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In this course you will learn about the basics of quantum communication and quantum cryp-
tography. Unlike large scale quantum computers, both technologies are already implemented
today. Yet it remains a grand challenge to do quantum communication and cryptography over long
distances. This week we will learn about a very simple quantum protocol: we will encrypt quantum
states! Yet, to prepare our entry into quantum communication and cryptography, we first need to
learn a little more about quantum information. Even if you did not follow week 0, we recommend
downloading the lecture notes for week 0 for notations and conventions used here.

1.1 Probability notation
Before we start we recall standard notation of classical probability theory which we use throughout
these lecture notes. There are many good textbooks and online resources on probability theory
available, such as [Kel94; Ros10], and we refer you to any of them for additional background.

Consider a discrete random variable X taking values in some alphabet X of size n. We write
PX(·) for the distribution of X , and |X | for the size of the alphabet of X . The notation PX(x) denotes
the probability that the random variable takes on a specific symbol x ∈X . When the distribution
is clear from context, we use the shorthands px = p(x) = P(X = x) = PX(x). It will be useful to
remember that a probability distribution PX(·) is specified by non-negative probability values, i.e.
∀x ∈X , PX(x)≥ 0. Furthermore, X should be normalized, which means ∑x∈X PX(x) = 1.

� Example 1.1.1 Let X = {1,2,3,4,5,6} correspond to the faces of a 6 sided die. If the die is
fair, i.e., all sides have equal probability of occuring then PX(x) = 1/6 for all x ∈X . Using the
shorthands, this reads px = p(x) = 1/6. The size of the alphabet is given by |X |= 6. �

A random variable X can be correlated with another random variable Y . This means that they
have a joint distribution, PXY (x,y), that is not necessarily a product, that is, PXY (x,y) 6= PX(x)PY (y)
in general. This leads to the notion of conditional probabilities PX |Y (x|y), where PX |Y (x|y) is the
probability that X takes on the value x, conditional on the event that Y takes on the value y. As
before, we will generally use the following shorthands when it is clear which random variable we
refer to

px|y = p(x|y) = P(X = x|Y = y) = PX |Y (x|y). (1.1)

As you know from your probability class, Bayes rule relates this conditional probability to the joint
probabilities. Since PXY (x,y) = PX(x)PY |X(y|x) = PY (y)PX |Y (x|y) we have

PX |Y (x|y) =
PXY (x,y)

PY (y)
, (1.2)

whenever PY (y)> 0 1.

� Example 1.1.2 Let’s consider the fair die above, and an unfair die which always rolls a “6”.
That is, X = {1,2,3,4,5,6} in which PX(6) = 1 and PX(x) = 0 for x 6= 6. Let Y now refer to the
choice of a fair, or unfair die. Suppose that we choose to roll the unfair or fair die with equal
probability. That is Y = {“fair”, “unfair”} where PY (fair) = 1/2 and PY (unfair) = 1/2. We thus
have PX |Y (x|fair) = 1/6 and PX |Y (6|unfair) = 1 and PX |Y (x|unfair) = 0 for x 6= 6. �

Exercise 1.1.1 Compute the joint probability PXY (x,y) for the example of choosing a fair or
unfair die. �

1Note that the distribution over x given y is irrelevant if y cannot occur PY (y) = 0.
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Exercise 1.1.2 Suppose now that we choose to roll the fair or unfair die with probability
PY (fair) = PY (unfair) = 1/2, but don’t tell you which one it is. However, I show you the
outcome X of the die roll. That is, I have Y and you have X . Suppose that X = 3. What is the
most likely die? I.e., is it more likely that Y = fair or Y = unfair? How about X = 6? �

1.2 Density matrices

Let us start by investigating a more general formalism for writing down quantum states. There are
two motivations for doing so. Let’s start with the basic question of how to write down the state of
one of several qubits. To this end, imagine we have two quantum systems A and B. For example, A
and B are two qubits in a joint state |ψ〉AB and we want to know the state of qubit A. If the joint
state is |ψ〉AB = |ψ〉A⊗|ψ〉B, that is, it is obtained by taking the tensor product of qubit A in the
state |ψ〉A and qubit B in the state |ψ〉B, then the answer seems clear: A is simply in the state |ψ〉A.
However, if you took week 0, you may remember that some bipartite quantum states |ψ〉AB, defined
over two systems A and B, can be defined as superpositions of tensor products, in a way that makes
it non-obvious whether the state can be directly written as a single tensor product. A good example
of such a state is the EPR pair |EPR〉AB = 1√

2
|0〉A|0〉B + 1√

2
|1〉A|1〉B. For such states we cannot

express |ψ〉AB = |ψ〉A⊗|ψ〉B, that is as a tensor product of two states |ψ〉A on A and |ψ〉B on B. It
is thus unclear how we could express the state of A without making any reference to B. Such a
description should still be possible: after all, the state does exist! If it doesn’t fit in our formalism
of states as vectors it must mean the formalism is incomplete, and we need to find a mathematical
generalization for it.

The second motivation for a more general description arises from a situation in which a
probabilistic process, for example a measurement, prepares different states with some probability.
Suppose we encounter a situation in which we had either a state |ψ1〉 with some probability p1,
or a state |ψ2〉 with probability p2. To express the state accurately, we have to take into account
both states and probabilities {|ψi〉, pi}i. Can we somehow write down the proper mathematical
description of the state created by such a process?

1.2.1 Introduction

The answer to these questions lies in the so-called density matrix formalism. To start with, let us
write down the quantum state |ψ〉 of a single system as a matrix ρ = |ψ〉〈ψ|. Note that this is a
rank-1 matrix, it has precisely 1 non-zero eigenvalue (equal to 1) with associated eigenstate |ψ〉.

� Example 1.2.1 Consider the following matrices corresponding to |0〉 and |+〉= (|0〉+ |1〉)/
√

2

|0〉〈0|=
(

1
0

)
(1 0) =

(
1 0
0 0

)
, (1.3)

|+〉〈+|= 1
2

(
1
1

)
(1 1) =

1
2

(
1 1
1 1

)
. (1.4)

�

How does writing down states as matrices help us to resolve the questions above? To see how,
let us first consider the second motivation for a more general description. In particular, let us
consider the case where someone prepares 2 possible states |ψ1〉 and |ψ2〉 with equal probability
p1 = p2 = 1/2. Clearly, a superposition is not the correct description: The state really is in precisely
one of the two states, with probability 1/2 each. Indeed, the preparer knows the identity of the state.
If the identity of the state is not known, however, how can we write down the resulting state? It
turns out that we can describe the state of the resulting system as a mixture between |ψ1〉 and |ψ2〉.
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For equal probabilities, this mixture becomes

ρ =
1
2
|ψ1〉〈ψ1|+

1
2
|ψ2〉〈ψ2| . (1.5)

