
Lecture Notes
edX Quantum Cryptography: Week 5

Distributing Keys

cbea
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Licence.

http://creativecommons.org/licenses/by-nc-sa/4.0/

Contents

5.1 Secure key distribution 3
5.2 Distributing keys given a special classical channel 4
5.3 Information reconciliation 6
5.4 Syndrome coding 7
5.5 Limits of reconciliation 9
5.6 Further reading 9

5.1 Secure key distribution 3

This week, we’re finally distributing actual keys! We will approach our objective in a series of
steps, ending up with the famous BB84 quantum key distribution (QKD) protocol. Throughout, we
will assume that Alice and Bob share an classical authenticated channel (CAC). Whenever Alice
and Bob make use of this channel below, we will say they send the information over “the CAC”.

Let us now start our investigations into quantum cryptography. Imagine that we have several
parties engaging in some communication protocol in order to solve a specific task. For example,
the parties may just want to send information, or they may want to search a database, or engage in
an auction. The goal of cryptography is to protect the honest parties from the dishonest ones during
such an interaction. What does it mean to be honest or dishonest?

Definition 5.0.1 — Honest and dishonest (informal). Given any communication protocol
between several parties:
• A party is call honest if he/she follows the protocol precisely. That is, the party will give

the correct input to the protocol, execute all steps as dictated, and produce the desired
output.

• A party is called dishonest or malicious, if he/she does not follow the protocol. Instead,
this party can deviate from the protocol aribtrarily. A malicious party is also called an
adversary.

When designing any cryptographic protocol, we first have to ask ourselves what kind of malicious
parties we want to protect against. That is, whether there are some limits to what a malicious party
can do in order to break the protocol, and how many resources he has at his disposal. A standard
assumption that is generally implicit in all cryptographic protocols is that the honest party, let us
call her Alice, sits in an impenetrable lab that the adversary does not have control over. In other
words, Alice can perform local computations without the adversary’s knowledge. Only when Alice
sends any information out of her own lab along a communication channel does the adversary have
any opportunity to intercept or tamper with the protocol execution. We will see later that quantum
information makes it possible to weaken this demand! For the moment, however, we will assume
that an honest Alice (or Bob) has full control over her lab.

5.1 Secure key distribution

The main cryptographic challenge that we will consider is the one of key distribution. Here, our
protagonists, Alice and Bob want to protect their communication from the prying eyes of an
eavesdropper Eve. Alice and Bob are thereby always honest, and Eve is the adversary. Alice and
Bob have control over their secure labs that Eve cannot peek into. However, Eve has access to the
communication channel connecting Alice and Bob.

Definition 5.1.1 — Key distribution. A key distribution protocol between Alice and Bob aims
to achieve the following goals, given a security parameter ε ≥ 0:
• ε− correctness: Alice and Bob both agree on an m-bit key K ∈ {0,1}m, except with some

failure probability at most ε . That is, both Alice and Bob have KA,KB respectively, and
Prob(KA 6= KB)≤ ε .

• ε− security: Any outsider Eve is almost ignorant about the key, i.e. ρ real
KE ≈ε ρ ideal

KE where
ρ ideal

KE = IK
2m ⊗ρE .

To achieve such a key distribution protocol, we will consider the following communication
channels which Alice and Bob may have access to:

1. A classical channel: Alice and Bob can send classical bits in either direction over this channel.
Eve has complete access to this channel. In particular, she can read all messages, modify
them, and even impersonate Alice (or Bob).

2. A classical authenticated channel (CAC): A classical communication channel with one extra

4

guarantee: Alice and Bob know that the message originated unaltered from Alice or Bob
respectively. This means that while the channel is not secret because Eve can still read all the
messages that travel across, she cannot impersonate Alice or Bob or alter messages traveling
over the channel.

3. A classical secret channel: A classical communication channel in which Eve cannot learn
any information (see below!) about the messages traveling across. Yet, while she cannot
hope to gain any information about the message, Eve could impersonate Alice or Bob.

