Evaluation of User Experience

IUXE IN4179- 22 April 2009

Jan Willem Streefkerk

TNO | **ŤU**Delft

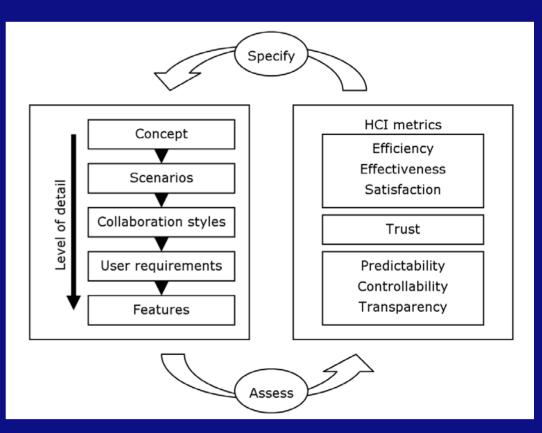
Outline

User centered design and user experience sampling

Context-awareness and personalization

Framework of evaluation methods

 Case study: designing mobile context-aware interfaces for police officers


User Centered Design & Evaluation

WHY?

- Ensure design meets user requirements
- Adjust design when necessary
- Improve user experience

Iterative process!

In assessment: Selection of evaluation method is not straightforward

User Experience Sampling

Central idea

- Man-Machine Interaction is influenced by rich context, user characteristics and specific tasks → effect on user experience.
- "Measuring" user experience tells us something about the appropriateness of the design
- Key issue: Choosing the right evaluation method

Context-awareness and adaptive systems

Static systems

always same system behavior, e.g. classic windows UI

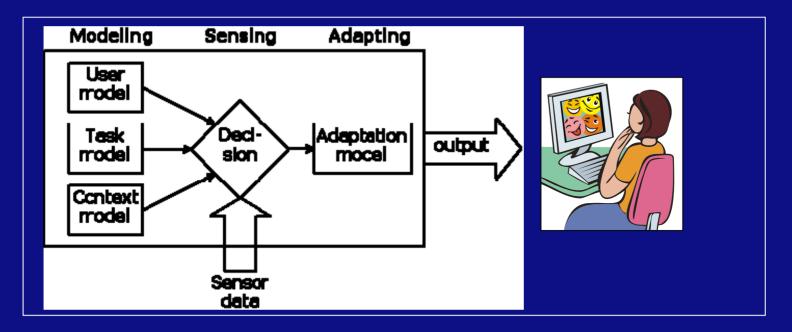
Adaptive systems

adapting the system behavior across contexts

Goal of context-awareness

Use knowledge from the user, tasks and context to

- achieve more appropriate interaction
- avoid overload, distraction and errors


How to realize this?

Context-awareness and adaptive systems

Modeling user, task and context variablesSensing the variables in the modelAdapting the human-system interaction

Modeling user, task and context

Modeling and sensing:

User characteristics (people)	Task elements <i>(activities)</i>	Context factors (contexts)	
 Gender, age, etc. Interests Relevant expertise Cognitive (Dis)abilities Workload Physical (e.g. diabetics) 	 Task characteristics (e.g. time pressure, task switches) Need for information Need for support (e.g. notification) User actions 	 Location, time Transportation Environmental factors (light, noise, etc.) Professional context (e.g. police context) 	

Adaptation

Based on model and sensed data → adaptation of content, dialogue and screen layout

e.g. High workload \rightarrow less information e.g. User frustration \rightarrow simple dialogue

Adaptation examples:

- Navigation support: Highlight hyperlinks based on personal interests
- Task allocation: based on user availability
- Notification: presenting notifications to relevant information
- Attention: Present information in center of screen or in periphery

Mobile adaptive systems

Mobile use context

- Changing context over time and place
- Changing user needs for information

Example: Location based services (LBS) Information about sightseeing

- Where am I?
- What's around me?
- Where to go?

More pleasurable tourist experience

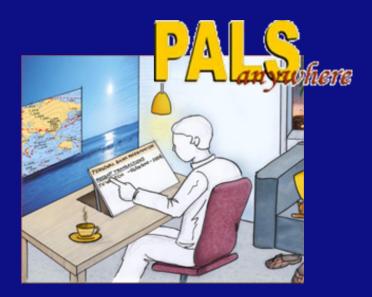
Mobile adaptive systems

Military domain: Command Information Module

- Navigation
- Localisation

Future: Workload, task switches

Thales Nederland


Personalization

Personal Assistant for onLine Services

Knowledge about:

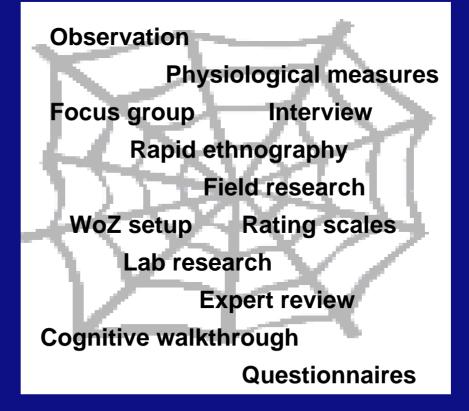
- Interests \rightarrow (e.g. watches)
- Context \rightarrow (e.g. shopping street)
- Schedule \rightarrow (e.g. calendar)

Based on this knowledge: Notify user to interesting jewelry shop

Evaluating adaptive systems

Evaluating the user experience of adaptive systems requires a different approach than "classic" UI's:

- Adaptive behavior \rightarrow predictability, controllability, comprehension
- "Human in the loop" problem \rightarrow adaptive human behavior
- Over longer periods of time \rightarrow increased experience with system
- Control condition → compare to what?



