Iron removal at groundwater pumping station Harderbroek

Karin Teunissen 25 May 2007 08 October 2007

Iron removal at groundwater pumping station Harderbroek

Committee

Prof. ir. J.C. van Dijk Dr. ir. L.C. Rietveld Dr. ir. A.J. Abrahamse H. Leijssen Prof. dr. ir. M.C.M. van Loosdrecht

Content

Introduction

Harderbroek Iron removal Objective

Research

Fingerprint Column experiments Model

Conclusions and recommendations

HARDERBROEK

Drinking water supply Flevoland

Treatment scheme Harderbroek

IRON REMOVAL

Iron removal

Iron is removed to avoid iron deposits

- In distribution system
- In laundry
- In drinking water

08/10/2007 INTRODUCTION

Iron in groundwater

Fe²⁺

- Present in anaerobic groundwater
- Dissolved in water

Fe³⁺

- Forms iron flocks in water
- Gives brownish colour to the water

Iron removal

Iron removal mechanisms:

Iron Removal

08/10/2007 INTRODUCTION

OBJECTIVE

Water law

Situation at Harderbroek

Expensive cleaning events

iron concentration in clear water

08/10/2007 INTRODUCTION

Harderbroek vs Fledite

Comparable water source Same filters

Different aeration

- Harderbroek cascade aeration
- Fledite spray aeration

Hypothesis (1)

Formed iron hydroxide flocks breakdown in cascade or filter inlet construction

Small flocks break through the filters

Methods

Particle fingerprint

 To identify the presence of particles through the treatment plant in relation to operational events

Column experiments

To get information on oxidation and flock formation

Model

- Generate insight in processes in the filter
- Elaborate future scenarios

FINGERPRINT

Fingerprint

Particles identified with particle counters

Mainly focussed on filtration step

- After switching a filter
- After a backwash

RESEARCH Fingerprint

Number of particles in filter effluent

Fingerprint results

After filter switch

Volume of particles in filter effluent

ppb

$$V = \frac{1}{6}\pi \sqrt{d_i \cdot d_j}^3 \cdot number$$

1 part per billion = 1 volume of particles in 1,000,000,000 volumes of water

RESEARCH Fingerprint

Fingerprint results

After backwash

Volume concentration increased for 4 hours

 \rightarrow recirculation

Volume of particles in filter effluent

Fingerprint

Volume load by events compared to stable operation

Switch filter

In 2 % of the time 15 % of the load

Backwash filter

In 13% of the filter run time 45 % of the volume load

Volume of particles in filter effluent

50

— 1 um

Fingerprint

Aim Average 1 ppb Reduce peaks	Pumping station	Average ppb clear water	Cleaning frequency
	Harderbroek	5	1 in 3 years
	Franeker	15	1 in 1 year
	Franeker + UF	1	1 in 10 - 12 years (expected)

COLUMN EXPERIMENTS

Column experiments

Part 1

- mixing intensity
- residence time
- and aeration

Part 2

• pH

08/10/2007

RESEARCH Column

Column results

Iron in cascade effluent

Hypothesis (2)

pH in cascade effluent water too low for efficient oxidation

Column experiments

Experiments with pH increase

NaOH dosage

pH from 7.5 to 8.0

Crushed limestone filtration

pH from 7.5 to 7.7

RESEARCH Column

Column results

Fe²⁺ concentration

27

08/10/2007

Fe²⁺ and Fe³⁺ concentration

Column results

Model

Modelling Reflection of reality

Simplification of reality

Easy and fast method to vary parameters

Model

Iron removal model is created in Stimela

First reservoir represents water phase before filter Flock formation No flock removal No adsorption

Filter represents filter bed Flock formation Flock removal Adsorptive iron removal

Model results

Column height 30 cm

Fe³⁺ influent concentration 0.45 mg/l Fe³⁺ effluent concentration 0.20 mg/l Filter bed height 2 m

Fe³⁺ effluent concentration 0.033 mg/l

Model results

Tower aeration before filtration:

CONCLUSIONS & RECOMMENDATIONS

Conclusion

Model

- First set-up made for iron removal model
- Quick insight in alternatives

Column experiments

- After cascade aeration the majority of iron is dissolved Fe²⁺
- At Harderbroek oxidation is limited by the pH

08/10/2007

Conclusion

Fingerprint

- Operational events have a significant contribution to volume load
- Relation between ppb's and cleaning frequency

Recommendations

- Apply a smooth treatment operation
- Recirculation of first filtrate after a backwash event
- Guideline 1 ppb?

Alternatives Harderbroek

Replace tower aeration directly after raw water

- More intensive aeration will increase the pH
- No addition of chemicals to the water

Caustic soda dosage

- Easy to implement
- Relatively sensitive to control

Crushed limestone filtration

- Automatic equilibrium, no need for control
- More investment costs, 2 filtration steps

Iron removal at groundwater pumping station Harderbroek

Karin Teunissen 25 May 2007

