Annex C - The commented code
Team 7 - 20/01/2012

% We have modeled the systemto be controlled by 3 parallel controllers, 1for High Chamber, 1 for Low
Chamberand 1 for both the sluices.

% Each Chamberand Door has been denoted by numbersforease while writing the code and readingit.

% Sluice1(1)isthe inputsluice, Sluice2(2) is the outputsluice, Low Chamberis 3, High Chamberis 4 for
e.g. moveWaferOut4_3denotesthe action of

% HighVacuumchamber(4) to move the wafertowards LowVacuumChamber(3) and moveWaferind_3is
the action by LowVacuumChamber(3) to move waferin coming from

% HighVacuumChamber(4). Both these actions have been synchronised, as well as the others of the
same kind. Several communication actions have been used to

% communicate the state of the chambers and doors.
% What they communicate has been explained laterinthe comments.

% The system model diagramin the reportincludesthe numbers which represent doors.

% Datatype forknowingthe state of the waferinside achamber;indirectly alsotells the number of
wafersinside the chamber

%Processed =1 processed wafer

%Unprocessed =1 unprocessed wafer

%Both =1 unprocessed waferand 1 processed wafer
%Empty = No wafer

%the combinations (unprocessed,unprocessed) and (processed,processed) in LVCare not possible

sort Procstate = struct Processed | Unprocessed | Both | Empty;



% Vacuumlevel has been assumed to take 2 possible valuesin each chambereitherthe corresponding
thresholdvalue orany randomvalue( afterthe dooris opened)

sort Vacuumlevel =struct ThreshHigh | Threshlow | Random;

% All the actions used, description of each action can be foundin the reportsubmitted

act maintainVacuum: Vacuumlevel;

act acceptWaferl,% Sluicelcan accept an unprocessed wafer

openDoorl, % Openthe doorof sluicel

moveWaferIn0_1,% move the waferinto sluicel

closeDoorl, % Close the door of sluicel

openDoor3, % Openthe 2nd doorof Sluicel

openDoor4, % Open the low chamber - Sluiceldoor;
moveWaferOutl 3,%Move the wafer out of sluice 1 towards low chamber
moveWaferlnl_3, % Move the incoming waferfrom Sluicelintothe low chamber
closeDoor4, %close the low chamber - Sluicel door

closeDoor3, % closethe 2nd door of Sluicel

openDoor7, % openthe low chamber - high Chamberdoor
openDoors, % open the high chamber - low chamberdoor

moveWaferOut3_4,%move the wafer from low to high chamber (as seen from the low vaccum chamber
perspective)

moveWaferln3_4, %take the waferfrom low to high chamber (as seenfrom the high vaccum chamber
perspective)

closeDoor7, % close the low chamber - high Chamberdoor



closeDoor8, % close the high chamber-low chamberdoor
StartProcessing,% Start processing inside the wafer

EndProcessing, % End processinginside the wafer

moveWaferOut4_3,% move the waferfrom High tolow chamber
moveWaferln4_3, % take the incoming wafer from high chamberinto low chamber
openDoor6, % openthe doorof Low chamber-sluice2

openDoor5, % openthe doorof sluice 2 - low chamber
moveWaferOut3_2, % move the wafer out of the low chambertowards sluice 2
moveWaferin3_2, % move the waferinto the sluice 2from low chamber
closeDoor6, % close the door of Low chamber- sluice2

closeDoor5, % close the door of sluice 2 - low chamber

openDoor2, % openthe exitdoorof Sluice 2

moveWaferOut2_0, % move the wafer out of sluice 2

closeDoor2, % close the exit door of sluice 2

move, % synchronizes actions to move waferfrom High vacuum chamberto low vacuum
chamber

movel, % synchronizes actions to move waferfrom low chamberto sluice 2

move?2, %synchronizes actions to move waferfromsluice 1to low chamber

move3 % synchronizes actions to mave wafer from low chamberto high chamber

7

act send1B, %send actionto communicate the state of Door (3) to low Vacuum process from Sluice
process

send1B 1, %sendactionto coomunicate the state of Door (5) to low vacuum process from Sluice
process

send2B, %send action to communicate the sate of Door(7) to High vacuum Process
receive2B, %receive state of Door(3) actioninLow Vacuum process