We also call such a ρ a density matrix. In general, if a source prepares the state |ψx〉 with probability
px, the resulting system will be in the state

ρ = ∑
x

px|ψx〉〈ψx| . (1.6)

Why would this be a good description? Let’s consider what happens if we measure in the standard
basis. If the system would actually be in the state |ψ j〉, then we would expect the probabilities of
outcomes to be

q0| j = |〈0||ψ j〉|2 = 〈0||ψ j〉〈ψ j||0〉 , (1.7)

q1| j = |〈1||ψ j〉|2 = 〈1||ψ j〉〈ψ j||1〉 . (1.8)

If state |ψ j〉 is prepared with probability p j, then we would expect the outcome probabilities to be

q0 = ∑
j

p jq0| j , (1.9)

q1 = ∑
j

p jq1| j . (1.10)

Let us expand one of these terms to relate to the density matrix formalism. We have

q0 = ∑
j

p jq0| j = ∑
j

p j〈0||ψ j〉〈ψ j||0〉= 〈0|

(
∑

j
p j|ψ j〉〈ψ j|

)
|0〉= 〈0|ρ|0〉 . (1.11)

The density matrix ρ thus accurately reflects what we would intuitively expect from the probabilities
of measurement outcomes.

� Example 1.2.2 If a source prepares quantum states in a probabilistic manner, i.e. it prepares the
quantum state ρx with probability px, then the resulting density matrix is given by

ρ = ∑
x

pxρx . (1.12)

The set of probabilities and density matrices E = {(px,ρx)}x is also called an ensemble of states.
Note that the case where the source prepares pure states is a special case with ρx = |ψx〉〈ψx| and
px = 1 for a single x. �

� Example 1.2.3 Suppose the source prepares |0〉〈0| with probability 1/2, and |+〉〈+| with
probability 1/2. Then the resulting density matrix for the ensemble {(1/2, |0〉〈0|),(1/2, |+〉〈+|)}
is given by

ρ =
1
2
|0〉〈0|+ 1

2
|+〉〈+|= 1

2

(
1 0
0 0

)
+

1
4

(
1 1
1 1

)
=

1
4

(
3 1
1 1

)
. (1.13)

�

� Example 1.2.4 Superposition is not the same as a mixture. Intuitively, the difference is that a
mixture is an inherently classical mixture: there is a process that prepares one or the other with
some probability. In contrast, a state in a superposition is one and the other. To see the difference,
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let us consider mixing or creating a superposition of |0〉 and |1〉. Consider a source that prepares
the state |0〉 and |1〉 with probabilities p0 = p1 = 1/2. Suppose we measure the resulting state

ρ =
1
2
|0〉〈0|+ 1

2
|1〉〈1|= I/2 , (1.14)

where

I=
(

1 0
0 1

)
. (1.15)

in the Hadamard basis {|+〉, |−〉} with

|+〉= 1√
2
(|0〉+ |1〉) , (1.16)

|−〉= 1√
2
(|0〉− |1〉) . (1.17)

We have that the probabilities of outcomes are given by

q+ = 〈+|ρ|+〉= 1
2
, (1.18)

q− = 〈−|ρ|−〉= 1
2
. (1.19)

In contrast, consider now the superposition |+〉. Measuring |+〉 in the Hadamard basis, results in
q+ = 1 and q− = 0. This illustrates a fundamental difference between mixtures and superpositions.
�

Exercise 1.2.1 If |Ψ〉 is an n-qubit quantum state, what are the dimensions of the density matrix
|Ψ〉〈Ψ|? �

R It is crucial to note that unlike in the case of classical probability distributions, the same
density matrix can be obtained from different ensembles. A simple example is provided by
the operator

ρ =
I
2
, (1.20)

which is also called the maximally mixed state. You may verify that

I
2
=

1
2
(|0〉〈0|+ |1〉〈1|) = 1

2
(|+〉〈+|+ |−〉〈−|) . (1.21)

1.2.2 Some mathematical definitions
To formally define density matrices and their properties, we recall some important notions from
linear algebra. The first term we introduce is the linear operator, which is, in our context, just a
fancy name to express matrices. Such a term highlights the idea that a matrix maps one vector
to another. It can hence be thought of as an operation performed on vectors, which - since
matrix multiplication is linear - will be a linear operation. We will hence use matrix and operator
interchangeably. To make sense of the quantum literature, however, the following definitions will
be useful.
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Definition 1.2.1 — Linear operator. Consider a d-dimensional complex vector space Cd . A
linear operator L : Cd → Cd′ can be represented as a d′×d matrix,

L =


L11 L12 · · · L1d

L21
. . . . . . L2d

...
. . . . . .

...
Ld′1 Ld′2 · · · Ld′d

 , (1.22)

where each element Li j ∈ C. The set of linear operators is denoted L (Cd ,Cd′).

Definition 1.2.2 — Hermitian matrix M. A linear operator M ∈L (Cd ,Cd) is Hermitian if
M† = M.

The spectral theorem states that any Hermitian operator M ∈ L (Cd ,Cd) can be diagonal-
ized with real eigenvalues. This means that there exists an orthonormal basis {|v j〉} of Cd (the
eigenvectors) and real numbers λ j (the eigenvalues) such that M = ∑ j λ j|v j〉〈v j|.

Definition 1.2.3 — Positive semidefinite matrix. A Hermitian matrix M is positive semidefi-
nite if all its eigenvalues {λi}i are non-negative, i.e. λi ≥ 0. This condition is often denoted as
M ≥ 0.

Exercise 1.2.2 Show that a matrix M is positive semidefinite if and only if 〈v|M|v〉 ≥ 0 for all
unit vectors |v〉. In particular, the diagonal coefficients 〈i|M|i〉 of M in any basis are non-negative.
Show that this is not a sufficient condition: find an M such that the diagonal coefficients of M
are all positive but M itself is not positive semidefinite. �

An important operation on matrices is the trace. We already saw in Week 0 that we can express
it simply as the sum of the diagonal elements. As such, the trace is a linear map which takes any
matrix to a complex number. It will sometimes be convenient to note that the trace can also be
expressed as follows:

Definition 1.2.4 — Trace of a matrix. The trace of a matrix M ∈L (Cd ,Cd) is defined as

tr(M) = ∑
i
〈i|M|i〉,

where {|i〉} is any orthonormal basis of Cd .

