
Appendix A

Discrete Fourier Transform and
Sampling Theorem.

In this appendix the discrete Fourier Transform is derived, starting from the Continuous
Fourier Transform. As part of the derivation, the sampling theorem or Nyquist criterion
is obtained.

Derivation

The continuous integrals are nearly always used in deriving any mathematical results,
but, in performing transforms on data, the integrals are always replaced by summations.
The continuous signal a(t) becomes the discrete signal, or time series, ak, in which k is
an integer, and the sampling has taken place at regular intervals k∆t. Thus the discrete
signal corresponds exactly to the continuous signal at times

t = k∆t. (A.1)

Consider the inverse Fourier Transform (1.2) at the discrete times k∆t:

ak =

∫ ∞

−∞
A(f) exp(2πifk∆t)df k = ...,−2,−1, 0, 1, 2, ... (A.2)

where ak stands for the fact that time is now discrete so:

ak = a(t),when t = k∆t k = ...,−2,−1, 0, 1, 2, ... (A.3)

An important aspect of the integrand is that the exponential function exp(2πifk∆t) is
periodic with a period of 1/∆t, i.e.,

f = F : exp(2πiFk∆t)
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f = F + 1/∆t : exp(2πi(F + 1/∆t)k∆t)

: = exp(2πiFk∆t + 2πik)

: = exp(2πiFk∆t)

since exp(2πik) = 1, and therefore the exponential at f = F is identical to the exponential
at f = F + 1/∆t. Therefore, for all k, the integral above may be replaced by an infinite
sum of pieces of the integral with period 1/∆t:

ak =

(

· · · +
∫ − 3

2∆t

− 5

2∆t

+

∫ − 1

2∆t

− 3

2∆t

+

∫ + 1

2∆t

− 1

2∆t

+

∫ + 3

2∆t

+ 1

2∆t

+ · · ·
)

A(f) exp(2πifk∆t)df

=
∞
∑

m=−∞

∫ m

∆t
+ 1

2∆t

m

∆t
− 1

2∆t

A(f) exp(2πifk∆t)df (A.4)

In order to get the bounds of the integral from −1/(2∆t) to +1/(2∆t), we change to the
variable f ′ = f − m/∆t to yield:

ak =
∞
∑

m=−∞

∫ 1

2∆t

− 1

2∆t

A(f ′ +
m

∆t
) exp(2πi{f ′ +

m

∆t
}k∆t)df ′ (A.5)

Changing the order of the integration and summation, and noting that the exponential
becomes periodic (so exp(2πimk) = 1), this becomes

ak =

∫ 1

2∆t

− 1

2∆t

[

∞
∑

m=−∞

A(f ′ +
m

∆t
)

]

exp(2πif ′k∆t)df ′ (A.6)

The Fourier transform of the discrete time series is thus

ak =

∫ 1

2∆t

− 1

2∆t

AD(f ′) exp(2πif ′k∆t)df ′ k = ...,−2,−1, 0, 1, 2, ... (A.7)

provided

AD(f ′) =
∞
∑

m=−∞

A(f ′ +
m

∆t
) (A.8)

So this is an infinite series of shifted spectra as shown in figure 1.3(b) in the main text.
The discretisation of the time signal forces the Fourier transform to become periodic. In
the discrete case we get the same spectrum as the continuous case if we only take the
period from −1/(2∆t) to +1/(2∆t), and else be zero; the signal must be band-limited. So
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this means means that the discrete signal must be zero for frequencies |f | ≥ fN = 1/(2∆t).
The frequency fN is known as the Nyquist frequency.

Let us now look at the other integral of the continuous Fourier-transform pair, i.e.
(1.1). We evaluate the integral by discretisation , so then we obtain for AD(f):

AD(f) = ∆t
∞
∑

k=−∞

ak exp(−2πifk∆t) (A.9)

In practice the number of samples is always finite since we measure only for a certain
time. Say we have N samples. Then we obtain the pair:

AD(f) = ∆t
N−1
∑

k=0

ak exp(−2πifk∆t) (A.10)

ak =

∫ 1

2∆t

− 1

2∆t

AD(f) exp(2πifk∆t)df k = 0, 1, 2, ..., N − 1 (A.11)

This is the transform pair for continuous frequency and discrete time. Notice that the
integral runs from −1/2∆t to +1/2∆t, i.e. one period where one spectrum of AD(f) is
present.

As said above, the values for frequencies above the Nyquist frequency must be set to
zero. Equivalently, we can say that if there is no information in the continuous time signal
a(t) at frequencies above fN , the maximum sampling interval ∆t is

∆tmax =
1

2fN
(A.12)

This is the sampling theorem.

In practice the number samples in a time series is always finite. We wish to find
the discrete Fourier transform of a finite length sequence. We approach the problem by
dividing the definite integral (A.7) into the sum of N pieces of equal frequency interval
∆f. Because AD(f) is periodic, with period 1/∆t, we may first rewrite the integral with
different limits, but with the same frequency interval:

ak =

∫ 1

∆t

0
AD(f) exp(2πifk∆t)df k = 0, 1, 2, ..., N − 1 (A.13)

Writing the integral as a summation, we obtain

ak = ∆f
N−1
∑

n=0

An exp(2πin∆fk∆t) k = 0, 1, 2, ..., N − 1 (A.14)
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where

An = AD(f), when f = n∆f. (A.15)

We now notice that the series ak is periodic with period N :

ak+N = ∆f
N−1
∑

n=0

An exp(2πin∆f{k + N}∆t)

= ∆f
N−1
∑

n=0

An exp(2πin∆fk∆t + 2πin∆fN∆t)

= ∆f
N−1
∑

n=0

An exp(2πin∆fk∆t)

= ak (A.16)

since N∆f = 1/∆t and so exp(2πin) = 1. Thus we arrive at the following discrete Fourier
transform pair for a finite-length time series

An = ∆t
N−1
∑

k=0

ak exp(−2πink/N) n = 0, 1, 2, ..., N − 1 (A.17)

ak = ∆f
N−1
∑

n=0

An exp(2πink/N) k = 0, 1, 2, ..., N − 1 (A.18)

These two equations are the final discrete-time and discrete-frequency Fourier transform
pair.

There needs to be some caution with applying these transforms. We have used both
for the frequencies and the times N samples as if we had a choice. But in the frequency
domain, we have negative and positive frequencies, while in the time domain we only have
samples for positive times. Therefore, when transforming to the frequency domain, we
must have enough space allocated for the negative frequencies. So we must always add
zeroes to the time series, as many as there are (non-zero) samples.
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