Primaries and multiple: stack

Stack

Stack: 7% wrong velocity

Zero-offset gather (no stacking)

Effect velocity on stack/migration

Migration (zero-offset)

Stacked section is assumed to be zero-offset

(as if you shot with 1 geophone, and geophone at shot position)

A zero-offset section:

energy is still not focussed !!!

depth

Diffractor: zero-offset stack

Diffractor: zero-offset stack

(60-fold stack)

Migration on dipping reflector

Migration on dipping reflector

Migration on piece of dipping reflector:

- Moves piece up-dip
- Makes dip steeper
- Makes piece shorter

Migration on dipping reflector

FIG. 4-1. (a) CMP stack, (b) migration, (c) sketch of a prominent diffraction D and a dipping event before (B) and after (A) migration. Migration moves the dipping event B to its assumed true subsurface position A and collapses the diffraction D to its apex P. The dotted line indicates the boundary of the salt dome.

Apparent dips

Dip

 $T = 2 R/c = 2 \sqrt{(x^2+z^2)/c}$ $\partial T/\partial x = (2/c) \frac{1}{2} (x^2+z^2)^{-\frac{1}{2}} 2 x$ $= (2/c) x/(x^2+z^2)^{\frac{1}{2}}$ = (2/c) x/R

 $\sin \theta = x/R$

So: $\partial T/\partial x = 2/c \sin \theta$

Double-dip

Zero-offset section: before migration

After migration

Double-dip (2)

Migration with too low velocity

Migration with too high velocity

Syncline model with ray paths

Syncline: real data example

Migration:

HOW ??

"Wiggle plot": Signals next to each other

"Image plot": Like a photograph

Migration: Add along hyperbola (we *do* know velocity)

Exploding-reflector model

Zero-offset response can be simulated by putting sources at reflector and take half the medium velocity

Processing

Input: Multi-offset shot records

Results of processing (after migration):

1. Structural map of impedance contrasts

2. Velocity model

Effect migration

Conversion from time to depth

Migration examples so far: output section in **time**

This is called **time migration**

Still, data needs to be converted to depth: true earth

Simplest case: horizontal layers From root-mean-square velocities to interval velocities: Dix' formula

Dix' formula: from V_{RMS} to $V_{INTERVAL}$

(pdf-eqs)

Conversion from time to depth via Dix' formula

Theoretically: valid for plane horizontal layers (Theoretically: no migration necessary)

Practically: still works well for dipping reflectors and mild lateral velocity variations, but then: AFTER (time) migration

Strategy for seismic migration

Why?

In beginning: only RMS-velocity model known: very crude → time migration (relatively fast/cheap)

When one well available: better (interval-) velocity model → some depth migration possible (relatively slow/expensive)

When more wells available: good (interval-) velocity model known → pre-stack depth migration possible (slow/expensive !\$!)

Strategy for seismic migration

- Simple structure: post-stack migration
- Complex structure: pre-stack migration (such as DMO)
- Small lateral velocity variations: time migration
- Large lateral velocity variations: depth migration (no hyperbolae any more)

Stack with no DMO

Migrated stack With no DMO

× Stack with DMO

Migrated stack With DMO

Complex case:

DMO = form of pre-stack time migration necessary

(only root-mean-square-velocity model necessary)

Large lateral velocity variations: time section

Large lateral velocity variations: depth section

(b)

Large lateral velocity variations

Notice **lateral shift** of faults as well

(so here time-stretching axis will not do !!!)

Kirchhoff Pre-stack Time Migration

Kirchhoff Pre-stack Depth Migration

Kirchhoff Pre-stack Time Migration

Wave Equation PSDM

Large lateral velocity variations and complex structure

Large lateral velocity variations and complex structure

(Interval-) velocity model

Velocities/Structures and migration

Sketches showing typical subsurface situations and the recommended imaging solutions (After Farmer et al. 1993).

Strategy for seismic migration

- Simple structure, small lateral velocity variations: post-stack time migration
- Complex structure, small lateral velocity variations: pre-stack time migration (generalisation DMO)
- Simple structure, large lateral velocity variations: post-stack depth migration (pull-up effect)
- Complex structure, large lateral velocity variations : pre-stack depth migration (e.g. side of salt domes)

Migration: wave theory

Migration is:

 $(X, Y, T) \rightarrow (X, Y, Z)$

or, better,

 $(X, Y, Z=0, T) \rightarrow (X, Y, Z, T=0)$

Migration: wave theory

Transform measurements at z=0 for all t into measurements for t=0 for all z !

Two-step procedure:

1: Extrapolation: Bring P(x, y, z=0, t) to $P(x, y, z=z_m, t)$

2: Imaging = Select only t=0: $P_{migr}(x, y, z=z_m, t) = P(x, y, z=z_m, t=0)$

Wavefield extrapolation

Wavefield extrapolation

Wavefield extrapolation (2)

Zero-offset migration scheme

Zero-offset migration can be applied by:

- Consider zero-offset data as exploding reflector measurements in medium with half the true velocity
- Extrapolating surface data into subsurface
- At *t*=0, the imaged reflector should appear at correct depth (Imaging condition)

Often for geological interpretation, the output is calculated as a function of time.

Ideal migration when velocity model is known

Pre-stack Depth Migration:

- Inverse wavefield extrapolation receivers into medium
- Forward wavefield extrapolation source into medium
- Correlate two resulting wavefield
- Extract *t=0* component