You should convince yourself that the definition of the trace does not depend on the choice of
orthonormal basis! An important property of the trace is that it is cyclic:

Exercise 1.2.3 Show that for any matrices M,N we have tr(MN) = tr(NM). We will often use
this property to perform manipulations such as

〈i|M|i〉= tr(〈i|M|i〉) = tr(M|i〉〈i|). (1.23)

It is however worth noting that in general, a non-cyclic permutation of the matrices do not
preserve the trace. More precisely, for matrices M,N,P, in general

tr(MNP) 6= tr(NMP). (1.24)

�
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1.2.3 Density matrices and their properties
Given the discussion above we are motivated to take the density matrix ρ as a more general
description of quantum states. Before was can make this formally precise, let us first investigate
when some matrix ρ would actually be considered a valid density matrix, that is, a description of a
quantum state. It turns out that there are two necessary (and sufficient) properties in order for a
density matrix to represent a valid quantum state: it should be positive semidefinite and have trace
equal to 1. To see why this is true, consider the diagonalized representation of a density matrix ρ

into its eigenvalues {λ j} j and corresponding eigenvectors {|v j〉} j as

ρ = ∑
j

λ j|v j〉〈v j| (1.25)

where the vectors |v j〉 are orthonormal. Let us imagine that we measure ρ in some other orthonormal
basis {|wk〉}k. Thinking about a process that prepares a certain state |v j〉〈v j| with probability λ j,
we could imagine that we measure just |v j〉 in that basis. We know that in this case, the probability
of obtaining measurement outcome k (conditioned on the preparation being in state |v j〉〈v j|) is
given by

qk| j = |〈v j|wk〉|2 = 〈wk||v j〉〈v j||wk〉 . (1.26)

Hence the probability of obtaining outcome k when measuring ρ should be given by

qk = ∑
j

λ jqk| j = 〈wk|

(
∑

j
λ j|v j〉〈v j|

)
|wk〉= 〈wk|ρ|wk〉 . (1.27)

Note that we must have qk ≥ 0 and ∑k qk = 1. By imagining that we measure ρ in its eigenbasis,
that is, |w j〉= |v j〉, it is easy to see that λ j ≥ 0, that is, ρ is a positive semidefinite matrix. We also
have tr(ρ) = 1, since

1 = ∑
j

q j = ∑
j

λ j tr(|v j〉〈v j|) = tr(ρ) . (1.28)

This motivates the following definition of a density matrix, which is the most general way to
describe the state of a quantum system.

Definition 1.2.5 — Density matrix. Consider a quantum system with state space Cd . A density
matrix, commonly denoted as ρ , is a linear operator ρ ∈L (Cd ,Cd) such that:
1. ρ ≥ 0, and
2. tr(ρ) = 1.
If rank(ρ) = 1, then ρ is called a pure state, otherwise ρ is mixed.

Let us also summarize the rule for computing outcome probabilities for measuring a quantum
system described by the density matrix ρ motivated by our discussions.

Definition 1.2.6 — Measuring a density matrix in a basis. Consider a quantum system in
the state ρ . Measuring ρ in the basis {|b j〉} j results in outcome j with probability

q j = 〈b j|ρ|b j〉 . (1.29)

1.2.4 Bloch representation for one qubit mixed states
In week 0, we saw that one qubit states have a nice graphical representation in terms of vectors
on the Bloch sphere. In particular, any pure quantum state can be described by a Bloch vector
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~r = (cosφ sinθ ,sinφ sinθ ,cosθ). Is this the same for mixed states? The answer to this turns out
to be yes! Concretely, we can write any one qubit density matrix as

ρ =
1
2
(I+ vxX + vzZ + vyY ) , (1.30)

where X ,Y,Z are the Pauli matrices you have encountered in Week 0, and if ρ is pure, then
the vector ~v = (vx,vy,vz) is precisely the Bloch vector~r that you already know! For pure states
‖~v‖2

2 = v2
x + v2

y + v2
y = 1. For mixed states, however, we can have ‖~v‖2

2 ≤ 1. Thus for the case of
2×2 matrices the vector~v tells us immediately whether the matrix ρ is a valid one qubit quantum
state! This is the case if and only if ‖~v‖2 ≤ 1.

Note that the matrices S = {I,X ,Z,Y} form a basis for the space of 2×2 density matrices that
correspond to a qubit. You should convince yourself that all these matrices are orthogonal under
the Hilbert-Schmidt inner product 〈A,B〉= tr(A†B). That is,

tr(X†Y ) = tr(X†Z) = tr(X†I) = 0 , (1.31)

and similarly for all other pairs of matrices.

Exercise 1.2.4 Using the orthogonality condition (1.31), show that

|0〉〈0|= 1
2
(I+Z) , (1.32)

|1〉〈1|= 1
2
(I−Z) , (1.33)

�

Exercise 1.2.5 Use the fact that all matrices M,N ∈ S with M 6= N anti-commute, i.e.,
{M,N}= MN +NM = 0 to show that tr(MN) = 0 whenever M 6= N ∈S . �

1.3 Combining density matrices

If we have two quantum systems A and B, described by density matrices ρA and ρB, how can
we write down the joint state ρAB? We saw in Week 0 that two pure quantum states which can
be represented by vectors |v1〉 ∈ Cd1 , |v2〉 ∈ Cd2 can be combined by taking their tensor product
|v1〉⊗ |v2〉 ∈ Cd1 ⊗Cd2 . It turns out that the rule for mixed states is very similar, and a simple
extension of the concept of the tensor product. Let us start with the simple case where ρA,ρB are
2×2-dimensional matrices,

ρA⊗ρB =

(
m11 m12
m21 m22

)
⊗
(

n11 n12
n21 n22

)
=

m11

(
n11 n12
n21 n22

)
m12

(
n11 n12
n21 n22

)
m21

(
n11 n12
n21 n22

)
m22

(
n11 n12
n21 n22

)
 (1.34)

=


m11n11 m11n12 m12n11 m12n12
m11n21 m11n22 m12n21 m12n22
m21n11 m21n12 m22n11 m22n12
m21n21 m21n22 m22n21 m22n22

 . (1.35)
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For example, if we have two density matrices ρA =

(
1 0
0 0

)
and ρB =

(
0 0
0 1

)
, then

ρAB = ρA⊗ρB =

(
1 ·ρB 0 ·ρB

0 ·ρB 0 ·ρB

)
=


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 . (1.36)

This definition easily extends to larger matrices as follows:

Definition 1.3.1 — Tensor product. Consider any d′×d matrix ρA and k′× k matrix ρB,

ρA =


m11 m12 · · · m1d

m21
. . . . . . m2d

...
. . . . . .

...
md′1 md′2 · · · md′d

 , ρB =


n11 n12 · · · n1k

n21
. . . . . . n2k

...
. . . . . .

...
nk′1 nk′2 · · · nk′k

 . (1.37)

The tensor product of these matrices is given by a d′k′×dk matrix,

ρAB = ρA⊗ρB =


m11ρB m12ρB · · · m1dρB

m21ρB
. . . . . . m2dρB

...
. . . . . .

...
md′1ρB md′2ρB · · · md′dρB

 . (1.38)

As a word of caution, we note that the tensor product, like the usual matrix product, is non-
commutative.

