System Synthesis of Digital Systems

S
2]
TUDelft

DDDDDDD i

oooooooooooooooooooo

System Synthesis

« Input: an implementation independent specification of
the system; this includes: functionality and constraints.

« The synthesis tasks:
« To select the architecture

« To partition functionality over the components of
the architecture

« To schedule activities

R
]
TUDelft

System Synthesis (2)

« To generate behavioral modules corresponding to the
hardware and software domain of the implementation,
including interface modules.

« The behavioral modules resulted from the previous
steps are further synthesized into the actual hardware
and/or software implementation.

T,
]
TUDelft

From Algorithm to Design
Representation

Xl = x + dx; ar s
ul = u - (3*x*u*dx) — (3*y*dx); Ol
yl = y+u*dx; v
c=xl<a; 9

¥l ¢

X = xl; u=ul; y=yl;

See also Fig. 3.11

I
]
TUDelft

High —Level Synthesis

Basic definition

A typical HLS process

Scheduling techniques

Allocation and binding techniques
Advanced issues

A

=
]
TUDelft

Introduction

« Definition: HLS generates register-transfer level
designs from behavioral specifications, in a automatic
manner.

« Input:
- The behavioral specification.

- Design constraints (cost, performance, power
consumption, pin-count, testability, etc.).

- An optimization function.

- A module library representing the available
components at RTL.

I
]
TUDelft

Introduction (2)

« Qutput
- RTL implementation structure (net list).
- Controller (captured usually as a symbolic FSM).
- Other attributes, such as geometrical information.

« Goal: to generate a RTL design that implements the
specified behavior while satisfying the design
constraints and optimizing the given cost function.

T
]
TUDelft

A typical HLS Process (1)

1. Behavioral specification: Input behavioral specification
Which language to use? Procedure Test;
VAR A, B, C, D, E, F, G: integer;
Procedural languages BEGIN
Functional languages Read (A,B,C,D,E);
Graphics notations F:= E*(A+B);

G:=(A+B)*(C+D);

Explicit parallelism? e
END

T
]
TUDelft

A Typical HLS Process (2)

2. Dataflow E A B C D
\ P

analysis:
«Parallelism extraction. @ @

Eliminating high-level
language constructs.

_ \) 4
«Loop unrolling. @

*Program transformation.

«Common sub expression 7 v
detection. =
G
Dataflow description

]
TUDelft

A Typical HLS Process (3)

3. Operating scheduling
«Performance/cost trade-offs.
«Performance measure.
Clocking strategy.

Scheduled dataflow description

T~
]
TUDelft

A Typical HLS Process (4)

4. Data-path allocation:

*Operator selection. | _§<O;_7> B<0:7>
oz - =
Register/memory allocation. MDD :_
«Interconnection generation. v L
L.) Reg R1 Rcg R2

«Hardware minimization P

o N

T o

L
| Reg R3

Lartial data-parh

T~
]
TUDelft

A Typical HLS Process (5)

5. Control allocation:

« Selection of control style (PLA,
microcode, random logic, etc.).

« Controller generation.

.,
]
TUDelft

Optimization Need to know

NP, NP complete, NP hard

eNP-hard (Non-deterministic Polynomial-time hard), in computational complexity theory, is a
class of problems that are, informally, "at least as hard as the hardest problems in NP".

e|n computational complexity theory, a decision problem is NP-complete when it is both in NP
and NP-hard. The set of NP-complete problems is often denoted by NP-C or NPC.

Bounds of a solution

Exact algorithms: Mathematical proof of correctness
Heuristic algorithms: 'Work Best'

Compute complexity: Order O(....)

Local minimum

NP-Hard

NP-Complete

NP

NP-Hard

P=NP=
NP-Complete

ity

Global Minimum

I s
]
TUDelft

Comple:

The Basic Issues (1)

« Scheduling — Assignment of each operation to a time
slot corresponding to a clock cycle or time interval.

« Resource Allocation — Selection of the types of
hardware components and the number for each type
to be included in the final implementation.

« Module Binding — Assignment of operation to the
allocated hardware components.

« Controller Synthesis — Design of control style and
clocking scheme.

A .,
]
TUDelft

The Basic Issues (2)

« Compilation of the input specification language to the
Internal representation must be done.

« Parallelism Extraction — To extract the inherent
parallelism of the original solution, which is usually
done with data flow analysis techniques.

« Operation Decomposition — Implementation of
complex operations in the behavioral specification.

o]
TUDelft

The scheduling Problem (1)

« Resource-constrained (RC) scheduling:

- Given a set O of operations with a partial ordering
which determines the precedence relations, a set K of
functional unit types, a type function, t: O —K, to
map the operations into the functional unit types, and
resource constraints m, for each functional unit type.

- Find a (optimal) schedule for the set of options that
obeys the partial ordering and utilizes only the
available functional units.

o wms
]
TUDelft

The Scheduling Problem (2)

= 11 + 12;
O
ol := (a - 13) * 3;
02 := i4 + i5 + i6; a d
d := i7 * i8; (:;) +
g :=d + 19 + i10;
02 g

o3 := 111 * 7 * qg;
* *
ol 03

(a) Behaviroal specification (b) DFG

1 adder, 1 multiplier
+- — adder
* — multiplier

]
TUDelft

Scheduling

« Scheduling:
« Determine the start times for the operations

« Satisfying all the sequencing (timing and resource)
constraints

« Goal:
« Determine area/latency trade-off

T
]
TUDelft

RC Scheduling Techniques
(Resource Constrained)

ASAP: As soon as possible

- Sort the operations topologically according to their
data/control flow;

- Schedule operations in the sorted order by placing
them in the earliest possible control step.

