## Appendix C

## Derivation of $1-\mathrm{D}$ wave equation

In this appendix the one-dimensional wave equation for an acoustic medium is derived, starting from the conservation of mass and conservation of momentum (Newton's Second Law).

## Derivation

Here we will derive the wave equation for homogeneous media, using the conservation of momentum (Newton's second law) and the conservation of mass. In this derivation, we will follow (Berkhout 1984: appendix C), where we consider a single cube of mass when it is subdued to a seismic disturbance (see figure (C.1)). Such a cube has a volume $\Delta V$ with sides $\Delta x, \Delta y$ and $\Delta z$.

Conservation of mass gives us:

$$
\begin{equation*}
\Delta m\left(t_{0}\right)=\Delta m\left(t_{0}+d t\right) \tag{C.1}
\end{equation*}
$$

where $\Delta m$ is the mass of the volume $\Delta V$, and $t$ denotes time. Using the density $\rho$, the conservation of mass can be written as:

$$
\begin{equation*}
\rho\left(t_{0}\right) \Delta V\left(t_{0}\right)=\rho\left(t_{0}+d t\right) \Delta V\left(t_{0}+d t\right) \tag{C.2}
\end{equation*}
$$

Making this explicit:

$$
\begin{align*}
\rho_{0} \Delta V & =\left(\rho_{0}+d \rho\right)(\Delta V+d V) \\
& =\rho_{0} \Delta V+\rho_{0} d V+\Delta V d \rho+d \rho d V \tag{C.3}
\end{align*}
$$

Ignoring lower-order terms, i.e., $d \rho d V$, it follows that

$$
\begin{equation*}
\frac{d \rho}{\rho_{0}}=-\frac{d V}{\Delta V} \tag{C.4}
\end{equation*}
$$



Figure C.1: A cube of mass, used for derivation of the wave equation.

We want to derive an equation with the pressure in it so we assume there is a linear relation between the pressure $p$ and the density:

$$
\begin{equation*}
d p=\frac{K}{\rho_{0}} d \rho \tag{C.5}
\end{equation*}
$$

where $K$ is called the bulk modulus. Then, we can rewrite the above equation as:

$$
\begin{equation*}
d p=-K \frac{d V}{\Delta V} \tag{C.6}
\end{equation*}
$$

which formulates Hooke's law. It shows that for a constant mass the pressure is linearly related to the relative volume change. Now we assume that the volume change is only in one direction (1-Dimensional). Then we have:

$$
\begin{align*}
\frac{d V}{\Delta V} & =\frac{(\Delta x+d x) \Delta y \Delta z-\Delta x \Delta y \Delta z}{\Delta x \Delta y \Delta z} \\
& =\frac{d x}{\Delta x} \tag{C.7}
\end{align*}
$$

Since $d x$ is the difference between the displacements $u_{x}$ at the sides, we can write:

$$
\begin{align*}
d x & =\left(d u_{x}\right)_{x+\Delta x}-\left(d u_{x}\right)_{x} \\
& =\frac{\partial\left(d u_{x}\right)}{\partial x} \Delta x=\frac{\partial\left(v_{x}\right)}{\partial x} d t \Delta x \tag{C.8}
\end{align*}
$$

where $v_{x}$ denotes the particle velocity in the $x$-direction. Substitute this in Hooke's law (equation C.6):

$$
\begin{equation*}
d p=-K \frac{\partial v_{x}}{\partial x} d t \tag{C.9}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{1}{K} \frac{d p}{d t}=-\frac{\partial v_{x}}{\partial x} \tag{C.10}
\end{equation*}
$$

The term on the left-hand side can be written as :

$$
\begin{equation*}
\frac{1}{K} \frac{d p}{d t}=\frac{1}{K}\left[\frac{\partial p}{\partial t}+v_{x} \frac{\partial p}{\partial x}\right] \tag{C.11}
\end{equation*}
$$

Ignoring the second term in brackets (low-velocity approximation), we obtain for equation (C.10):

$$
\begin{equation*}
\frac{1}{K} \frac{\partial p}{\partial t}=-\frac{\partial v_{x}}{\partial x} \tag{C.12}
\end{equation*}
$$

This is one basic relation needed for the derivation of the wave equation.
The other relation is obtained via Newton's law applied to the volume $\Delta V$ in the direction $x$, since we consider 1-Dimensional motion:

$$
\begin{equation*}
\Delta F_{x}=\Delta m \frac{d v_{x}}{d t} \tag{C.13}
\end{equation*}
$$

where $F$ is the force working on the element $\Delta V$. Consider the force in the $x$-direction:

$$
\begin{align*}
\Delta F_{x} & =-\Delta p_{x} \Delta S_{x} \\
& =-\left(\frac{\partial p}{\partial x} \Delta x+\frac{\partial p}{\partial t} d t\right) \Delta S_{x} \\
& \simeq-\frac{\partial p}{\partial x} \Delta V \tag{C.14}
\end{align*}
$$

ignoring the term with $d t$ since it is small, and $\Delta S_{x}$ is the surface in the $x$-direction, thus $\Delta y \Delta z$. Substituting in Newton's law (equation C.13), we obtain:

$$
\begin{align*}
-\Delta V \frac{\partial p}{\partial x} & =\Delta m \frac{d v_{x}}{d t} \\
& =\rho \Delta V \frac{d v_{x}}{d t} \tag{C.15}
\end{align*}
$$

We can write $d v_{x} / d t$ as $\partial v_{x} / \partial t$; for this we use again the low-velocity approximation:

$$
\begin{equation*}
\frac{d v_{x}}{d t}=\frac{\partial v_{x}}{\partial t}+v_{x} \frac{\partial v_{x}}{\partial x} \approx \frac{\partial v_{x}}{\partial t} \tag{C.16}
\end{equation*}
$$

We divide by $\Delta V$ to give:

$$
\begin{equation*}
-\frac{\partial p}{\partial x}=\rho \frac{\partial v_{x}}{\partial t} \tag{C.17}
\end{equation*}
$$

This equation is called the equation of motion.
We are now going to combine the conservation of mass and the equation of motion. Therefore we let the operator $(\partial / \partial x)$ work on the equation of motion:

$$
\begin{align*}
-\frac{\partial}{\partial x}\left(\frac{\partial p}{\partial x}\right) & =\frac{\partial}{\partial x}\left(\rho \frac{\partial v_{x}}{\partial t}\right) \\
& =\rho \frac{\partial}{\partial t}\left(\frac{\partial v_{x}}{\partial x}\right) \tag{C.18}
\end{align*}
$$

for constant $\rho$. Substituting the result of the conservation of mass gives:

$$
\begin{equation*}
-\frac{\partial^{2} p}{\partial x^{2}}=\rho \frac{\partial}{\partial t}\left(-\frac{1}{K} \frac{\partial p}{\partial t}\right) \tag{C.19}
\end{equation*}
$$

Rewriting gives us the 1-Dimensional wave equation:

$$
\begin{equation*}
\frac{\partial p^{2}}{\partial x^{2}}-\frac{\rho}{K} \frac{\partial^{2} p}{\partial t^{2}}=0 \tag{C.20}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial^{2} p}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=0 \tag{C.21}
\end{equation*}
$$

in which $c$ can be seen as the velocity of sound, for which we have: $c=\sqrt{K / \rho}$.