� Example 1.3.1 Consider the density matrices ρA = 1
4

1 1 0
1 2 1
0 1 1

 and ρB = 1
2

(
1 −i
i 1

)
. Then

ρA⊗ρB =
1
8



1 −i 1 −i 0 0
i 1 i 1 0 0
1 −i 2 −2i 1 −i
i 1 2i 2 i 1
0 0 1 −i 1 −i
0 0 i 1 i 1

 , (1.39)

and

ρB⊗ρA =
1
8



1 1 0 −i −i 0
1 2 1 −i −2i −i
0 1 1 0 −i −i
i i 0 1 1 0
i 2i i 1 2 1
0 i i 0 1 1

 6= ρA⊗ρB. (1.40)

�

1.4 Classical-quantum states
Throughout quantum cryptography, we often find ourselves in a situation in which the honest parties
have some classical information X about which an adversary - like an eavesdropper Eve - may
hold some quantum information Q. It is worth thinking about that the joint states ρXQ have a very
special structure.
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1.4.1 Classical states

As a first step, let us first pause to think about what it means that X is “classical information”. To
this end, it is interesting to note that it is possible to write a probability distribution over classical
strings x in terms of density matrices. Suppose that we have a classical probability distribution
over symbols from the alphabet X = {0, . . . ,d−1}, where px denotes the probability of observing
symbol x. Identifying classical bits (or indeed numbers) with elements of the standard basis
{|0〉, . . . , |d−1〉}, we can express a source preparing each of the possible states |x〉 with probability
px by the mixture

ρ =
d−1

∑
x=0

px|x〉〈x| . (1.41)

Note that ρ is a density matrix which has the probabilities px on the diagonal and is otherwise zero.
As such, ρ is just another way to express the probability distribution px. Indeed, you may want
to check that measuring ρ in the standard basis results precisely in obtaining outcome “x” with
probability px.

Definition 1.4.1 — Classical state. Consider a system X with state space Cd , and let {|x〉}d−1
x=0

denote the standard basis for Cd . A system X is in a classical state, or c-state, when the
corresponding density matrix ρX is diagonal in the standard basis of the state space of X , i.e. ρX

has the form

ρ =
d−1

∑
x=0

px|x〉〈x| (1.42)

where {px}d−1
x=0 is any normalized probability distribution.

In quantum cryptography, we will often encounter states which are partially classical, and
partially quantum. Suppose we prepare the following states for Alice and Bob. With probability
1/2 we prepare |0〉〈0|X ⊗ρ

Q
0 with ρ

Q
0 =

IQ
2 , and with probability 1/2 we prepare |1〉〈1|X ⊗ρ

Q
1 with

ρ
Q
1 = |+〉〈+|. The joint state is a classical quantum state, or cq-state of the form

ρXQ =
1
2 ∑

x∈{0,1}
|x〉〈x|X ⊗ρ

Q
x . (1.43)

Note that in this case Alice knows which state Bob is given. However, as we will see later, Bob
cannot learn which x Alice holds with certainty. (Intuitively, the reason is that, while Alice’s states
are orthonormal, Bob’s states have “overlap” and are not perfectly distinguishable.)

Definition 1.4.2 A classical-quantum state, or simply called a cq-state takes the form

ρXQ = ∑
x

px|x〉〈x|X ⊗ρ
Q
x . (1.44)

That is, it consists of a classical register X and a quantum register Q. If Q is absent, then ρX is
simply a classical state.

In applications to cryptography x will often represent some (partially secret) classical string that
Alice creates during a quantum protocol, and ρ

Q
x some quantum information that an attacker may

have gathered during the protocol, and which may be correlated with the string x. It is an established
custom in the quantum information literature to use letters X ,Y,Z to denote such classical registers,
and reserve the other letters for quantum information.
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1.5 General measurements

So far we have only been measuring quantum states in a given basis. Quantum mechanics allows
a much more refined notion of measurement, which plays an important role both in quantum
information theory and cryptography. On the one hand, in quantum information theory certain tasks,
such as the task of discriminating between multiple states, can be solved more efficiently using
these generalized measurements. On the other hand, taking an adversarial viewpoint, in quantum
cryptography it is essential that we prove security for the most general kind of attack, including all
measurements that an attacker could possibly make!

1.5.1 POVMs
If we are only interested in the probabilities of measurement outcomes - but not what happens
after the measurement - then the most general kind of measurement that is allowed in quantum
mechanics can be described by a positive operator-valued measure, or POVM for short. It can be
defined as follows.

Definition 1.5.1 — POVM. A POVM on Cd is a set of positive semidefinite operators {Mx}x∈X
such that

∑
x

Mx = ICd . (1.45)

The subscript x is used as a label for the measurement outcome. The probability px of observing
outcome x can be expressed using the Born rule as

px = tr(Mxρ) . (1.46)

� Example 1.5.1 Recall that when measuring a state |ψ〉= ∑x αx|x〉 in a basis such as {|x〉}x, the
probability of outcome x is simply given by |αx|2. Let’s see how this can be formulated as a special
case of the POVM formalism we just introduced. For each x let Mx = |x〉〈x|, so that Mx is positive
semidefinite (it fact, it is a projector, i.e. M2 = M) and ∑x Mx = I ({|x〉} is a basis), as required. We
can then use the Born rule to compute

px = tr(Mxρ)

= tr(|x〉〈x|ρ)
= 〈x|ρ|x〉
= ∑

x′,x′′
αx′α

∗
x′′〈x|x′〉〈x′′|x〉

= |αx|2 .

�

� Example 1.5.2 Consider a distribution (px) and the classical mixture ρ = ∑x px|x〉〈x|. If we
measure ρ in the standard basis, with associated POVM Mx = |x〉〈x| as in the previous example, we
obtain outcome x with probability

tr(|x〉〈x|ρ) = 〈x|ρ|x〉= px. (1.47)

Thus ρ indeed captures the classical distribution given by the probabilities px. �

You may wonder what happens to a quantum state after a generalized measurement has been
performed. For the case of measuring in a basis, the answer is simple: the state collapses to the
basis element associated with the outcome of the measurement that is obtained.
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In the case of a POVM it turns out that the information given by the operators {Mx} is not
sufficient to fully determine the post-measurement state. Intuitively the reason is because such a
measurement may not fully collapse the state (the post-measurement state may not be pure), and as
a consequence there remains the flexibility to apply an arbitrary unitary on the post-measurement
state, without affecting the outcome probabilities.

In order to specify post-measurement states we need to give a Kraus operator representation of
the POVM.

Definition 1.5.2 — Kraus operators. Let M = {Mx} be a given POVM on Cd . A Kraus
operator representation of M is a set of linear operators Ax ∈L (Cd ,Cd′) such that Mx = A†

xAx

for all x.