receive2B_1, %receive state of Door (5)in low vacuum process



receive3B, %receive state of Door(7)inHighVacuum process

com, %synchronization actionforsend1B|receive2B
com2, %synchronization action forsend1B_1|receive2B 1
com3 %synchronization action forsend2B | receive3B
:Bool;

act receive3P, %receive state of low vacuum chamberaction in High vacuum chamber

receive2P, %receive state of high vacuumchamberactionin low vacuumchamber

send2P, %send action to communicate the state of low vacuum chamberto highvacuum process
send3P, %send action to communicate the state of high vacuum chamber to low vacuum process
receivelP, %receive state of low vacuum chamberactioninsluice process

send2P_1, %sendactiontocommunicate the state of low chamberto sluice process

send3P_E, %send actiontocommunicate the high vacuum process Empty state to low vacuum
process

receive2P_E, %receive state of high vacuum chamberactioninlow vacuum process
send2P_1 P, %sendactionto communicate the state of low vacuum process to sluice process

receivelP_P, %receive state of low vacuum chamberinsluice process

comb5, %synchronization action for send2P | receive3P

com7, %synchronization actionforsend2P_1_P|receivelP_P
coml, %synchronization action forsend2P_1|receivelP
come, %synchronization action for send3P_E|receive2P_E
com4 %synchronization action forsend3P | receive2P
:Procstate;

% function to calculate next state aftera waferis movedin

map predState : Procstate#Procstate ->Procstate;



% functionto calculate next state aftera waferis moved out

map prevState : Procstate#Procstate ->Procstate;

% equations to calculate next state afterawaferis movedin
egn predState(Unprocessed,Processed)=Both;

egn predState(Empty,Processed)=Processed;

eqgn predState(Empty,Unprocessed)=Unprocessed;

eqgn predState (Empty, Empty) =Empty;

egn predState(Processed, Unprocessed)=Both;

egn predState (Processed, Empty)=Processed;

egn predState(Unprocessed, Empty) =Unprocessed;

egn predState (Both, Empty) =Both;

eqgn predState (Empty, Both) =Both;

% equations for calculating the next state if awaferis moved out.
egn prevState(Processed,Processed)=Empty;

egn prevState(Both,Processed)=Unprocessed;

egn prevState(Unprocessed,Unprocessed)=Empty;

eqgn prevState(Both,Unprocessed)=Processed;

egn prevState(Processed, Empty)=Processed;

egn prevState(Unprocessed, Empty)=Unprocessed;

eqgn prevState(Empty, Empty)=Empty;

egn prevState(Both, Empty) =Both;

egn prevState(Both, Both)=Empty;



proc

%HIGH VACUUM CHAMBER

HighVacuum (HighVacuumlevel: Vacuumlevel, Highstate : Procstate, HighDoor:Bool)
% maintainvacuum if vacuumlevelis not at the required level

= (HighVacuumlevel!=ThreshHigh)->maintainVacuum(ThreshHigh).HighVacuum(HighVacuumlevel=
ThreshHigh)

+

% if high chamberis empty,send it's state and if lowvacuum chamber has an unprocessed waferand the
doorisopen, openthe doorof the highchamber

(Highstate == Empty && HighVacuumlevel ==ThreshHigh )->send3P_E(Empty).sum
LowHighDoorState:Bool . receive3B(LowHighDoorState) . (LowHighDoorState ==true) ->
openDoor8.HighVacuum(HighDoor =true)

+
% if high chamberis empty and highdooris open, move the waferin

(Highstate == Empty && HighDoor == true && HighVacuumlevel==ThreshHigh) -
>moveWaferIn3_4.closeDoor8.HighVacuum(Highstate =Unprocessed, HighVacuumlevel =Random,
HighDoor = false)

+

% if high chamber has a processed waferand the highdooris closed and LowHigh dooris open, openthe
high door, move the waferout and close the door else stay in the same state.

