Derivation of Wave Equation

(Ta3520)

Derivation wave equation

Consider small cube of mass with volume ΔV :

Desired: equations in terms of pressure p and particle velocity \mathbf{v}

Deformation Equation

Conservation of mass:

$$
\begin{aligned}
\rho\left(t_{0}\right) \Delta V\left(t_{0}\right) & =\rho\left(t_{0}+d t\right) \Delta V\left(t_{0}+d t\right) \\
\rho_{0} \Delta V & \simeq\left(\rho_{0}+d \rho\right)(\Delta V+d V)
\end{aligned}
$$

or:

$$
\frac{d \rho}{\rho_{0}} \simeq-\frac{d V}{\Delta V},
$$

neglecting term $d \rho d V$.

Deformation Equation

Assume linear relation between density ρ and pressure p :

$$
\frac{d \rho}{\rho_{0}}=\frac{d p}{K}
$$

where K is bulk modulus.
This is one. Now $d V / \Delta V$.

1-Dimensional motion (in x-direction):

$$
\frac{d V}{\Delta V} \simeq \frac{d x}{\Delta x}
$$

$d x$ is difference in change of particle displacement $d u_{x}$:

$$
\begin{aligned}
d x & =\left(d u_{x}\right)_{x+\Delta x}-\left(d u_{x}\right)_{x} \\
& =\frac{\partial\left(d u_{x}\right)}{\partial x} \Delta x=\frac{\partial v_{x}}{\partial x} d t \Delta x
\end{aligned}
$$

where v_{x} is x-component of particle velocity.

Substitute $d \rho / \rho_{0}$ and $d V / \Delta V$:

$$
\frac{d p}{K}=-\frac{\partial v_{x}}{\partial x} d t
$$

Assuming low-velocity approximation:

$$
\frac{d p}{d t} \approx \frac{\partial p}{\partial t}
$$

Gives deformation equation:

$$
\frac{1}{K} \frac{\partial p}{\partial t}=-\frac{\partial v_{x}}{\partial x}
$$

Equation of Motion

Newton's law applied to volume ΔV :

$$
\Delta F_{x}=\rho \Delta V \frac{d v_{x}}{d t}
$$

where F_{x} is force in x-direction (1-dimensional motion)

$$
\begin{aligned}
\Delta F_{x} & =-\Delta p_{x} \Delta S_{x} \\
& =-\left(\frac{\partial p}{\partial x} \Delta x+\frac{\partial p}{\partial t} d t\right) \Delta S_{x} \\
& \simeq-\frac{\partial p}{\partial x} \Delta V \quad(\text { for } d t \rightarrow 0)
\end{aligned}
$$

Assuming low-velocity approximation:

$$
\frac{d v_{x}}{d t} \approx \frac{\partial v_{x}}{\partial t}
$$

Then Newton's Law becomes:

$$
-\frac{\partial p}{\partial x}=\rho_{0} \frac{\partial v_{x}}{\partial t}
$$

This is the equation of motion.

Wave Equation

Combine deformation equation and equation of motion.
Let operator $(\partial / \partial x)$ work on equation of motion and assume ρ constant:

$$
-\frac{\partial}{\partial x}\left(\frac{\partial p}{\partial x}\right)=\rho \frac{\partial}{\partial t}\left(\frac{\partial v_{x}}{\partial x}\right)
$$

Substitute deformation equation:

Wave Equation

$$
\frac{\partial^{2} p}{\partial x^{2}}-\frac{\rho_{0}}{K} \frac{\partial^{2} p}{\partial t^{2}}=0
$$

or:

$$
\frac{\partial^{2} p}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=0
$$

This is the wave equation.
c is velocity of sound: $c=\sqrt{K / \rho}$

Need to know for exam

Conservation of mass, with some approximations, leads to deformation equation:

$$
\frac{1}{K} \frac{\partial p}{\partial t}=-\frac{\partial v_{x}}{\partial x}
$$

Conservation of forces, with some approximations, leads to equation of motion:

$$
-\frac{\partial p}{\partial x}=\rho_{0} \frac{\partial v_{x}}{\partial t}
$$

From then on, everything.

