
Appendix C

Derivation of 1-D wave equation

In this appendix the one-dimensional wave equation for an acoustic medium is derived,
starting from the conservation of mass and conservation of momentum (Newton’s Second
Law).

Derivation

Here we will derive the wave equation for homogeneous media, using the conservation of
momentum (Newton’s second law) and the conservation of mass. In this derivation, we
will follow (Berkhout 1984: appendix C), where we consider a single cube of mass when
it is subdued to a seismic disturbance (see figure (C.1)). Such a cube has a volume ∆V
with sides ∆x,∆y and ∆z.

Conservation of mass gives us:

∆m(t0) = ∆m(t0 + dt) (C.1)

where ∆m is the mass of the volume ∆V, and t denotes time. Using the density ρ, the
conservation of mass can be written as:

ρ(t0)∆V (t0) = ρ(t0 + dt)∆V (t0 + dt) (C.2)

Making this explicit:

ρ0∆V = (ρ0 + dρ)(∆V + dV )

= ρ0∆V + ρ0dV + ∆V dρ + dρdV (C.3)

Ignoring lower-order terms, i.e., dρdV, it follows that

dρ

ρ0
= − dV

∆V
(C.4)
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Figure C.1: A cube of mass, used for derivation of the wave equation.

We want to derive an equation with the pressure in it so we assume there is a linear
relation between the pressure p and the density:

dp =
K

ρ0
dρ (C.5)

where K is called the bulk modulus. Then, we can rewrite the above equation as:

dp = −K
dV

∆V
(C.6)

which formulates Hooke’s law. It shows that for a constant mass the pressure is linearly
related to the relative volume change. Now we assume that the volume change is only in
one direction (1-Dimensional). Then we have:

dV

∆V
=

(∆x + dx)∆y∆z − ∆x∆y∆z

∆x∆y∆z

=
dx

∆x
(C.7)

Since dx is the difference between the displacements ux at the sides, we can write:

dx = (dux)x+∆x − (dux)x

=
∂(dux)

∂x
∆x =

∂(vx)

∂x
dt∆x (C.8)
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where vx denotes the particle velocity in the x–direction. Substitute this in Hooke’s law
(equation C.6):

dp = −K
∂vx

∂x
dt (C.9)

or

1

K

dp

dt
= −∂vx

∂x
(C.10)

The term on the left-hand side can be written as :

1

K

dp

dt
=

1

K

[

∂p

∂t
+ vx

∂p

∂x

]

(C.11)

Ignoring the second term in brackets (low-velocity approximation), we obtain for equation
(C.10):

1

K

∂p

∂t
= −∂vx

∂x
(C.12)

This is one basic relation needed for the derivation of the wave equation.

The other relation is obtained via Newton’s law applied to the volume ∆V in the
direction x, since we consider 1-Dimensional motion:

∆Fx = ∆m
dvx

dt
(C.13)

where F is the force working on the element ∆V. Consider the force in the x–direction:

∆Fx = −∆px∆Sx

= −
(

∂p

∂x
∆x +

∂p

∂t
dt

)

∆Sx

' −∂p

∂x
∆V (C.14)

ignoring the term with dt since it is small, and ∆Sx is the surface in the x–direction, thus
∆y∆z. Substituting in Newton’s law (equation C.13), we obtain:

−∆V
∂p

∂x
= ∆m

dvx

dt

= ρ∆V
dvx

dt
(C.15)
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We can write dvx/dt as ∂vx/∂t; for this we use again the low-velocity approximation:

dvx

dt
=

∂vx

∂t
+ vx

∂vx

∂x
≈ ∂vx

∂t
(C.16)

We divide by ∆V to give:

−∂p

∂x
= ρ

∂vx

∂t
(C.17)

This equation is called the equation of motion.

We are now going to combine the conservation of mass and the equation of motion.
Therefore we let the operator (∂/∂x) work on the equation of motion:

− ∂

∂x

(

∂p

∂x

)

=
∂

∂x

(

ρ
∂vx

∂t

)

= ρ
∂

∂t

(

∂vx

∂x

)

(C.18)

for constant ρ. Substituting the result of the conservation of mass gives:

−∂2p

∂x2
= ρ

∂

∂t

(

− 1

K

∂p

∂t

)

(C.19)

Rewriting gives us the 1-Dimensional wave equation:

∂p2

∂x2
− ρ

K

∂2p

∂t2
= 0 (C.20)

or

∂2p

∂x2
− 1

c2

∂2p

∂t2
= 0 (C.21)

in which c can be seen as the velocity of sound, for which we have: c =
√

K/ρ.
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