
Chapter 2

Basic principles of the seismic
method

In this chapter we introduce the basic notion of seismic waves. In the earth, seismic
waves can propagate as longitudinal (P) or as shear (S) waves. For free space, the one-
dimensional wave equation is derived. The wave phenomena occurring at a boundary
between two layers are discussed, such as Snell’s Law, reflection and transmission. For
seismic-exploration purposes, where measurements are taking place at the surface, the
different arrivals of direct waves, reflected waves and refracted/head waves are discussed.

2.1 Introduction

The seismic method makes use of the properties of the velocity of sound. This velocity
is different for different rocks and it is this difference which is exploited in the seismic
method. When we create sound at or near the surface of the earth, some energy will be
reflected back (bounced back). They can be characterized as echoes. From these echoes
we can determine the velocities of the rocks, as well as the depths where the echoes came
from. In this chapter we will discuss the basic principles behind the behaviour of sound in
solid materials. When we use the seismic method, we usually discuss two types of seismic
methods, depending on whether the distance from the sound source to the detector (the
”ear”) is large or small with respect to the depth of interest: the first is known as refraction
seismics, the other as reflection seismics. Of course, there is some overlap between those
two types and that will be discussed in this chapter. When features really differ, then that
will be discussed in next chapter for refraction and the chapters on reflection seismics.
The overlap lies in the physics behind it, so we will deal with these in this chapter. In the
following chapters will deal with instrumentation, field techniques, corrections (which are
not necessary for refraction data) and interpretation.
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2.2 Basic physical notions of waves

Everybody knows what waves are when we are talking about waves at sea. Sound in
materials has the same kind of behaviour as these waves, only they travel much faster
than the waves we see at sea. Waves can occur in several ways. We will discuss two of
them, namely the longitudinal and the shear waves. Longitudinal waves behave like waves
in a large spring. When we push from one side of a spring, we will observe a wave going
through the spring which characterizes itself by a thickening of the wires running through
the spring in time (see also figure (2.1)). A property of this type of wave is that the
motion of a piece of the wire is in the same direction as the wave moves. These waves are
also called Push-waves, abbreviated to P-waves, or compressional waves. Another type
of wave is the shear wave. A shear wave can be compared with a chord. When we push
a chord upward from one side, a wave will run along the chord to the other side. The
movement of the chord itself is only up- and downward: characteristic of this wave is that
a piece of the chord is moving perpendicular to the direction of that of the wave (see
also figure (2.1)). These types of waves are referred to as S-waves, also called dilatational
waves. Characteristic of this wave is that a piece of the chord is pulling its ”neighbour”
upward, and this can only occur when the material can support shear strain. In fluids,
one can imagine that a ”neighbour” cannot be pulled upward simply because it is a fluid.
Therefore, in fluids only P-waves exist, while in a solid both P- and S-waves exist.

Waves are physical phenomena and thus have a relation to basic physical laws. The
two laws which are applicable are the conservation of mass and Newton’s second law.
These two have been used in appendix A to derive the two equations governing the wave
motion due to a P-wave. There are some simplifying assumptions in the derivation, one
of them being that we consider a 1-dimensional wave. When we denote p as the pressure
and vx as the particle velocity, the conservation of mass leads to:

1

K

∂p

∂t
= −∂vx

∂x
(2.1)

in which K is called the bulk modulus. The other relation follows from application of
Newton’s law:

−∂p

∂x
= ρ

∂vx

∂t
(2.2)

where ρ denotes the mass density. This equation is called the equation of motion. The
combination of these two equations leads, for constant density ρ, to the equation which
describes the behaviour of waves, namely the wave equation:

∂2p

∂x2
− 1

c2

∂2p

∂t2
= 0 (2.3)

in which c can be seen as the velocity of sound, for which we have: c =
√

K/ρ. The
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Figure 2.1: Particle motion of P and S waves

solution to this equation is:

p(x, t) = s(t ± x/c) (2.4)

where s(t) is some function. Note the dependency on space and time via (t ± x/c), which
denotes that it is a travelling wave. The sign in the argument is depending on which
direction the wave travelling in.

Often, seismic responses are analyzed in terms of frequencies, i.e., the Fourier spectra
as given in Chapter 1. The definition we use here is:

G(ω) =

∫ +∞

−∞
g(t) exp(−iωt) dt (2.5)

which is the same as equation (1.1) from Chapter 1 but we used the radial frequency ω
instead: ω = 2πf. Using this convention, it is easy to show that a differentiation with
respect to time is equivalent to multiplication with iω in the Fourier domain. When we
transform the solution of the wave equation (equation(2.4)) to the Fourier domain, we
obtain:

P (x, ω) = S(ω) exp(±iωx/c). (2.6)
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Note here that the time delay x/c (in the time domain) becomes a linear phase in the
Fourier domain, i.e., (ωx/c).