Note that a Kraus decomposition of any POVM always exists by setting Ax =
√

Mx, the positive
square root of Mx. (For any positive semidefinite matrix N, if N = ∑i λi|vi〉〈vi| is the spectral
decomposition of N, then

√
N = ∑i

√
λi|vi〉〈vi|.) In particular, if Mx = |ux〉〈ux| is a projector then√

Mx = Mx and we can take Ax = Mx. But for any unitary Ux on Cd , A′x =Ux
√

Mx is also a valid
decomposition. Hence, there is no unique Kraus representation for a given POVM.

1.5.2 Generalized measurements
The most general form to write down a quantum measurement is thus given by the full set of
Kraus operators {Ax}x. From these, we can easily find the POVM operators as Mx = A†

xAx, but also
compute the post-measurement states.

Definition 1.5.3 — Post-measurement state. Let ρ be a density matrix and M = {Mx} a
POVM with Kraus decomposition given by operators {Ax}. Suppose the measurement is
preformed and the outcome x is obtained. Then the state of the system after the measurement,
conditioned on the outcome x, is

ρ|x =
AxρA†

x

tr(A†
xAxρ)

.

You may want to convince yourself that when measuring a pure state |ψ〉 in the standard basis, with
POVM elements Mx = |x〉〈x| and Kraus decomposition Ax = Mx = |x〉〈x|, the post-measurement
state as defined above is precisely the basis state associated to the measurement outcome. Note
that since a POVM does not have a unique decomposition into Kraus operators, specifying POVM
operators alone is insufficient to determine the post-measurement state. Nevertheless, talking about
a POVM is extremely useful if we only care about measurement probabilities, since the matrices
Mx have a slightly simpler form. In particular, we will note later, we can easily optimize over them
using a semidefinite program (SDP).

An important class of generalized measurements is given by the case where the Mx are projectors
onto orthogonal subspaces.

Definition 1.5.4 A projective measurement, also called a von Neumann measurement, is given
by a set of orthogonal projectors Mx = Πx such that ∑x Πx = I. For such a measurement,
unless otherwise specified we will always use the default Kraus decomposition Ax = Πx. The
probability qx of observing measurement outcome x can then be expressed as

qx = tr(Πxρ),

and the post-measurement states are

ρ|x =
ΠxρΠx

tr(Πxρ)
.
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� Example 1.5.3 Suppose given a two-qubit state ρ , such that we would like to measure the parity
(in the standard basis) of the two qubits. A first way to do this would be to measure ρ in the standard
basis, obtain two bits, and take their parity. In this case the probability of obtaining the outcome
“even” would be

qeven = 〈00|ρ|00〉+ 〈11|ρ|11〉,

and the post-measurement state would be the mixture of the two post-measurement states associated
with outcomes (0,0) and (1,1), so

ρ|even = 〈00|ρ|00〉|00〉〈00|+ 〈11|ρ|11〉|11〉〈11|.

Now suppose we measure the parity using a generalized measurement which directly projects onto
the relevant subspaces, without measuring the qubits individually. That is, consider the projective
measurement Πeven = |00〉〈00|+ |11〉〈11| and Πodd = I−Πeven = |01〉〈01|+ |10〉〈10|. With this
measurement the probability of obtaining the outcome “even” is

q′even = tr(Πevenρ) = 〈00|ρ|00〉+ 〈11|ρ|11〉 , (1.48)

as before. However, the post-measurement state is now

ρ
′
|even = ΠevenρΠeven . (1.49)

To see the difference, consider the state ρ = |EPR〉〈EPR| where |EPR〉= 1√
2
(|00〉+ |11〉). Then

clearly the measurement should report the outcome “even” with probability 1, and you can check
this is the case for both measurements. However, the post-measurement states are different. In the
first case,

ρ|even =
1
2
|00〉〈00|+ 1

2
|11〉〈11|,

while in the second case,

ρ
′
|even = |EPR〉〈EPR|

is unchanged! This is one of the main advantages of using generalized measurements as opposed to
basis measurements: they allow to compute certain simple quantities on multi-qubit states (such as
the parity) without fully “destroying” the state, as happens when measuring in a basis. �

Exercise 1.5.1 Use a projective measurement to measure the parity, in the Hadamard basis, of
the state |00〉〈00|. Compute the probabilities of obtaining measurement outcomes “even” and
“odd”, and the resulting post-measurement states. What would the post-measurement states have
been if you had first measured the qubits individually in the Hadamard basis, and then taken the
parity? �

1.6 The partial trace

Going back to our initial motivation for introducing density matrices, let’s now give an answer to the
following question: given a multi-qubit state, how do we write down the “partial state” associated
to a subset of the qubits? More generally, suppose ρAB is a density matrix on a tensor product space
CdA

A ⊗CdB
B , but suppose Alice holds the part of ρ corresponding to system A and Bob holds the part

corresponding to system B. How do we describe the state ρA of Alice’s system?
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1.6.1 An operational viewpoint
The operation that takes us from ρAB to ρA is called the partial trace. It can be given a purely
mathematical description that we will give below. However, before that, let’s try to think about
the problem from an operational point of view. First, an easy case: if ρAB = ρA⊗ρB, where ρA

and ρB are both density matrices, then clearly Alice’s system is defined by ρA. A slightly more
complicated case would be when ρAB = ∑i piρ

A
i ⊗ρB

i is a mixture of tensor products (we will later
see this is called a “separable state”); in this case it would certainly be natural to say that Alice’s
state is ρA

i with probability pi, i.e. ρA = ∑i piρ
A
i .

How do we deal with a general ρ? The idea is to imagine that Bob performs a complete
basis measurement on his system, using an arbitrary basis {|ux〉}. Let’s introduce a POVM on the
joint system of Alice and Bob that models this measurement: since Alice does nothing, we can
set Mx = IA⊗|ux〉〈ux|B, which you can check indeed defines a valid POVM. Moreover, this is a
projective measurement, so we can take the Kraus operators Ax = Mx as well. By definition the
post-measurement states are given by

ρ
AB
|x =

MxρABMx

Tr
(
MxρAB

) = ((IA⊗〈ux|)ρAB(IA⊗|ux〉)
)

A⊗|ux〉〈ux|B
Tr
(
(IA⊗|ux〉〈ux|B)ρAB

) .

Notice how we wrote the state, as a tensor product of a state on A and one on B. Make sure you
understand the notation in this formula.

Now the key step is to realize that, whatever the state of Alice’s system A is, it shouldn’t depend
on any operation that Bob performs on B. After all, it may be that A is here on earth, and B on
Mars and even quantum mechanics does not allow faster than light communication. As long as the
two of them remain perfectly isolated, meaning that Alice doesn’t get to learn the measurement
that Bob performs or its outcome, then her state is unchanged. We can thus describe it as “with
probability qx = Tr(MxρAB), Alice’s state is the A part of ρAB

|x , i.e.

