
Chapter 1

Fourier analysis

In this chapter we review some basic results from signal analysis and processing. We shall
not go into detail and assume the reader has some basic background in signal analysis and
processing. As basis for signal analysis, we use the Fourier transform. We start with the
continuous Fourier transformation. But in applications on the computer we deal with a
discrete Fourier transformation, which introduces the special effect known as aliasing. We
use the Fourier transformation for processes such as convolution, correlation and filtering.
Some special attention is given to deconvolution, the inverse process of convolution, since
it is needed in later chapters of these lecture notes.

1.1 Continuous Fourier Transform.

The Fourier transformation is a special case of an integral transformation: the transforma-
tion decomposes the signal in weigthed basis functions. In our case these basis functions
are the cosine and sine (remember exp(iφ) = cos(φ) + i sin(φ)). The result will be the
weight functions of each basis function.

When we have a function which is a function of the independent variable t, then we
can transform this independent variable to the independent variable frequency f via:

A(f) =

∫ +∞

−∞

a(t) exp(−2πift)dt (1.1)

In order to go back to the independent variable t, we define the inverse transform as:

a(t) =

∫ +∞

−∞

A(f) exp(2πift)df (1.2)

Notice that for the function in the time domain, we use lower-case letters, while for the
frequency-domain expression the corresponding uppercase letters are used. A(f) is called
the spectrum of a(t).

1



0

50

100

150

200

250

0 10 20 30

frequency

tim
e

Figure 1.1: 32 cosine’s with increasing frequencies; when added together, the rightmost
trace is obtained.

A total signal can be built up via using cosines of different frequencies. If we would add
many cosines together, we can make some specific signals. Let us consider Figure (1.1).
We see 32 cosines with increasing frequencies. When we add the first 32 traces together,
we obtain the trace as plotted on the right of the Figure: it has only one peak.

In this figure we used cosines with constant amplitudes, so the cosines were not shifted
and the weights were just 1. We can shift the cosines, and we can vary the weights of the
different frequency components, to obtain a certain signal. Actually, one can synthesize
any signal by using shifted and weighted cosines. This is the Fourier Transform. As an
example of this, consider Figure (1.2). On the leftmost trace, we see a time signal. When
we look at the different components of this signal, we obtain the other traces. On the
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Figure 1.2: A time signal (leftmost trace) decomposed into shifted, weighted cosines (From:
Yilmaz, 1987).

horizontal axis the frequency is given. First, it can be seen the weights of the frequency
components is different, with the largest amplitudes around 24 Hz. Next, it can be seen
that the different cosines are slightly time–shifted compared to its neighbour.

The amplitude of the components are obtained as the amplitude spectrum of the Fourier
transformation of the signal. The shift of each cosine, is obtained via the phase spectrum
of the Fourier transformation of the signal. The Fourier transform of a signal gives, in
general, complex values for the frequency components. The amplitude gives the amplitude
spectrum, and the phase of the complex value gives the phase spectrum.
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1.2 Discrete Fourier Transform and Sampling Theorem.

The above continuous integrals are nearly always used in deriving any mathematical re-
sults, but, in performing transforms on data, the integrals are always replaced by sum-
mations. The continuous signal becomes a discrete signal. As is shown in appendix A,
discretisation of the continuous Fourier integral makes the spectrum periodic:

ADiscrete(f) =
∞
∑

m=−∞

AContinuous(f +
m

∆t
) (1.3)

So this is an infinite series of shifted spectra as shown in Figure (1.3)(b). The discretisation
of the time signal forces the Fourier transform to become periodic. In the discrete case we
get the same spectrum as the continuous case if we only take the interval from −1/(2∆t)
to +1/(2∆t), and else be zero; the signal must be band-limited. So this means means that
the discrete signal must be zero for frequencies |f | ≥ fN = 1/(2∆t). The frequency fN is
known as the Nyquist frequency. Equivalently, we can say that if there is no information
in the continuous time signal a(t) at frequencies above fN , the maximum sampling interval
∆t is

∆tmax =
1

2fN
(1.4)

This is the sampling theorem. If we choose ∆t too large, we undersample the signal and we
get aliasing as shown in Figure 1.4. The original signal appears to have a lower frequency.

