b(2) | (τ \ c(2)))) \ b(3) = (MD1)
(a(1) | (b(2) | τ)) \ b(3) = (MA3)
(a(1) | b(2)) \ b(3) = (MD5)
a(1) | (b(2) \ b(3)) = (MA3)
a(1) | ((b(2) | τ) \ b(3)) = (MD5)
a(1) | (b(2)) | (τ \ b(3))) = (MD1)
a(1) | (b(2)) | τ) = (MA3)
a(1) | b(2)

2.

(a+ b) · c ‖ δ = (M)
((a+ b) · c T δ) + (δ T (a+ b) · c) + ((a+ b) · c|δ) = (A4)
((a · c+ b · c) T δ) + (δ T (a+ b) · c) + ((a+ b) · c|δ) = (LM4)
(a · c T δ) + (b · c T δ) + (δ T (a+ b) · c) + ((a+ b) · c|δ) = (LM2)× 2
a · (c ‖ δ) + b · (c ‖ δ) + (δ T (a+ b) · c) + ((a+ b) · c|δ) = (LM2)
a · (c ‖ δ) + b · (c ‖ δ) + δ + ((a+ b) · c|δ) = (LM2)
a · (c ‖ δ) + b · (c ‖ δ) + ((a+ b) · c|δ) = (LM2)× 2
a · (c ‖ δ) + b · (c ‖ δ) + ((a · c+ b · c)|δ) = (LM2)× 2
a · (c ‖ δ) + b · (c ‖ δ) + (a · c)|δ + (b · c)|δ = (LM2)× 2
a · (c ‖ δ) + b · (c ‖ δ) + (a | δ) · c+ (b | δ) · c = (LM2)× 2
a · (c ‖ δ) + b · (c ‖ δ) + δ · c+ δ · c = (LM2)× 2
a · (c ‖ δ) + b · (c ‖ δ) + δ + δ = (LM2)× 2
a · (c ‖ δ) + b · (c ‖ δ) = (M)× 2
a · (c T δ + δ T c+ c|δ) + b · (c T δ + δ T c+ c|δ) = (M)× 2
a · (c · δ + δ T c+ c|δ) + b · (c · δ + δ T c+ c|δ) = (LM1)× 2
a · (c · δ + δ T c+ c|δ) + b · (c · δ + δ T c+ c|δ) = (LM2)× 2
a · (c · δ + δ + c|δ) + b · (c · δ + δ + c|δ) = (A6)× 2
a · (c · δ + c|δ) + b · (c · δ + c|δ) = (S4)× 2
a · (c · δ + δ) + b · (c · δ + δ) = (A6)× 2
a · (c · δ) + b · (c · δ) = (A6)× 2

3. (c ∧ d)→a ⊆ c→a, which means that we have to prove c → a = c→a + (c ∧ d)→a. We do
this by induction (case analysis) on the boolean variable d:

6

• Either d = true, then we have:

c→a+ (c ∧ d)→a = d = true
c→a+ (c ∧ true)→a = logic
c→a+ c→a = (A3)
c→a+ c→a = (A3)
c→a

• Either d = false, then we have:

c→a+ (c ∧ false)→a = d = false
c→a+ (c ∧ false)→a = logic
c→a+ false→a = (cond2)
c→a+ δ = (A3)
c→a

7

Exercise 5 (20 points) Specify the following system of two parallel processes:
The first process represents a temperature sensor, which can issue two types of actions:

snd temp(n) and snddefect. The sensor can send any natural number between 0 and 200 as
the parameter of snd temp and may non-deterministically choose to send the snd defect signal,
after which it deadlocks.

The second process represents a thermostat, which receives temperature from the sensor and
if the received value is in the range 0 and 50 it issues action on to the outside world; if the value is
between 50 and 100 it sends action off to the outside world; if the received value is outside these
ranges it ignores the value, but keeps on listening to the sensor at any case. Upon synchronizing
with snd defect , the thermostat will issue an alarm action and terminate.

The action names that are not specified in the above-given description can be chosen freely.

Answer 5

act snd temp, rcv temp, sync temp : Nat;
snd defect, rcv defect, sync defect, , on, off ;

proc Sensor =
snd defect · delta +
sum n : Nat . (n ≤ 200) → snd temp(n) · Sensor ;

Thermostat =
rcv defect · alarm +
sum n : Nat . rcv temp(n) .

(n ≤ 50) → on . Thermostat
♦ ((n ≤ 100) → off . Thermostat

♦ Thermostat) ;
init allow ({ sync temp, sync defect, on, off, alarm },

(comm { snd temp | rcv temp → sync temp, snd defect | rcv defect → sync defect },
Sensor ‖ Thermostat)) ;

8

MA1 α|β = β|α
MA2 (α|β)|γ = α|(β|γ)
MA3 α|τ = α

MD1 τ \ α = τ
MD2 α \ τ = α
MD3 α \ (β|γ) = (α \ β) \ γ
MD4 (a(d)|α) \ a(d) = α
MD5 (a(d)|α) \ b(e) = a(d)|(α \ b(e)) if a 6≡ b or d 6≈ e

MS1 τ v α = true
MS2 a v τ = false
MS3 a(d)|α v a(d)|β = α v β
MS4 a(d)|α v b(e)|β = a(d)|(α \ b(e)) v β if a 6≡ b or d 6≈ e

MAN1 τ = τ
MAN2 a(d) = a

MAN3 α|β = α|β

Table 1: Axioms for multi-actions

Note that a(d) and b(e) range over (parameterized) actions, α and β range over (multi)actions
and x, y and z range over processes.

9

A1 x+ y = y + x
A2 x+ (y + z) = (x+ y) + z
A3 x+ x = x
A4 (x+ y)·z = x·z + y·z
A5 (x·y)·z = x·(y·z)
A6 x+ δ = x
A7 δ·x = δ
Cond1 true→x � y = x
Cond2 false→x � y = y
SUM1

∑
d:D x = x

SUM3
∑

d:DX(d) = X(e) +
∑

d:DX(d)
SUM4

∑
d:D(X(d) + Y (d)) =

∑
d:DX(d) +

∑
d:D Y (d)

SUM5 (
∑

d:DX(d))·y =
∑

d:DX(d)·y

Table 2: Axioms for the basic operators

M x ‖ y = x T y + y T x+ x|y

LM1 α T x = α·x
LM2 δ T x = δ
LM3 α·x T y = α·(x ‖ y)
LM4 (x+ y) T z = x T z + y T z
LM5 (

∑
d:DX(d)) T y =

∑
d:DX(d) T y

S1 x|y = y|x
S2 (x|y)|z = x|(y|z)
S3 x|τ = x
S4 α|δ = δ
S5 (α·x)|β = α|β·x
S6 (α·x)|(β·y) = α|β·(x ‖ y)
S7 (x+ y)|z = x|z + y|z
S8 (

∑
d:DX(d))|y =

∑
d:DX(d)|y

TC1 (x T y) T z = x T (y ‖ z)
TC2 x T δ = x·δ
TC3 (x|y) T z = x|(y T z)

Table 3: Axioms for the parallel composition operators