ρA = ∑
x

qx

(
(I⊗〈ux|)ρAB(I⊗|ux〉)

)
A

Tr
(
(I⊗|x〉〈x|)ρAB

) = ∑
x
(I⊗〈ux|)ρAB(I⊗|ux〉). (1.50)

Although we derived the above expression for Alice’s state using sensible arguments, there is
something you should be worried about: doesn’t it depend on the choice of basis {|ux〉} we made
for Bob’s measurement? Of course, it should not, as our whole argument is based on the idea that
Alice’s reduced state should not depend on any operation performed by Bob. (We emphasize that
this is only the case as long as Alice doesn’t learn the measurement outcome! If we fix a particular
outcome x then it’s a completely different story; beware of the subtlety.)

Exercise 1.6.1 Verify that the state ρA defined in Eq.(1.50) does not depend on the choice of
basis {|ux〉}. [Hint: first argue that if two density matrices ρ,σ satisfy 〈φ |ρ|φ〉 = 〈φ |σ |φ〉
for all unit vectors |φ〉 then ρ = σ . Then compute 〈φ |ρA|φ〉, and use the POVM condition
∑x Mx = I to check that you can get an expression independent of the {|ux〉}. Conclude that ρA

itself does not depend on {|ux〉}.] �

� Example 1.6.1 Consider the example of the EPR pair

|EPR〉AB =
1√
2
(|00〉+ |11〉) (1.51)

Writing this as a density operator we have

ρAB = |EPR〉〈EPR|AB =
1
2
(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|) . (1.52)
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Let’s measure system B in the standard basis: taking A into account we consider the POVM
M0 = IA⊗|0〉〈0|B and M1 = IA⊗|1〉〈1|B. We can then compute

q0 = Tr(M0ρ)

=
1
2

Tr
(
(I⊗|0〉〈0|)(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|)

)
=

1
2
(
1+0+0+0) =

1
2
,

and similarly q1 = 1/2. The post-measurement stated on A is then

ρ
A
|0 =

1
2
(I⊗〈0|)ρAB(I⊗|0〉)+

1
2
(I⊗〈1|)ρAB(I⊗|1〉) =

1
2
|0〉〈0|+ 1

2
|1〉〈1|.

Exercise: do the same calculation using a measurement in the Hadamard basis on B, and check that
you get the same result! �

1.6.2 A mathematical definition
Armed with our “operational” definition of what the partial trace should be, we can now give the
precise, mathematical definition of the partial trace operation.

Definition 1.6.1 — Partial Trace. Consider a general state

ρAB = ∑
i jk`

γ
k`
i j |i〉〈 j|A⊗|k〉〈`|B, (1.53)

where |i〉A, | j〉A and |k〉B, |`〉B run over orthonormal bases of A and B respectively. Then the
partial trace over B is defined as

ρA = trB(ρAB) = ∑
i jk`

γ
k`
i j |i〉〈 j|⊗ tr(|k〉〈`|) = ∑

i j

(
∑
k

γ
kk
i j

)
|i〉〈 j| . (1.54)

Similarly, the partial trace over A becomes

ρB = trA(ρAB) = ∑
i jk`

γ
k`
i j tr(|i〉〈 j|)⊗|k〉〈`|= ∑

k`

(
∑

j
γ

k`
j j

)
|k〉〈`| . (1.55)

The states ρA,ρB are also referred to as reduced states.

� Example 1.6.2 Let’s consider again the example of the EPR pair

|EPR〉AB =
1√
2
(|00〉+ |11〉),

with associated density matrix ρAB = |EPR〉〈EPR|AB. Using the definition we can compute

trB(ρAB) =
1
2
(
|0〉〈0|⊗ tr(|0〉〈0|)+ |0〉〈1|⊗ tr(|0〉〈1|)

+ |1〉〈0|⊗ tr(|1〉〈0|)+ |1〉〈1|⊗ tr(|1〉〈1|)
)
. (1.56)

Since the trace is cyclic, tr(|0〉〈1|) = 〈1|0〉= 0, similarly tr(|1〉〈0|) = 0, but tr(|0〉〈0|) = tr(|1〉〈1|) =
1 and hence

trB(ρAB) =
1
2
(|0〉〈0|+ |1〉〈1|) = I

2
. (1.57)
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Convince yourself that when we take the partial trace operation over A, and hence look at the state
of just Bob’s qubit we have

trA(ρAB) =
I
2
. (1.58)

�

Exercise 1.6.2 If ρAB = |Φ〉〈Φ| is the singlet |Φ〉= (|01〉− |10〉)/
√

2, compute ρA and ρB. �

� Example 1.6.3 We can now see that performing a unitary operation on A has no effect on the
state of B, i.e., it does not change ρB.

(UA⊗ IB)ρAB(UA⊗ IB)
† = ∑

i jk`
γ

k`
i j UA|i〉〈 j|AU†

A⊗|k〉〈`|B. (1.59)

Computing again the partial trace we have

trA(UA⊗ IBρABU†
A⊗ IB) = ∑

i jk`
γ

k`
i j tr(UA|i〉〈 j|U†

A)⊗|k〉〈`| (1.60)

= ∑
i jk`

γ
k`
i j tr(|i〉〈 j|U†

AUA)⊗|k〉〈`| (1.61)

= ∑
i jk`

γ
k`
i j tr(|i〉〈 j|)⊗|k〉〈`| (1.62)

= ∑
k`

(
∑

j
γ

k`
j j

)
|k〉〈`|= ρB . (1.63)

Can you convince yourself that performing a measurement on A also has no effect on B? �

1.7 Secure message transmission
The first cryptographic challenge that we will consider is the one of secure message transmission.
Here, our protagonists Alice and Bob want to protect their communication from the prying eyes of
an eavesdropper Eve. Alice and Bob are always honest, and Eve is the adversary (sometimes also
called eavesdropper. Alice and Bob have control over their secure labs that Eve cannot peek into.
However, Eve has access to the communication channel connecting Alice and Bob.

The most fundamental (and also the most secure) method that Alice and Bob can use to transmit
their messages securely requires them to use a key to encode the message. It is assumed that the
key is known to both Alice and Bob, but is private to them: Eve has no information about the
key. For this reason we call cryptosystems such as the one we’re about to discover private-key
cryptosystems. Today we investigate how such secret key can be used. In later weeks we will use
quantum information to come up with the key!