Another basic relation originates from the discretisation of the inverse Fourier transfor-
mation. The frequencies become discrete and therefore the time signal becomes periodic.
The interval 1/∆t is divided up into N samples at ∆f sampling so that we obtain the
relation:

N∆t∆f = 1 (1.5)

This relation can be used when we want increase the number of samples, for instance. In
that case, if the time sampling remains the same, the frequency sampling decreases! This
can be useful for interpolating data.

Finally, we obtain the pair:

An = ∆t
N−1
∑

k=0

ak exp(−2πink/N) n = 0, 1, 2, ..., N − 1 (1.6)

ak = ∆f
N−1
∑

n=0

An exp(2πink/N) k = 0, 1, 2, ..., N − 1 (1.7)
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Figure 1.3: Effect of time-discretisation in frequency domain: (a) continuous spectrum;
(b) properly time-sampled spectra giving rise to periodicity (period 1/∆t1); (c) too coarse
time sampling ∆t2 such that spectra overlap (= aliasing in time domain).
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Figure 1.4: Effect of discretisation in time: (a) properly sampled signal; (b) just under-
sampled signal; (c) fully undersampled signal.
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in which ak and An are now the discrete-time and discrete-frequency values of the con-
tinuous signals a(t) and AContinuous(f). These two equations are the final discrete-time
and discrete-frequency Fourier transform pair.

1.3 LTI Systems and Convolution

In this section a signal is fed into a linear time-invariant system. To that purpose a signal
s(t) can be written as:

s(t) =

∫ +∞

−∞

s(τ)δ(t − τ)dτ (1.8)

Let us feed the integral to the system by building up the signal from the δ-pulse responses,
as shown in Figure 1.5.

• On top, δ(t) is fed into the system giving h(t) as output.

• Next, a time-shifted pulse δ(t − τ) is fed into the system: because the system is
time-invariant, the response will be h(t − τ).

• Next, a scaled pulse s(τ)δ(t− τ) is fed into the system: because the system is linear,
the response is s(τ)h(t−τ). This is valid for each τ , so for all values of the integrand.

• Then, finally, scaling the input each by dτ , we can feed the whole integral into the
system: because the system is linear, the total response x(t) to this signal will be:

x(t) =

∫ +∞

∞
s(τ)h(t − τ)dτ (1.9)

This equation is a convolution: the output x(t) is the convolution of the input s(t) with
the impulse response h(t). A physical system is causal and assuming the input signal starts
at t = 0, the responses s(t) and h(t) are zero for times smaller than zero. Substituting
this in the above, the equation becomes:

x(t) =

∫ t

0
s(τ)h(t − τ)dτ (1.10)

The convenient shorthand notation for the convolution integral is

x(t) = s(t) ∗ h(t) (1.11)
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Figure 1.5: Convolution built up from scaled, time-shifted δ-pulses.
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1.4 Convolution Theorem

The convolution theorem states that convolution in one Fourier domain is equivalent to
multiplication in the other Fourier domain. Thus, the result of convolving of two time
signals is equivalent, in the frequency domain, to multiplying their Fourier transforms.
Equally, convolution of two (complex) signals in the frequency domain is equivalent to
multiplication of their inverse Fourier transforms in the time domain. Of course, this
result applies to all Fourier-transformable functions, including functions of space.

The theorem may be stated mathematically as follows

Ft

(∫ +∞

−∞

h(t′)g(t − t′)dt′
)

= Ft[h(t) ∗ g(t)] = H(f)G(f) (1.12)

in which Ft means ”Fourier transform of”.

1.5 Filters

A filter is a system that has an input and an output. The linear time-invariant systems
considered previously can also be treated as filters. Filters usually have a purpose to do
something to a signal: the input signal needs to be shaped or formed, depending on the
application.

Fourier analysis can give very much insight in how a signal is built up : one cannot
only recognize certain features arriving at certain times, such as a reflection in reflection
seismics, but one can also recognize certain resonances in systems: many electronic circuits
have their own resonances, and they can be analyzed by Fourier analysis. One can do more
than just analyze signals: one can also remove features from a signal. Thus, removal cannot
only be done in the time domain, but also in the frequency domain. This is called filtering.

