Reflection and Transmission at boundaries

(Ta3520)

Transmission loss correction – p. 1.

Wave equation for pressure: $\frac{\partial^2 p}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} = 0$

Solution:
$$p(x,t) = s(t \pm x/c)$$

where $s(t)$ is any function.

Fourier transformation: $G(\omega) = \int_{-\infty}^{+\infty} g(t) \exp(-i\omega t) dt$

Then: $P(x, \omega) = S(\omega) \exp(\pm i\omega x/c)$

Up- and Down-going wavefields

Above boundary (x < 0): $P(x,\omega) = S(\omega) \exp(-i\omega x/c_1) + RS(\omega) \exp(i\omega x/c_1)$ Below boundary (x > 0): $P(x,\omega) = TS(\omega)\exp(-i\omega x/c_2)$ Boundary conditions:

$$\lim_{x \uparrow 0} P(x, \omega) = \lim_{x \downarrow 0} P(x, \omega)$$
$$\lim_{x \uparrow 0} V_x(x, \omega) = \lim_{x \downarrow 0} V_x(x, \omega)$$

Expression for V_x via equation of motion:

$$V_x(x,\omega) = -\frac{1}{i\omega\rho} \frac{\partial P(x,\omega)}{\partial x}$$

Working out:

$$V_x(x,\omega) = S(\omega) \frac{1}{\rho_1 c_1} \exp(-i\omega x/c_1)$$

-RS(\omega) $\frac{1}{\rho_1 c_1} \exp(i\omega x/c_1)$ for $x < 0$
 $V_x(x,\omega) = TS(\omega) \frac{1}{\rho_2 c_2} \exp(-i\omega x/c_2)$ for $x > 0$
Transmission loss correction - p. 5/

Substituting expressions in boundary conditions:

$$R = \frac{\rho_2 c_2 - \rho_1 c_1}{\rho_2 c_2 + \rho_1 c_1}$$
$$T = \frac{2\rho_2 c_2}{\rho_2 c_2 + \rho_1 c_1}$$