1.7.1 Shannon’s secrecy condition and the need for large keys
Let us assume that Alice and Bob share a classical key k that is unknown to the eavesdropper, in
the sense that we will make precise later. For the moment, let us take the intuitive definition that
Eve doesn’t know the key if she is completely uncorrelated from the key, and p(k) = 1/|K| for
|K| possible keys, i.e. every key is equally likely. A mathematical framework for the description
of transferring secret messages was first developed in [Sha49]. Any encryption scheme consists
of some encryption function Enc(k,m) = e that takes the key k and the message m and maps it to
some encrypted message e. The original message m is also called the plaintext, and e the ciphertext.
We will also need a decryption function Dec(k,e) = m that takes the key k and the cipertext e back
to the plaintext.
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Definition 1.7.1 An encryption scheme (Enc,Dec) is secret, or secure if and only if for all prior
distributions p(m) over messages, and all messages m, we have

p(m) = p(m|e), (1.64)

where e = Enc(k,m).

In other words we call an encryption scheme secret/secure whenever an eavesdropper Eve who
may have intercepted the ciphertext e gains no additional knowledge about the message m than she
would have without the ciphertext e. That is, the probability p(m) of the message m is the same a
priori (as anyone could guess) as it is from the point of view of Eve , who has obtained e. This is a
very strong notion of security: absolutely no information is gained by having access to e!

Note that it would be easy to come up with an encryption scheme which is “just” secret: Alice
simply sends a randomly chosen e to Bob. At this point, you are probably objecting since surely
this would not be very useful! How could Bob hope to learn m, if e has nothing to do with m? The
second condition that an encryption scheme has to satisfy is thus that it is correct.

Definition 1.7.2 An encryption scheme (Enc,Dec) is correct if and only if for all possible
messages m, and all possible keys k, we have m = Dec(k,Enc(k,m)).

Again it would be easy to find an encryption scheme that is “just” correct: Alice simply sends
e = m to Bob. Again, you are possibly objecting, since Eve can now read all messages and this is
precisely what we wanted to prevent!

The art of cryptography is to design protocols that are both correct and secure simultaneously.
In almost all situations, it will be easy to be correct, and easy to be secure, but the real challenge
arises when we want to combine both conditions.

The secret key we assumed Alice and Bob share will be the essential ingredient required to
achieve an encryption scheme that is both correct and secret. Is a key really needed? As it turns out,
not only it is needed but in fact we will need just as many keys as there are possible messages. A
message is called possible if p(m)> 0. Let us establish this fact in a lemma, due to Shannon:

Lemma 1 An encryption scheme (Enc,Dec) can only be secure and correct if the number of
possible keys |K| is at least as large as the number of possible messages |M|, that is, |K| ≥ |M|.

Proof. Suppose for contradiction that there exists a scheme using less keys, i.e., |K| < |M|. We
will show that such a scheme cannot be secure. Consider an eavesdropper who has intercepted the
ciphertext e. She could then compute

S = {m̂ | ∃k, m̂ = Dec(k,e)} , (1.65)

that is, the set of all messages m̂ for which there exists a key k that could have resulted in the
observed ciphertext e. Note that the size |S | of this set is |S | ≤ |K|, since for each possible key k
we get at most one message m̂. Since |K|< |M|, we thus have |S |< |M|. This means that there
exists at least one message m such that m /∈S , and hence p(m|e) = 0. There is no key which could
give this message, so the eavesdropper learns that the message cannot have been m, but one of
the other messages instead! Since a message is possible precisely when p(m)> 0, we thus have
0 = p(m|e) 6= p(m)> 0, which violates the security condition. We conclude that the scheme can
only be secure if |K| ≥ |M|. �

Can the bound given in the lemma be achieved: does there exist an encryption scheme that is
both correct and secure, and which uses precisely the minimal number of keys |K| = |M|? The
answer is yes! We shall explore that in the next section.
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1.8 The (quantum) one-time pad

Let us consider possibly the simplest scheme to encrypt messages. It is known as the one-time pad,
and offers excellent security — we will learn precisely why soon!

1.8.1 The classical one-time pad
Imagine that Alice (the sender) wants to send a secret message m to Bob (the receiver), where
we will take m ∈ {0,1}n to be an n-bit string. Let us furthermore imagine that Alice and Bob
already share a key k ∈ {0,1}n which is just as long as the message. Indeed, as we have seen earlier,
having a key that is as long as the message is a requirement to ensure absolute security for arbitrary
messages m!

Protocol 1 The classical one-time pad is an encryption scheme in which the encryption of a
message m ∈ {0,1}n using the key k ∈ {0,1}n is given by

Enc(k,m) = m⊕ k = (m1⊕ k1,m2⊕ k2, . . . ,mn⊕ kn) = (e1, . . . ,en) = e , (1.66)

where m j⊕ k j = m j + k j mod 2 is the XOR, or addition modulo 2. The decryption is given by

Dec(k,e) = e⊕ k = (e1⊕ k1,e2⊕ k2, . . . ,en⊕ kn). (1.67)

Note that since m j⊕ k j⊕ k j = m j the receiver can recover the message, thus the scheme is correct.
Is it secure?

To see that it satisfies Shannon’s definition, consider any message m. For a uniformly random
choice of key k, the associated ciphertext e = Enc(k,m) is uniformly distributed over all n-bit
strings. We have

p(e|m) = p(m⊕ k|m) = p(k|m) =
1
2n , (1.68)

for k = e⊕m. Now note that this holds for all messages m, and hence

p(e) = ∑
m

p(m)p(e|m) =
1
2n . (1.69)

Applying Bayes rule we thus have

p(m|e) = p(m,e)
p(e)

=
p(e|m)p(m)

p(e)
= p(m) , (1.70)

independent of m, and since p(m|e) = p(m) the scheme is perfectly secure. Note however that
the argument crucially relies on the key being uniformly distributed and independent from the
eavesdropper, a condition that has to be treated with care. In week 4 we will learn about a method
called privacy amplification that can be used to “improve” the quality of a key about which the
eavesdropper may have partial information. We will make this notion precise later in this lecture
series!

R We note that while the one-time pad is perfectly secure, it does not protect against the
eavesdropper changing bits in the mesages. For example, Eve can flip bits - while this may
not bother you very much when transmitting images, it surely will be an issue in your bank
transactions. For this reason, one-time pads are supplemented by checksums or message
authentication codes (MAC) which allow changes to be detected (and corrected). These are
purely classical techniques, and hence we will not cover them here.
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There is another way to look at the classical one time pad that brings it much closer to the
quantum version we will consider next. Let us explain this by considering the encryption of a
single-bit message m ∈ {0,1}. Recall that we could encode the message into a quantum state as
|m〉, or as the density matrix |m〉〈m|. When we apply the XOR operation the result is that the bit m
is flipped whenever the key bit k = 1. That is, when k = 1 we transform the state to X |m〉, or, as
a density matrix, X |m〉〈m|X . If Alice and Bob choose a random key bit k, then from the point of
view of the eavesdropper (who does not have access to k) the state of the message is represented by
the density matrix

ρ =
1
2 ∑

k∈{0,1}
Xk

ρXk =
1
2
|m〉〈m|+ 1

2
X |m〉〈m|X =

I
2
. (1.71)

Note that this density matrix ρ does not depend on m! That is, absolutely no information about m
can be gained from the density matrix that represents the eavesdropper’s view of the system, i.e. the
message m and any information held by the eavesdropper is uncorrelated. This "uncorrelated-ness"
is precisely the desired hallmark of an encryption scheme, and you will soon learn how to make
this precise!