An example of filtering is given in the next figure (Fig. 1.6). Let us now consider a
signal as given in Figure (1.6). The signal is built up of a part which is slowly varying
(low-frequent), and a part which is rapidly varying (high-frequent). Say, we are interested
in the slowly varying part, so the rapidly varying (high-frequent) part needs to be removed.
This removal cannot be done in the time domain since the two parts are not separated.
From the previous sections it may be obvious that we can establish a separation via the
frequency domain. For that reason, we transform the signal to the frequency domain. This
is shown on the upper right figure. Two peaks can be seen, each associated with the parts
which were described above. Now the signal is fed into a filter, which is a window function.
This means simply that the spectrum of the input signal is multiplied with the transfer
function of the system, which is a window function. When the multiplication is performed,
the figure as given in the right-bottom figure is obtained: only the low-frequency part is
retained. When the signal is transformed back to the time domain, the left-bottom figure
is obtained : we have got rid of the high-frequency part using the window-function in the
frequency domain as filter.
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Figure 1.6: Filtering of two-sine signal using window in frequency domain. Upper left:
two superposed sine waves. Upper right: amplitude spectrum. Lower right: amplitude
spectrum of filtered signal. Lower left: filtered signal in time-domain.
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The procedure as given in the above is called filtering. Filtering in this case is nothing
else than windowing in the frequency domain.

1.6 Correlation

In the same way as convolution, we can easily derive that a correlation in the time domain
is equivalent to a mulitplication with the complex conjugate in the frequency domain. The
derivation of this, is given in appendix B. We can recognize two types of correlations,
namely an autocorrelation and a cross-correlation. For the autocorrelation, the Fourier
transform is given by:

Ft

(∫ +∞

−∞

a(τ)a∗(τ − t)dτ

)

= A(f)A∗(f) = |A(f)|2 (1.13)

Note here that the phase of the spectrum is absent, and therefore called zero phase. In the
time domain, it can be shown mathematically that this autocorrelation-signal is symmetric
around t = 0.

In the same way, it is shown in appendix B that the Fourier transform of a cross-
correlation is given by:

Ft

(∫ +∞

−∞

a(τ)b∗(τ − t)dτ

)

= A(f)B∗(f) (1.14)

1.7 Deconvolution

Deconvolution concerns itself with neutralizing a part of a signal which is convolutional.
We consider that the output signal x(t) consists of the convolution of an input signal s(t)
and the impulse response g(t) of an LTI system, i.e.,

x(t) = s(t) ∗ g(t). (1.15)

Often, we are interested in the impulse response response of the system. Ideally, we
would like the input signal to have a flat amplitude spectrum of 1, with no phase, which
corresponds to a delta-function in time. In practice, this will never be the case. Generally,
the input signal s(t) has a certain shape and amplitude. So therefore we want to find a
filter f(t) that converts the signal s(t) into a δ-function:

f(t) ∗ s(t) = δ(t). (1.16)

By applying the filter f(t) to the output signal x(t), we neutralize the effect of the input
signal since

f(t) ∗ x(t) = f(t) ∗ s(t) ∗ g(t)
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= δ(t) ∗ g(t)

= g(t). (1.17)

Neutralizing the effect of the input signal from a output signal is called a deconvolution
process.

Let us assume we have a signal s(t) with a known spectrum, S(f). Then the convolution
(1.15) becomes a multiplication in the frequency domain:

X(f) = S(f)G(f), (1.18)

in which X(f) is the spectrum of the output signal, and G(f) is the spectrum of the
system response. Now if we want to neutralize the input signal, then we have to divide
each side by S(f), or equivalently apply the inverse operator F (f) = 1/S(f) to each side,
obtaining:

X(f)

S(f)
= G(f). (1.19)

Of course, this states the problem too simple: the signal x(t) always contains some noise.
When the signal x(t) is taken as the convolution above together with some noise term, i.e.,
X(f) = S(f)G(f) + N(f) in which N(f) denotes the noise term, then the deconvolution
in the frequency domain becomes:

X(f)

S(f)
= G(f) +

N(f)

S(f)
. (1.20)

The next problem is that due to this division, the noise is blown up outside the bandwidth
of signal S(f), i.e., there where the amplitude of S(f) is (very) small. This effect is shown
in Figure (1.7).