4. A classical secret and authenticated channel: A classical communication channel combining
both guarantees above.

5. A quantum communication channel: A channel where Alice may send quantum information
(in particular, in the form of qubits) to Bob, where Eve has full access to all the quantum
communication.

For simplicity we will start our discussion by assuming that Alice and Bob are already connected
by a CAC - we will see later how such a CAC can be built. That is, we will for the moment only
worry about establishing a key which is hidden from Eve!

5.2 Distributing keys given a special classical channel
As a warmup, let us consider how we can generate a key from a very special classical channel
- which will include many of the essential ideas we will need in quantum key distribution. This
special channel has the property that Eve cannot completely intercept all messages going across,
but her ability to eavesdrop is somehow guaranteed to be limited. For the moment, let us take the
special channel to have the following properties: whenever Alice sends a bit b ∈ {0,1} across the
special channel (SC) then
• Bob correctly receives b.
• Eve obtains the bit b correctly with probability q, otherwise with probability 1−q receives

the bit 1−b (but she does not know whether the bit is correct or not).
In this special channel, we have modelled noise for Eve’s infomation in an explicit manner, where
each bit of bE is obtained from b by flipping it with some probability 1−q. Such a noise model is
called the binary symmetric channel, which we denote as BSC(q).

Alice Bob

Eve

X1, X2, ..., Xn

BSC(q)

Figure 5.1: Distributing keys over a special classical channel.

Let us now consider the following simple protocol.

Protocol 1 — Key distribution using a special channel. Consider the following protocol:
1. Alice chooses a string x = x1, . . . ,xn ∈ {0,1}n uniformly at random, and sends each bit x j

5.2 Distributing keys given a special classical channel 5

to Bob over the special channel.
2. Alice picks a random seed r ∈ {0,1}m, uses a function Ext : {0,1}n×{0,1}m→{0,1}l

and applies the extractor to X , computing k = Ext(x,r).
3. Alice sends r to Bob over the CAC.
4. Bob computes k = Ext(x,r).

Remember that to show that our protocol works we need to establish two things: first, we want
that the protocol is ε-correct, that is, Alice and Bob output the same key (except for some small
probability of failure). Second, we want to show that the protocol is ε-secure, for some parameter
ε . To see that the protocol is correct, note that the special channel is such that Bob receives all
bits correctly. That is, he obtains x = x1, . . . ,xn without error. Since he also learns r, i.e., he knows
which function Ext(·,r) to apply to x, he can compute k = Ext(x,r) without error.

Why would this protocol be secure? Let us first note that Eve’s probability of guessing each bit
is precisely given by q. We thus have that

Pguess(X |E) = qn , (5.1)

or equivalently

Hmin(X |E) =− logPguess(X |E) = n(− logq) . (5.2)

If r is, for example, used to choose a function Ext(·,r) from a set of two-universal functions, then
we are guaranteed that

D
(

ρKRE ,
I
2`
⊗ρRE

)
≤ ε (5.3)

whenever ` ≤ Hmin(X |E)− 2log(1/ε)− 1, as shown in [Ren05]. We have also seen this in the
lecture notes last week. Therefore, whenever we generate a key that is at most ` ≤ n(− logq)−
2log(1/ε)−1 bits long with this procedure, then we know that we are ε-secure. In cryptography,
we typically fix ε and ` in advance, and then ask how large n has to be in order to achieve the
desired key length ` with the guarantee ε . Note that Eq. (5.3) is to some extend remarkable: even
if the eavesdropper later learns which function Ext(·,r) we applied, then nevertheless she cannot
learn anything about the key! The fact that she learns r only later, however, is of crucial importance.
If Eve would know r ahead of time, she could tailor her entire attack to the knowledge of r. In the
protocol above this clearly wouldn’t matter much at all, since we are given such a strong guarantee
on what Eve can do in order to learn the bits, but in general we will have to be content with knowing
only the min-entropy without such additional information.

