
System Synthesis of Digital Systems

11/13/15 4

System Synthesis

• Input: an implementation independent specification of
the system; this includes: functionality and constraints.

• The synthesis tasks:

• To select the architecture

• To partition functionality over the components of
the architecture

• To schedule activities

11/13/15 5

System Synthesis (2)

• To generate behavioral modules corresponding to the
hardware and software domain of the implementation,
including interface modules.

• The behavioral modules resulted from the previous
steps are further synthesized into the actual hardware
and/or software implementation.

11/13/15 22

From Algorithm to Design
Representation

xl = x + dx;

ul = u - (3*x*u*dx) – (3*y*dx);

yl = y+u*dx;

c = xl < a;

x = xl; u=ul; y=yl;

See also Fig. 3.11

11/13/15 23

High –Level Synthesis

1. Basic definition

2. A typical HLS process

3. Scheduling techniques

4. Allocation and binding techniques

5. Advanced issues

11/13/15 24

Introduction

• Definition: HLS generates register-transfer level
designs from behavioral specifications, in a automatic
manner.

• Input:

- The behavioral specification.

- Design constraints (cost, performance, power
consumption, pin-count, testability, etc.).

- An optimization function.

- A module library representing the available
components at RTL.

11/13/15 25

Introduction (2)

• Output

- RTL implementation structure (net list).

- Controller (captured usually as a symbolic FSM).

- Other attributes, such as geometrical information.

• Goal: to generate a RTL design that implements the
specified behavior while satisfying the design
constraints and optimizing the given cost function.

11/13/15 26

A typical HLS Process (1)

1. Behavioral specification:

Which language to use?

Procedural languages

Functional languages

Graphics notations

Explicit parallelism?

Input behavioral specification

Procedure Test;

VAR A, B, C, D, E, F, G: integer;

BEGIN

Read (A,B,C,D,E);

F:= E*(A+B);

G:=(A+B)*(C+D);

…..

END

11/13/15 27

A Typical HLS Process (2)

2. Dataflow
analysis:

•Parallelism extraction.

•Eliminating high-level
language constructs.

•Loop unrolling.

•Program transformation.

•Common sub expression
detection.

11/13/15 28

A Typical HLS Process (3)

3. Operating scheduling

•Performance/cost trade-offs.

•Performance measure.

•Clocking strategy.

11/13/15 29

A Typical HLS Process (4)

4. Data-path allocation:

•Operator selection.

•Register/memory allocation.

•Interconnection generation.

•Hardware minimization

11/13/15 30

A Typical HLS Process (5)

5. Control allocation:

• Selection of control style (PLA,
microcode, random logic, etc.).

• Controller generation.

11/13/15

Optimization Need to know
NP, NP complete, NP hard

•NP-hard (Non-deterministic Polynomial-time hard), in computational complexity theory, is a

class of problems that are, informally, "at least as hard as the hardest problems in NP".

•In computational complexity theory, a decision problem is NP-complete when it is both in NP

and NP-hard. The set of NP-complete problems is often denoted by NP-C or NPC.

Bounds of a solution

Exact algorithms: Mathematical proof of correctness

Heuristic algorithms: 'Work Best'

Compute complexity: Order O(....)

Local minimum

Global Minimum

11/13/15 35

The Basic Issues (1)

• Scheduling – Assignment of each operation to a time
slot corresponding to a clock cycle or time interval.

• Resource Allocation – Selection of the types of
hardware components and the number for each type
to be included in the final implementation.

• Module Binding – Assignment of operation to the
allocated hardware components.

• Controller Synthesis – Design of control style and
clocking scheme.

11/13/15 36

The Basic Issues (2)

• Compilation of the input specification language to the
internal representation must be done.

• Parallelism Extraction – To extract the inherent
parallelism of the original solution, which is usually
done with data flow analysis techniques.

• Operation Decomposition – Implementation of
complex operations in the behavioral specification.

• ………

11/13/15 37

The scheduling Problem (1)

• Resource-constrained (RC) scheduling:

- Given a set O of operations with a partial ordering
which determines the precedence relations, a set K of
functional unit types, a type function, τ: O →K, to
map the operations into the functional unit types, and
resource constraints mk for each functional unit type.

- Find a (optimal) schedule for the set of options that
obeys the partial ordering and utilizes only the
available functional units.

11/13/15 39

The Scheduling Problem (2)

1 adder, 1 multiplier

+- → adder

* → multiplier

11/13/15 40

Scheduling

• Scheduling:

• Determine the start times for the operations

• Satisfying all the sequencing (timing and resource)
constraints

• Goal:

• Determine area/latency trade-off

11/13/15 41

RC Scheduling Techniques
(Resource Constrained)

ASAP: As soon as possible

- Sort the operations topologically according to their
data/control flow;

- Schedule operations in the sorted order by placing
them in the earliest possible control step.