Which method?

Many different evaluation methods and techniques:

Framework of evaluation methods

When selecting combinations of evaluation methods:

- Stage
 - Analysis, Design, Implementation
 - Different stage, different focus

Purpose

- Guide design or assess impact
- Formative or summative techniques

Complexity

- Adaptive system = complex design
- Evaluate complex designs within the use context

Framework (continued)

Participants

- Involve end-users or representatives
- Actual end-users have domain knowledge

Setting

- Control over external variables
- Evaluate in use setting or use simulation

Duration

- Short, extended or longitudinal
- Trust and user experience develop over time

Cost

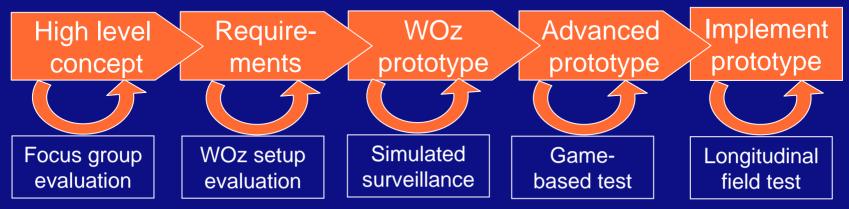
- Time and resources
- Costs are high for field and lower for simulation studies

Case study: mobile interfaces for police

BSIK - MultimediaN project
 Mobile Information Delivery

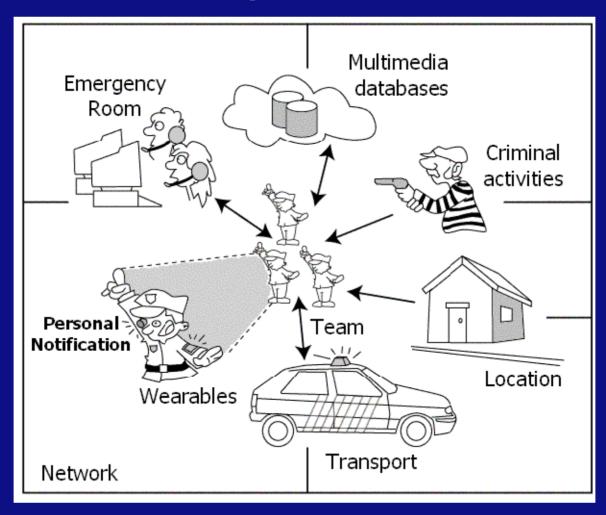
- Research objectives of this project
 - Guidelines, models and methods for the development of mobile adaptive user interfaces
 - Designing and field-testing Attentive Services for police officers

• Project partners:



Approach

Starting out: Literature review and domain analyses


- HCI literature on context-aware mobile systems
- Task analyses and observation of police officers
- Resulted in a concept of notification system for police officers

Continuing:

Mobile services for police officers

Method 1: Focus Group

To evaluate high level concept:

Stage: Purpose:

Complexity:

Participants:

Setting: Duration: Costs: early analysis stage innovative concept; formative high-level concept of adaptive system thirty police personnel with diverse backgrounds outside use environment short; one half day high in resources low in time

Impression from police domain

Video courtesy of Dutch Police CIP

Context-aware interfaces in the police domain

"Challenges"

- Information at the right time and place to the right person
- Support task performance and situation awareness

Solution to meet challenges:

Design adaptive mobile notification system

- 1. Notification styles based on message priority and user workload
- 2. Adaptive timing of notifications based on availability, location and priority
- 3. Which team member to present the notification

Designing Notification Styles

Rule-based adaptation Priority \rightarrow notification salience Workload \rightarrow information density

Examples

 Low workload, High message priority

 High workload, Low message priority

Method 2: Wizard of Oz

To evaluate the **notification styles**

Stage:	intermediate design stage
Purpose:	validate design solution; formative
Complexity:	(simulated) adaptive functionality
Participants:	twenty representatives
Setting:	Wizard of Oz lab experiment
Duration:	short; two hours
Costs:	low in both time and resources

Method 2: Wizard of Oz

Wizard of Oz setup:
Participants watched police videos
Test leader sent the notifications
Compared adaptive notification (priority and workload) to uniform notification

Measures

- Task performance
- Mental effort
- Preference
- Interruptiveness

Method 2: Wizard of Oz

Results

Adaptive notification:

- ✓ Higher efficiency, same effectiveness
- Less interruption
- Higher preference for adaptive notification
- No difference in experienced mental effort

Adapting notification styles resulted in successful task support and less interruption

Benefits

Allowed testing of requirements / principles BUT "static" task environment

To evaluate adaptive notification in simulated but real world environment:

Stage:	intermediate design stage
Purpose:	evaluate adaptive notification; summative
Complexity:	(simulated) functionality
Participants:	Thirty-two representative users
Setting:	semi-controlled experiment; real-world environment
Duration:	short; two hours
Costs:	low in both time and resources

Timing of notifications

Notify directly or postpone notification

Rules on location, activity and priority

- When user close to incident location and available, notify to all messages.
- When user in transit, postpone low priority messages.
- When user busy, postpone all but high priority messages.
- Etc.

Effects of adaptive **timing of notifications** on task performance, mental effort and interruptiveness?

Method

- Participants:
- Dual task:
- Conditions:
- Measures:
- 32 participants (non-police)
 - Building surveillance
 - Adaptive vs. Postpone vs. Uniform
 - Efficiency & effectiveness, message interruptiveness, mental effort, preference

Manipulation

User activity: available, in transit or busy Message priority: high, medium or low

<u>Movie</u>

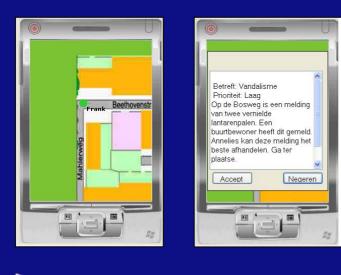
Results

- ✓ Better task performance with adaptive notification
- ✓ Postponing notifications: attentional trade-off
- Higher mental effort

Study indicated user activity and message priority as appropriate context factors for adaptivity.

Simulated surveillance allowed accurate measures and task-flow.

To evaluate adaptive task allocation for teams:


Stage:	intermediate design stage
Purpose:	evaluate adaptive task allocation; summative
Complexity:	(simulated) advanced functionality
Participants:	ten teams of three police end-users
Setting:	lab experiment; virtual game-based environment
Duration:	extended; four hours
Costs:	low in both time and resources

Will adaptive task allocation support teams of police officers?

- System selects officer based on location, availability, and workload
- Solving police incidents in a virtual environment, Unreal Tournament, e.g. car crash, youth-hotspot, etc.

Compare adaptive to non-adaptive task allocation support system

Measures

- Team task performance
- Mental effort
- Situation Awareness
- Preference, interruptiveness

Techniques

- Logfile analysis
- Questionnaires
- Rating scales

Movie

Results

With adaptive task allocation:

- Increased team performance (less decision errors, less communication necessary)
- Lower interruptiveness, appropriate response times

Benefits of game-based evaluation

- Multi-player, interactive environment
- Create task flow
- Accurate logging

BUT: abstraction from real world

Method 5: Field research

To evaluate adaptive notification prototype in the field

Stage:	final implementation stage
Purpose:	summative; validate functioning of prototype
Complexity:	full system functionality
Participants:	thirty end-users
Setting:	natural use environment
Duration:	longitudinal; three months
Costs:	high in both time and resources

Method 5: Field research

Implemented adaptive notification system for police officers

Measures

- Efficiency and effectiveness
- Impact on work processes
- Usability, acceptability

Techniques

- Observation and interviews
- Log-file analysis
- Online questionnaires

Method 5: Field research

Results

- Police officers better informed
- ✓ System usability is sufficient
- Notifications often interruptive of work process
- Notifications not always relevant / necessary

Shows need for context-aware filtering of notifications

Benefits of field study:Adaptive system in real use environment with real endusersBUT diminished participation by police officers

Lessons learned

Applying the framework:

- Allows selection between different methods based on 7 factors
- Tuning to task and domain specific evaluation criteria
- Incorporates users in every stage of the process

Establishing guidelines for evaluation of mobile context-aware interfaces

Guidelines

		Focus group	Wizard of Oz	Game- based	Field
Stage	Analysis	+	-		++
	Design	+	+	++	++
	Implementation	-	-	++	+
Purpose	Form ative	+	+	++	+
	Summative	-	_	++	+ +
Complexity	Low	+	-		-
	Medium	-	+	++	-
Participants	Hiah	+	-	++	+
	Representatives	-	÷	++	-
	End-users	++	++	++	+
Setting	Independent	+	-		-
	Natural	-	++		++
	Artificial	-	+	++	-
Duration	Short	+	+	++	+
	Longitudinal	-	_		+ +
Costs	Tim e	+	+	++	_
	Resources	-	+	÷ +	_

Conclusions

Evaluating user experience ensures appropriately designed context-aware systems

Framework:

- Helps to select appropriate evaluation methods
- Generates generic design knowledge across domains

Stresses the need

- to incorporate end-users in the evaluation
- to take the use context into account

Thank you for your attention!

More information: j.w.streefkerk@tno.nl

http://www.tm.tno.nl/as