1.8.2 The quantum one-time pad
Let us consider the task of encrypting a qubit, instead of a classical bit [Amb+00; BR00]. In the
videos, we saw a geometric argument for encrypting a qubit. Here, we will give a formal argument.
Instead of one key bit, however, it turns out that we require two key bits k1k2 to encrypt a qubit.
Indeed, it can be shown that two key bits are necessary. An intuition on why we need more than
one key bit is that we wish to hide information in all possible bases the qubit could be in. In the
classical case applying the bit flip operator X allowed us to encrypt any bit expressed in the standard
basis. If we are allowed other bases, we could for example attempt to encrypt a bit expressed in the
Hadamard basis, in which case X |+〉〈+|X = |+〉〈+| and X |−〉〈−|X = |−〉〈−|. In other words, the
qubit is unchanged by the “encryption” procedure, and the scheme is completely insecure.

The trick to a quantum one-time pad is then to apply a bit flip in both bases, standard and
Hadamard. This can be achieved by applying Xk1Zk2 . When k1k2 is chosen uniformly at random,
an arbitrary single-qubit ρ is encrypted to

1
4 ∑

k1,k2∈{0,1}
Xk1Zk2ρZk2Xk1 . (1.72)

To see why this works, let us recall the Bloch sphere representation of ρ and the fact that the Pauli
matrices pairwise anti-commute. In particular, applying either I, X , Z or XZ with equal probability
to the Pauli matrix X gives

X +XXX +ZXZ +XZXZX = X +X−ZZX−XZZXX = X +X−X−X = 0 , (1.73)

where we use the fact that the Pauli matrices are observables (i.e. they are Hermitian and square to
identity), and {X ,Z}= XZ +ZX = 0. For some intuition, refer to Figure 1.1 for a visualization.

Exercise 1.8.1 Show that for all M ∈ {X ,Z,Y} we have

1
4 ∑

k1,k2

Xk1Zk2MZk2Xk1 = 0. (1.74)

�
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0〉|

1〉|

ρ

XρX

XZρZX

ZρZ

Figure 1.1: A qubit encoded by two key bits: the operations I,X ,Z,XZ are performed on the
qubit with equal probability. The resulting mixture of states is then the maximally mixed state
(represented by the origin of the diagram).

Since we can write any one qubit state as

ρ =
1
2
(I+ vxX + vyY + vzZ) , (1.75)

we thus have that
1
4 ∑

k1,k2

Xk1Zk2ρZk2Xk1 =
I
2
. (1.76)

To someone who does not know k1,k2 the resulting state is again completely independent of the
input ρ , which means we have managed to hide all possible information from the eavesdropper.
We thus have the following encryption scheme.

Protocol 2 The quantum one-time pad is an encryption scheme for qubits. To encrypt, Alice
applies Xk1Zk2 to the qubit ρ and sends the resulting state to Bob. To decrypt, Bob applies the
inverse (Xk1Zk2)† to obtain ρ .

This scheme can be extended to n qubits, where on each qubit we apply either I, X , Z or XZ
depending on two key bits. This means that to encrypt n qubits, we use 2n bits of classical key.

Exercise 1.8.2 Show that strings of Pauli matrices Ps = X s1Zs2⊗X s3Zs4⊗ . . .⊗X s2n−1Zs2n with
s ∈ {0,1}2n form an orthogonal basis for all linear operators L (C2n

,C2n
), in which n-qubit

density matrices ρ can be described. That is, tr[(Ps)†Pŝ] = 0 for all s 6= ŝ, and that we can write
a density matrix on n qubits as

ρ =
1
2n

(
I⊗2n + ∑

s 6=0
vsPs

)
. (1.77)

�

R It would be natural to think that for n-qubit systems as for 1-qubit systems the coefficients vs
associated with density matrices could be characterized by some form of higher-dimensional
analogue of the Bloch sphere. This is not true, and much more complicated conditions on the
coefficients vs have to hold for ρ to be a valid quantum state. The Bloch sphere representation
is only used for a single qubit, where it forms a useful visualization tool.
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Important identities for calculations

Trace
Given a matrix M, the trace is given by tr(M) = ∑i Mii, i.e. the sum of its diagonal elements.
The trace operation is cyclic, i.e. for any two matrices M,N, tr(MN) = tr(NM).

Density Matrices
If a source prepares a quantum system in the state ρx with probability px, then the resulting
state of the system is given by the density matrix

ρ = ∑
x

pxρx. (1.78)

Bloch representation of density matrices: any qubit density matrix can be written as

ρ =
1
2
(I+ vxX + vzZ + vyY ) , (1.79)

and the Bloch vector~v = (xx,vy,vz)≤ 1 with equality if and only if ρ is pure.

Probability of measurement outcomes on a density matrix
If a quantum state with density matrix ρ is measured in the basis {|w j〉} j, then the probabil-
ities of obtaining each outcome |w j〉 is given by

pw j = 〈w j|ρ|w j〉= tr(ρ|w j〉〈w j|). (1.80)

Combining density matrices

For density matrices ρA =

(
a11 a12
a21 a22

)
and ρB =

(
b11 b12
b21 b22

)
representing qubits A and B,

the joint density matrix is given by

ρAB = ρA⊗ρB :=
(

a11ρB a12ρB

a21ρB a22ρB

)
=


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

 . (1.81)

Partial trace
Given a bipartite matrix ρAB, which can be expressed in a general form:

ρAB = ∑
i jkl

γ
kl
i j |i〉〈 j|⊗ |k〉〈l|, (1.82)

the partial trace operation over system A yields the reduced state ρB

ρB = trA(ρAB) = ∑
i jk`

γ
k`
i j tr(|i〉〈 j|)⊗|k〉〈`|= ∑

k`

(
∑

j
γ

k`
j j

)
|k〉〈`| . (1.83)

Properties of Pauli Matrices X ,Z,Y
For any S1,S2 ∈ {X ,Y,Z}, {S1,S2}= 2δS1S2I where the anti-commutator is {A,B}= AB+
BA. This implies the following

1. Zero trace: tr(S1) = 0.
2. Orthogonality: tr(S†

1S2) = 0.
3. Unitary: S†

1S1 = S1S†
1 = I.

4. Squared to identity: S2
1 = I.
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