There are two ways to tackle this problem. The first one is that we stabilize the
division. This is done by not applying a filter F (f) = 1/S(f) but first multiplying both the
numerator and the denominator by the complex conjugate of the input-signal spectrum,
S∗(f), and since the denominator is now real we can add a small (real) constant ε to it.
Thus instead of 1/S(f), we apply the filter:

F (f) =
S∗(f)

S(f)S∗(f) + ε2
. (1.21)

Often we take ε as a fraction of the maximum value in |S(f)|, e.g. ε = αMAX(|S(f)|)
with α in the order of 0.01 - 0.1. In this way we have controlled the noise, but it can still
be large outside the bandwidth of S(f) (see Figure (1.7)). As an example, Figure (1.8)
shows the result for deconvolution.
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Figure 1.7: The effect of deconvolution in the frequency domain in the presence of noise.

The other way of dealing with the blowing up of the noise is only doing the division
in a certain bandwidth which is equivalent to shaping the input signal s(t) into a shorter
one, which we call d(t). In this case we do not apply the filter 1/S(f) but instead we use
D(f)/S(f). Then the deconvolution amounts to:

X(f)D(f)

S(f)
= G(f)D(f) +

N(f)D(f)

S(f)
, (1.22)

where |D(f)| is approximately equal to |S(f)|, i.e.:

a <
|D(f)|
|S(f)| < b, (1.23)
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Figure 1.8: Applying stabilized inversion in the frequency domain, left for a noise free input
signal, right for a noisy input signal. a) Spectrum of signal to be inverted. b) Spectra
of inverse operators with 3 stabilization constants (e = 0, 0.05, 0.1). c) Multiplication of
inverse filters with original spectrum of a), i.e. the deconvolution results.

in which b/a is less than 10, say. Often in seismics, we would like to end up with a
signal that is short in the time domain. This means that the spectrum of D(f) must be
smooth compared to the true input-signal spectrum S(f). Note that a short signal in time
corresponds with a smooth (i.e. oversampled) signal in frequency, as the major part of the
time signal will be zero. Practically this means when we know the spectrum we can design
some smooth envelope around the spectrum S(f), or we can just pick a few significant
points in the spectrum and let a smooth interpolator go through these picked points. An
example of designing such a window is given in Figure (1.9).

14



frequency

signal spectrum S(ω)

smoothed spectrum D(ω)

smoothed signal d(t)
original signal s(t)

time

Figure 1.9: Designing a desired input signal via smoothing in the frequency domain.

As a last remark of deconvolution in the frequency domain it can be said that in
practice both ways of control over the division by S(f) are used. We then apply a filter :

F (f) =
D(f)S∗(f)

S(f)S∗(f) + ε2
(1.24)

to the output signal x(t), resulting in:

X(f)D(f)S∗(f)

S(f)S∗(f) + ε2
=

G(f)D(f)S(f)S∗(f)

S(f)S∗(f) + ε2
+

N(f)D(f)S∗(f)

S(f)S∗(f) + ε2
. (1.25)

This is about the best we can do given the constraints of bandwidth and signal-to-noise
ratio.
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1.8 Time- and frequency characteristics

In the table we below, we list the characteristics that we will use throughout these lecture
notes. Some of them have been discussed in this chapter, others will be discussed in the
coming chapters.
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time domain frequency domain

discretisation with ∆t making periodic with 1
∆t

a(t = k∆t)
∑∞

m=−∞ AContinuous(f + m
∆t)

convolution of signals multiplication of spectra

∫+∞
∞ s(τ)h(t − τ)dτ S(f)H(f)

correlation with multiplication by complex conjugate

∫+∞
∞ a(τ)b∗(τ − t)dτ A(f)B∗(f)

purely symmetric zero phase (imaginary part zero)

a(t) = a(−t) |A(f)|

time shift linear phase

δ(t − T ) exp(−2πifT )

signal and inverse both causal minimum phase

deconvolution division

f(t) ∗ s(t) = δ(t) F (f) = 1
S(f)

Table 1.1: Some characteristics in time- and frequency domain.
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