Reflection and Transmission at boundaries

(Ta3520)

REFLECTION / TRANSMISSION

Wave equation for pressure: $\frac{\partial^{2} p}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=0$

Solution: $p(x, t)=s(t \pm x / c)$
where $s(t)$ is any function.

Fourier transformation: $G(\omega)=\int_{-\infty}^{+\infty} g(t) \exp (-i \omega t) d t$

Then: $P(x, \omega)=S(\omega) \exp (\pm i \omega x / c)$

Up- and Down-going wavefields

incident field:	reflected field
$S(\omega) \exp \left(-i \omega x / c_{1}\right)$	$S(\omega) R \exp \left(+i \omega x / q_{q}\right)$

$$
\rho_{1}, c_{1}
$$

boundary
ρ_{2}, C_{2}
transmitted field
$\mathbf{S}(\omega) \mathrm{T} \exp \left(-\mathrm{i} \omega \mathrm{x} / \mathrm{c}_{2}\right)$

Above boundary $(x<0)$:

$$
P(x, \omega)=S(\omega) \exp \left(-i \omega x / c_{1}\right)+R S(\omega) \exp \left(i \omega x / c_{1}\right)
$$

Below boundary $(x>0)$:

$$
P(x, \omega)=T S(\omega) \exp \left(-i \omega x / c_{2}\right)
$$

Boundary conditions:

$$
\begin{aligned}
\lim _{x \uparrow 0} P(x, \omega) & =\lim _{x \downarrow 0} P(x, \omega) \\
\lim _{x \uparrow 0} V_{x}(x, \omega) & =\lim _{x \downarrow 0} V_{x}(x, \omega)
\end{aligned}
$$

Expression for V_{x} via equation of motion:

$$
V_{x}(x, \omega)=-\frac{1}{i \omega \rho} \frac{\partial P(x, \omega)}{\partial x}
$$

Working out:

$$
\begin{aligned}
& V_{x}(x, \omega)= S(\omega) \frac{1}{\rho_{1} c_{1}} \exp \left(-i \omega x / c_{1}\right) \\
&-R S(\omega) \frac{1}{\rho_{1} c_{1}} \exp \left(i \omega x / c_{1}\right) \text { for } x<0 \\
& V_{x}(x, \omega)= T S(\omega) \frac{1}{\rho_{2} c_{2}} \exp \left(-i \omega x / c_{2}\right) \text { for } x>0 \\
& \text { Tranmisisionsescomercio }
\end{aligned}
$$

Substituting expressions in boundary conditions:

$$
\begin{aligned}
R & =\frac{\rho_{2} c_{2}-\rho_{1} c_{1}}{\rho_{2} c_{2}+\rho_{1} c_{1}} \\
T & =\frac{2 \rho_{2} c_{2}}{\rho_{2} c_{2}+\rho_{1} c_{1}}
\end{aligned}
$$