I ————
]
TUDelft

ASAP

1 v J, - | 4 5
906
6 7 3
)
o 10
©

(a) Sorted DFG (b) ASAP schedule

]
TUDelft

RC Scheduling Techniques (Cont'd)

« ALAP: As late as possible

 Sort the operations topologically according to their
data/control flow;

« schedule operations in the reversed order by
placing them in the latest possible control step.

I ——
]
TUDelft

ALAP

Control

(a) Sorted DFG (b) ALAP schedule
Cwmns s
%
TUDelft

Remarks

« ALAP solves a latency-constrained problem
« Mobility:
« Defined for each operation
« Difference between ALAP and ASAP schedule

« Slack on the start time

=
]
TUDelft

RC Scheduling Techniques (Cont’d)

« List Scheduling

« For each control step, the operations that are
available to be scheduled are kept in a list;

« The list is ordered by some priority function:

« 1. The length of path from the operation to the
end of the block;

« 2. Mobility: the number of control steps from the
earliest to the latest feasible control step.

« Each operation on the list is scheduled one by one
If the resources it needs are free: otherwise it is
deferred to the next control step.

T
]
TUDelft

LIST

"O'® ¥
9 ” 10

(a) DFG (b) List schedule

]
TUDelft

Scheduling under resource
constraints

« Intractable problem
« Algorithms:
« Exact:
 Integer linear program
« Hu (restrictive assumptions)
« Approximate/Heuristic :
« List scheduling
 Force-directed scheduling

T~
]
TUDelft

ILP

« Linear programming (LP) is a mathematical method for
determining a way to achieve the best outcome (such
as maximum profit or lowest cost) in a given
mathematical model for some list of requirements
represented as linear relationships.

More formally, linear programming is a technique for the
optimization of a linear objective function, subject to
linear equality and linear inequality constraints.

« An integer linear program, variables are forcibly
constrained to be integers, and this problem is NP-
hard in general.

.,
]
TUDelft

ILP formulation

« Binary decision variables:
X={x, i=12..n [=12..,A+1}

x;, 1S TRUE only when operation v; starts in step / of
the schedule (ie./=¢)

A 1s an upper bound on latency
- Start time of operation v, : %, /- X

T
]
TUDelft

ILP formulation constraints

« Operations start only once
2x;=1 1=1,2,..,n
« Sequencing relations must be satisfied
t=t+d 2> t-t-d =0 forall(v;,v)eE
2/exy—2lexy—d; = 0 forall (v;, v)e E
. Resource bounds must be satisfied
Simple case (unit delay)

s 3 x.<a , k=12..n.; foralll
i-T(v)=k m=l-d+1

Coowmls s
]
See also page 199, De Micheli TUDelft

SAT solver

A SAT solver 1s a program that automatically decides whether a
propositional logic formula is satisfiable.

If 1t 1s satisfiable, a SAT solver will produce an example of a truth
assignment that satisfies the formula.

SAT solvers have proved to be an indispensable component
of many formal verification and (more recently) program analysis
applications.

.,
]
TUDelft

Hu’s algorithm

« Assumptions:

« Graph is a forest

« All operations have unit delay

« All operations have the same type
« Algorithm:

« Greedy strategy

« Exact solution

.
]
TUDelft

TC Scheduling Techniques (1)

« Force-Directed Scheduling: The basic idea is to
balance the concurrency of operations.

« ASAP and ALAP schedules are calculated to derive
the time frames for all operations.

« For each type of operations, a distribution graph is
built to denote the possible control steps for each
operation. If an operation could be done in k steps,
then 1/k is added to each of these k steps.

.,
]
TUDelft

Force-directed scheduling

 Heuristic scheduling methods [Paulin]:
« Min latency subject to resource bound
 Variation of list scheduling : FDLS
« Min resource subject to latency bound
« Schedule one operation at a time
« Rationale:

« Reward uniform distribution of operations across
schedule steps

A .,
]
TUDelft

Force

« Used as priority function
« Force is related to concurrency:
« Sort operations for least force
« Mechanical analogy:
« Force = constant x displacement
« Constant = operation-type distribution
 Displacement = change in probability

s
]
TUDelft

ASAP and ALAP

...................................

--

(a) ASAP schedule (b) ALAP schedule

]
TUDelft

csep. . V2 o 2121213
+ * +| .
| - A 3|44
9 T 10

]
TUDelft

Distribution

Multiplication DG~ Addition/subtraction DG

Figure 3.8: Distribution graphs for Example 3.1.

]
TUDelft

ALAP Range Distribution Graph
1| al 1
(&
l\:& 7 42 3
r aj
OB)

]
TUDelft

TC Scheduling Techniques (2)

- The algorithm tries to balance the distribution graph
by calculate the force of each operation-to-control step
assignment and select the smallest force:

Garar(0))

- oF F* l ; o
Force oo =3, = DO~ 570 Y DG

§ = O 54p(0))

.,
]
TUDelft

Advanced Scheduling Issues

« Control construct consideration.
« Conditional branches
« Loops

« Chaining and multicycling.

« Scheduling with local timing constraints.

.,
]
TUDelft

Advanced Scheduling Issues (2)

200ns

(a) No chaining or multicycling 50ns

100ns

(c) A multicycle multiplication

]
TUDelft

Exercise

~ o
)-l_v

7’ ‘\ n
i
{NOP !

Consider the graph of Figure 5.1. Assume the execution delays of the multiplier and of the ALU are 2 and 1 cycle
respectively. Schedule the graph using the ASAP algorithm. Assuming a latency bound of X = 8 cycles, schedule
the graph using the ALAP algorithm. Determine the mobility of the operations.

=
]
TUDelft