In the above, we gave an expression for the pressure, but one can also derive the
equivalent expression for the particle velocity vx. To that purpose, we can use the equation
of motion as expressed in equation (2.2), but then in its Fourier-transformed version, which
is:

Vx(x, ω) = − 1

iωρ

∂P (x, ω)

∂x
. (2.7)

When we subsitute the solution for the pressure from above (equation (2.6)), we get for
the negative sign:

Vx(x, ω) = − 1

iωρ
S(ω)

−iω

c
exp(−iωx/c)

= S(ω)
1

ρc
exp(−iωx/c). (2.8)

Notice that the particle velocity is a scaled version of the pressure:

Vx(x, ω) =
P (x, ω)

ρc
. (2.9)

The scaling factor is (ρc), being called the seismic impedance.

In the previous analysis, we considered one-dimensional waves. Normally in the real
world, we deal with three dimensions, so a wave will spread in three directions. In a
homogeneous medium (so the properties of the material are everywhere constant and the
same) the wave will spread out like a sphere. The outer shell of this sphere is called the
wave front. Another way of describing this wave front is in terms of the normal to the
wavefront: the ray. We are used to rays in optics and we can use the same notion in
the seismic method. When we were explaining the behaviour of P- and S-waves, we are
already using the term ”neighbour”. This was an important feature otherwise the wave
would not move forward. A fundamental notion included in this, is Huygens’ principle.
When a wave front arrives at a certain point, that point will behave also as a source for
the wave, and so will all its neighbours. The new wavefront is then the envelope of all the
waves which were generated by these points. This is illustrated in figure (2.2). Again, the
ray can then be defined as the normal to that envelope which is also given in the figure.

So far, we only discussed the way in which the wave moves forward, but there is also
another property of the wave we haven’t discussed yet, namely the amplitude : how does
the amplitude behave as the wave moves forward? We have already mentioned spherical
spreading when the material is everywhere the same. The total energy will be spreaded
out over the area over the sphere. This type of energy loss is called spherical divergence.
It simply means that if we put our ”ear” at a larger distance, the sound will be less loud.

21



secondary sources

wavefront at t = t0

wavefront at t = t0 + ∆t

c ∆t

Figure 2.2: Using Huygens’ principle to locate new wavefronts.

Material velocity Material velocity
(m/s) (m/s)

Air 330 Sandstone 2000-4500
Water 1500 Shales 3900-5500
Soil 20-300 Limestone 3400-7000
Sands 600-1850 Granite 4800-6000
Clays 1100-2500 Ultra-mafic rocks 7500-8500

Table 2.1: Seismic wave velocities for common materials and rocks.

There is also another type of energy loss, and that is due to losses within the material,
which mainly consists of internal friction losses. This means that the amplitude of a wave
will be extra damped because of this property. S-waves usually show higher friction losses
than P-waves. Finally, we give a table of common rocks and their seismic wave velocities
in table (2.1).

2.3 The interface : Snell’s law, refraction and reflection

So far, we discussed waves in a material which had everywhere the same constant wave
velocity. When we include a boundary between two different materials, some energy is
bounced back, or reflected, and some energy is going through to the other medium. It
is nice to perform Huygens’ principle graphically on such a configuration to see how the
wavefront moves forward (propagates), especially into the second medium. From this
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Figure 2.3: Snell’s law

picture, we could also derive the ray concept. In this discussion, we will only consider
the notion of rays. A basic notion in the ray concept, is Snell’s law. Snell’s law is a
fundamental relation in the seismic method. It tells us the relation between angle of
incidence of a wave and velocity in two adjacent layers (see Figure (2.3)).

AA′A′′ is part of a plane wave incident at angle θ1 to a plane interface between medium
1 of velocity c1, and medium 2 of velocity c2. The velocities c1 and c2 are constant. In a
time t the wave front moves to the position AB and are normals to the wave front. So the
time t is given by

t =
A′B′

c1
=

AB

c2
(2.10)

Considering the two triangles and this may be written as:

t =
AB′ sin θ1

c1
=

AB′ sin θ2

c2
(2.11)
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Hence,

sin θ1

c1
=

sin θ2

c2
(2.12)

which is Snell’s law for transmission. So far, we have taken general velocities c1 and c2.
However, in a solid, two velocities exist, namely P- and S-wave velocities. Generally, when
a P-wave is incident on a boundary, it can transmit as a P-wave into the second medium,
but also as a S-wave. So in the case of the latter, Snell’s law reads:

sin θP

cP
=

sin θS

cS
(2.13)

where cP is the P-wave velocity, and cS the S-wave velocity. The same holds for reflection:
a P-wave incident on the boundary generates a reflected P-wave and a reflected S-wave.
Finally, the same holds for an incident S-wave: it generates a reflected P-wave, a reflected
S-wave, a transmitted P-wave and a transmitted S-wave.

A special case of Snell’s law is of interest in refraction prospecting. If the ray is
refracted along the interface (that is, if θ2 = 90deg), we have

sin θc

c1
=

1

c2
(2.14)

where θc is known as the critical angle.

So far, we have looked at basic notions of refraction and reflection at an interface.
When we measure in the field, and there would be one boundary below it, we could
observe several arrivals: a direct ray, a reflected ray and a refracted ray. We will derive
the arrival time of each ray as depicted in figure 2.4.