(Highstate == Processed && HighDoor ==false && HighVacuumlevel ==ThreshHigh) ->sum
LowHighDoorState :Bool . receive3B(LowHighDoorState).(LowHighDoorState ==true) -
>(openDoor8.moveWaferOut4 3.closeDoor8.HighVacuum(Highstate=Empty,
HighVacuumlevel=Random, HighDoor =false))<>HighVacuum(Highstate=Processed,
HighVacuumlevel=ThreshHigh, HighDoor=false)



+

% if HVC has a unprocessed waferinside, startit's processing, end the processing and send the current
state to low chamber

% assuming that the waferundergoes some processinginside the HVC

(Highstate == Unprocessed && HighVacuumlevel ==ThreshHigh)->(StartProcessing.
EndProcessing.send3P(Processed). HighVacuum(Highstate=Processed, HighDoor =false));

%LOW VACUUM CHAMBER PROCESS

proc

Low ( Current_Lowstate : Procstate, LowVacuum : Vacuumlevel, LowHighDoorstate :
Bool,LowSluice1Door :Bool) =

% if vacuumlevelis notwhatisrequired

(LowVacuum!=Threshlow)->maintainVacuum(Threshlow). Low(LowVacuum =Threshlow)

+

% if thereisno unprocessed waferinsidethe LVC, Low High door and Low sluice 1 door are closed,send
current state to sluicel, read the doorof sluice 1, ifit isopen, open Low sluiceldoor,move the waferin
and close the door

((Current_Lowstate == Empty | | Current_Lowstate == Processed ) && LowHighDoorstate == false &&
LowSluicelDoor==false && LowVacuum==Threshlow)->send2P_1 P(Current_Lowstate).sum
SluicelLowDoorstate:Bool . receive2B(SluicelLowDoorstate) . (SluicelLowDoorstate ==true) -
>openDoor4. moveWaferlnl_3.closeDoor4.Low(Current_Lowstate=
predState(Current_Lowstate,Unprocessed), LowVacuum =Random,LowSluice1Door=
false)<>(Low(Current_Lowstate =predState(Current_Lowstate, Empty),LowVacuum=
Threshlow,LowSluicelDoor=false))



% if LVC has a processed waferinside, Low high dooris closed, sendit's state to sluice 2,read the sluice 2
low door state, if open, indicating that it can take a processed wafer, move the wafer out, close the door
else stayinthe same state.

(( Current_Lowstate ==Processed | | Current_Lowstate ==Both)&& LowHighDoorstate ==false &&
LowVacuum ==Threshlow ) ->send2P_1(Current_Lowstate).sum Sluice2LowDoorstate:Bool .
receive2B_1(Sluice2LowDoorstate) . (Sluice2LowDoorstate ==true ) -> (openDoor6. moveWaferQut3_2.
closeDoor6.Low(Current_Lowstate =prevState(Current_Lowstate,Processed), LowVacuum =
Random))<>Low(Current_Lowstate =prevState(Current_Lowstate,Empty),LowVacuum =Threshlow)

+

% if there isno processed waferinside the LVC, LowHigh dooris closed,read HVC's state,if ithas a
processed wafer, (openthe doorelse keepitclosed), send the doorstate to high chamber

(Current_Lowstate !=Processed && Current_Lowstate !=Both && LowHighDoorstate ==false &&
LowVacuum == Threshlow)->sum HighState:Procstate . receive2P(HighState).(HighState ==Processed)-
>(openDoor7.send2B(true).Low(LowHighDoorstate =true))<>(send2B(false).Low(LowHighDoorstate =
false, LowVacuum=Threshlow))

+

% if the Low High doorisopenand HVC has a processed wafer, move the waferin, clos the low high
door

( Current_Lowstate !=Processed && Current_Lowstate !=Both && LowHighDoorstate ==true &&
LowVacuum == Threshlow)->moveWaferIin4_3.closeDoor7.Low( Current_Lowstate=
predState(Current_Lowstate,Processed), LowVacuum=Random, LowHighDoorstate =false)

+

% if LVC has a unprocessed wafer, low high dooris closed,read the HVC's state, if empty(open the low
high door) else (letitremain closed) and send the door state to highchamber.