11/13/15 43

ASAP

11/13/15 44

RC Scheduling Techniques (Cont’d)

• ALAP: As late as possible

• Sort the operations topologically according to their
data/control flow;

• schedule operations in the reversed order by
placing them in the latest possible control step.

11/13/15 45

ALAP

11/13/15 48

Remarks

• ALAP solves a latency-constrained problem

• Mobility:

• Defined for each operation

• Difference between ALAP and ASAP schedule

• Slack on the start time

11/13/15 49

RC Scheduling Techniques (Cont’d)

• List Scheduling

• For each control step, the operations that are
available to be scheduled are kept in a list;

• The list is ordered by some priority function:

• 1. The length of path from the operation to the
end of the block;

• 2. Mobility: the number of control steps from the
earliest to the latest feasible control step.

• Each operation on the list is scheduled one by one
if the resources it needs are free: otherwise it is
deferred to the next control step.

11/13/15 51

LIST

11/13/15 52

Scheduling under resource
constraints

• Intractable problem

• Algorithms:

• Exact:

• Integer linear program

• Hu (restrictive assumptions)

• Approximate/Heuristic :

• List scheduling

• Force-directed scheduling

11/13/15 53

• Linear programming (LP) is a mathematical method for
determining a way to achieve the best outcome (such
as maximum profit or lowest cost) in a given
mathematical model for some list of requirements
represented as linear relationships.

More formally, linear programming is a technique for the
optimization of a linear objective function, subject to
linear equality and linear inequality constraints.

• An integer linear program, variables are forcibly
constrained to be integers, and this problem is NP-
hard in general.

ILP

11/13/15 54

• Binary decision variables:

X = { xil, i = 1,2,…. n; l = 1,2,…, λ + 1}

xil is TRUE only when operation vi starts in step l of
the schedule (i.e. l = ti)

λ is an upper bound on latency

• Start time of operation vi : Σl l . xil

ILP formulation

11/13/15 55

• Operations start only once

Σ xil = 1 i = 1, 2,…, n

• Sequencing relations must be satisfied

ti ≥ tj + dj � ti - tj - dj ≥ 0 for all (vj , vi) є E

Σ l • xil – Σ l • xjl – dj ≥ 0 for all (vj , vi) є E

• Resource bounds must be satisfied

Simple case (unit delay)

Σ Σ xim≤ ak , k = 1,2,…nres ; for all l

ILP formulation constraints

l

l

i:T(vi)=k

l

m=l-d
i
+1

See also page 199, De Micheli

11/13/15 56

SAT solver

A SAT solver is a program that automatically decides whether a

propositional logic formula is satisfiable.

If it is satisfiable, a SAT solver will produce an example of a truth

assignment that satisfies the formula.

SAT solvers have proved to be an indispensable component

of many formal verification and (more recently) program analysis

applications.

11/13/15 57

Hu’s algorithm

• Assumptions:

• Graph is a forest

• All operations have unit delay

• All operations have the same type

• Algorithm:

• Greedy strategy

• Exact solution

11/13/15 59

TC Scheduling Techniques (1)

• Force-Directed Scheduling: The basic idea is to
balance the concurrency of operations.

• ASAP and ALAP schedules are calculated to derive
the time frames for all operations.

• For each type of operations, a distribution graph is
built to denote the possible control steps for each
operation. If an operation could be done in k steps,
then 1/k is added to each of these k steps.

11/13/15 60

Force-directed scheduling

• Heuristic scheduling methods [Paulin]:

• Min latency subject to resource bound

• Variation of list scheduling : FDLS

• Min resource subject to latency bound

• Schedule one operation at a time

• Rationale:

• Reward uniform distribution of operations across
schedule steps

11/13/15 61

Force

• Used as priority function

• Force is related to concurrency:

• Sort operations for least force

• Mechanical analogy:

• Force = constant x displacement

• Constant = operation-type distribution

• Displacement = change in probability

11/13/15 62

ASAP and ALAP

11/13/15 63

C-Steps

11/13/15 64

Distribution

11/13/15 65

FDS

11/13/15 66

TC Scheduling Techniques (2)

- The algorithm tries to balance the distribution graph
by calculate the force of each operation-to-control step
assignment and select the smallest force:

11/13/15 69

Advanced Scheduling Issues

• Control construct consideration.

• Conditional branches

• Loops

• Chaining and multicycling.

• Scheduling with local timing constraints.

11/13/15 70

Advanced Scheduling Issues (2)

11/13/15 79

Exercise