The direct ray is very simple: it is the horizontal distance divided by the velocity of
the wave, i.e.,:

t =
x

c1
(2.15)

When we look at the reflected ray, we have that the angle of incidence is the same as the
angle of reflection. This also follows from Snell’s law: when the velocities are the same,
the angles must also be the same. When we use Pythagoras’ theorem, we obtain for the
traveltime:

t =

(

4z2 + x2
)1/2

c1
(2.16)

When we square this equation, we see that it is the equation of a hyperbola:

t2 =

(

2z

c1

)2

+

(

x

c1

)2

(2.17)
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Figure 2.4: The direct, reflected and refracted ray.

When we look at the refracted ray the derivation is a bit more complicated. Take each
ray element, so take the paths AB, BC and CD separately. Then, for the first element,
as shown in figure (2.5), we obtain the traveltime:

∆t1 =
∆s1 + ∆s2

c1
=

∆x1 sin θc

c1
+

z cos θc

c1
(2.18)

where θc is the critical angle.

We can do this also for the paths BC and CD, and we obtain the total time as:

t = ∆t1 + ∆t2 + ∆t3 (2.19)

=
∆x1 sin θc

c1
+

z cos θc

c1
+

∆x2

c2
+

∆x3 sin θc

c1
+

z cos θc

c1
(2.20)

where ∆x2 = BC and ∆x3 is the horizontal distance between C and D. When we use
now Snell’s law, i.e., sin θc/c1 = 1/c2, in the terms with ∆x1 and ∆x3, then we can add
all the terms with 1/c2, using x = ∆x1 + ∆x2 + ∆x3 to obtain:

t =
x

c2
+

2z cos θc

c1
(2.21)

We recognize this equation as the equation of a straight line when t is considered as a
function of distance x, the line along which we do our measurements. We will use this
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Figure 2.5: An element of the ray with critical incidence

equation later in the next chapter. We have now derived the equations for the three rays,
and we can plot the times as a function of x. This is done in figure (2.6).

This picture is an important one. When we measure data in the field the characteristics
in this plot can most of the time be observed.

Now we have generated this figure, we can specify better when we are performing
a reflection survey, or a refraction survey. In refraction seismics we are interested in
the refractions and only in the travel times. This means that we can only observe the
traveltimes well if it is not masked by the reflections or the direct ray, which means
that we must measure at a relatively large distance with respect to the depth of interest.
This is different with reflection seismics. There, the reflections will always be masked by
refractions or the direct ray, but there are ways to enhance the reflections. What we are
interested in, is the arrival at relatively small offsets, thus distances of the sound source
to the detector which are small with respect to the depth we are interested in.

Before discussing any more differences between the refraction method and the reflection
method, we would like to discuss amplitude effects at the boundary. Let us first introduce
the acoustic impedance, which is the product of the density ρ with the wave velocity c,
i.e., ρc. When a ray encounters a boundary, some energy will be reflected back, and some
will be transmitted to the next layer. The amount of energy reflected back is characterized
by the reflection coefficient R:

R =
ρ2c2 − ρ1c1

ρ2c2 + ρ1c1
(2.22)
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Figure 2.6: Time-distance (t, x) curve for direct, reflected and refracted ray.

That this is the case, will be derived from basic physical principles in the chapter on
processing (Chapter 5). Obviously, the larger the impedance contrast between two layers,
the higher the amplitude of the reflected wave will be. Notice that it is the impedance
contrast which determines whether energy is reflected back or not; it may happen that
the velocities and densities are different between two layers, but that the impedance is
(nearly) the same. In that case we will see no reflection. We can now state another
difference between refraction and reflection seismics. With refraction seismics we are only
interested in traveltimes of the waves, so this means that we are interested in contrasts in
velocities. This is different in reflection seismics. Then we are interested in the amplitude
of the waves, and we will only measure an amplitude if there is a contrast in acoustic
impedance in the subsurface.

Generally speaking the field equipment for refraction and reflection surveys have the
same functionality: we need a source, detectors and recording equipment. Since reflection
seismics gives us a picture of the subsurface, it is much used by the oil industry and
therefore, they put high demands on the quality of the equipment. As said before, a
difference between the two methods is that in reflection seismics we are interested in
amplitudes as well, so this means that high-precision instruments are necessary to pick
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REFRACTION SEISMICS REFLECTION SEISMICS

Based on contrasts in : Based on contrasts in :
seismic wave speed (c) seismic wave impedances (ρc)

Material property determined : Material properties determined:
wave speed only wave speed and wave impedance

Only traveltimes used Traveltimes and amplitudes used

No need to record amplitudes completely : Must record amplitudes correctly :
relatively cheap instruments relatively expensive instruments

Source-receiver distances large compared to Source-receiver distances small compared to
investigation depth investigation depth

Table 2.2: Important differences between refraction and reflection seismics.

those up accurately. Source, detectors and recording equipment will be discussed in the
chapter on seismic instrumentation (chapter 3).

Finally, we tabulate the most important differences between reflection and refraction
seismic in table 2.2.
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