((Current_Lowstate ==Unprocessed | | Current_Lowstate ==Both)&& LowHighDoorstate == false &&
LowVacuum == Threshlow) ->sum HighState:Procstate . receive2P_E(HighState).(HighState == Empty)-
>openDoor7.send2B(true).Low(LowHighDoorstate =true)<>send2B(false).Low(LowHighDoorstate =
false)



% if the LVC has a unprocessed waferand low high dooris open moveitinto HVC, close the low high
door

(LowHighDoorstate ==true && Current_Lowstate !=Empty && Current_Lowstate !=Processed &&
LowVacuum == Threshlow)->moveWaferOut3_4.closeDoor7.Low( Current_Lowstate =
prevState(Current_Lowstate,Unprocessed), LowVacuum =Random, LowHighDoorstate=false);

%SLUICE CONTROLPROCESS

proc

Sluices (UnprocessedAccept :Bool,SluicelLowDoorState: Bool,Sluice2LowDoorState: Bool ,SluiceState:
Procstate)

% If sluice 1isready to accepta unprocessed wafer, moveitin

= ((UnprocessedAccept==true) ->
acceptWaferl.openDoorl.moveWaferlnO_1.closeDoorl.Sluices(UnprocessedAccept =
false,SluiceState=predState(SluiceState,Unprocessed)))

+

% if sluice 2 has a processed wafer, open door,move it out and close the exit door

((SluiceState ==Processed | | SluiceState==Both) -
>openDoor2.moveWaferOut2_0.closeDoor2.Sluices(SluiceState=prevState(SluiceState,Processed)))

+

% if sluice 1 has a unprocessed wafer, read the state of LVC,ifitdoe s not have a unprocessed
wafer,(open the Sluicllow doorand sendit's state to LVC, move the wafer out towards LVC and close
the Sluicel Low door) else stay in the same state



((SluiceState ==Unprocessed | | SluiceState ==Both) && SluicelLowDoorState==false) ->sum
Current_Lowstate :Procstate . receivelP_P(Current_Lowstate).(Current_Lowstate !|=Unprocessed &&
Current_Lowstate !=Both)-
>openDoor3.send1B(true).(moveWaferOutl_3.closeDoor3.Sluices(UnprocessedAccept =
true,SluicelLowDoorState =false
,SluiceState=prevState(SluiceState,Unprocessed)))<>(Sluices(Sluice lLowDoorState =false))

+

% if sluice 2 does not have a waferand LVC has a processed wafer, read the state of LVC, ifit hasa
processed wafer, open doorof sluice 2, sendit's state to LVC

((SluiceState ==Empty | | SluiceState ==Unprocessed) && Sluice2LowDoorState ==false) ->sum
Current_Lowstate :Procstate . receive1P(Current_Lowstate).(Current_Lowstate ==Processed | |
Current_Lowstate == Both) ->openDoor5.send1B_1(true).Sluices(Sluice2LowDoorState=true)

%if sluice2low dooris open, move waferin, close the Sluice 2low door

((Sluice2LowDoorState ==true) ->moveWaferIn3_2. closeDoor5
.Sluices(SluiceState=predState(SluiceState,Processed), Sluice2LowDoorState =false));

init

% allow all the external actions and synchronised communication actions

allow({openDoorl,moveWaferIn0_1,closeDoorl1,openDoor3,closeDoor3,openDoor5,cl oseDoor5,0penDo
or2,moveWaferOut2_0,closeDoor2,acceptWaferl,openDoor6,StartProcessing,EndProcessing,closeDoor
6,closeDoor4,openDoor4,openDoor7,closeDoor7,0penDoor8,closeDoor8,

movel,move,move2,move3,com,coml,com2,com3,com4,com5,com6,com?,maintainVacuum},



comm({ moveWaferOut4 3| moveWaferln4 3->move,
moveWaferOut3_2| moveWaferin3_2->movel,
moveWaferOutl_3|moveWaferinl_3->move2,
moveWaferOut3_4|moveWaferin3_4->move3,
send1B|receive2B->com,
send1B_1|receive2B_1->com?2,
send2P |receive3P ->comb5,
send2P_1|receivelP->coml,
send2B|receive3B->com3,
send3P|receive2P ->com4,
send3P_E|receive2P_E->com6,
send2P_1 P|receivelP_P->com7},
Sluices(true, false,false, Empty)| |
Low(Empty, Random, false,false) | |

HighVacuum (Random, Empty, false)