We have seen now that whenever it is guaranteed that Eve cannot intercept all messages
perfectly, i.e. there are some noise or losses for her while receiving information from Alice, then
the min-entropy Hmin(X |E) will be high (since it is additive over n rounds), and therefore if Bob
receives X perfectly, then Alice and Bob can always extract a key which is ε-secure against Eve.

� Example 5.2.1 Consider another special channel where Eve receives bits without noise, however
Eve has limited memory and hence can only store a maximum number of S bits, that is, |E| ≤ 2S. If
Alice sends a completely random, n-bit string X across the channel, then Hmin(X) = n, and Eve’s
knowledge about X can be lower bounded by

Hmin(X |E)≥ Hmin(X)− log |E| ≥ n−S. (5.4)

We thus see that whenever the length of X is greater than Eve’s storage, i.e. n > S, Alice and Bob
can use an extractor to extract a non-zero amount of key which will be secure against Eve. �

6

5.3 Information reconciliation
So far, we have always assumed that there are no errors on the channel connecting Alice and Bob.
Clearly, this is extremely unrealistic in any real implementation. If we follow the procedure in
Protocol 1 when using this channel, the correctness of the protocol is affected: Alice and Bob now
hold two different strings X , X̃ which are different from each other. Therefore, while performing
privacy amplification, they will hash down two different strings and hence (very likely!) end up
with two different keys KA 6= KB that are useless for further communication.

How can we deal with this problem? The key idea is to perform error-correction. To this end,
Alice and Bob need to perform one additional step before privacy amplification called information
reconciliation in which they exchange error-correcting information to correct errors.

First of all, let’s describe the communication scenario and introduce some convenient notation.
Alice and Bob hold two strings that we denote XA and XB. XB, the string of Bob, equals XA plus
a string of errors that we denote by S. Alice and Bob are connected by a CAC, and therefore an
information reconciliation protocol consists simply in the exchange of messages over this channel
in order for Bob to recover XA. We denote by C the string consisting of all the messages exchanged
over the classical channel. Finally, Bob, with the help of XB and C will output X̂A, that is, an
estimate of the string of Alice XA.

Alice Bob

𝑋"

𝑋# = 𝑋"+ 𝑆

𝑋'"

𝐶

classical authenticated channel

Figure 5.2: Scheme of a generic information reconciliation protocol.

Definition 5.3.1 — Information Reconciliation. Let XA,XB be distributed according to the
joint probability distribution PXAXB . An information reconciliation protocol for XA,XB is ε-
correct and leaks |C| bits if :
• Prob(XA 6= XB)≤ ε .
• The length of the messages exchanged on the public channel is |C|.

The goals of the information reconciliation step are two-fold. First and most obvious, Alice
and Bob want to ensure that after reconciliation the strings XA and X̂A are ε-correct, that is, that
the probability that they are different is at most ε . Second, note that all classical communication
between Alice and Bob is public, which means that Eve can also gain information from the error
correction information they send across! Again recalling the chain rule for the min-entropy, we
have

Hmin(X |EC)≥ Hmin(X |E)−|C| , (5.5)

where we used C to denote the error-correcting information sent across the classically authenticated
channel. We thus have the min-entropy of Eve with the error-correction information C can shrink
by at most the number of bits |C| of error-correction information that Alice and Bob send.

Again, it is very easy to achieve any of both goals independently. Why is this? Imagine that a
reconciliation protocol consists of Alice sending her whole string to Bob over the classical channel.

5.4 Syndrome coding 7

This is a great protocol if we only care about correctness, the strings will definitely be correct,
but the leakage is maximal and after reconciliation we would not have any min-entropy left to do
privacy amplification.

On the other hand, imagine a reconciliation protocol that consists in Alice and Bob doing
nothing, then, for leakage purposes, the protocol is perfect, the leakage is zero, but the strings might
not be correct for the desired ε .

We can classify information reconciliation protocols depending on their usage of the classically
authenticated channel. The most general protocol might consist in the exchange of messages in
both directions, that is from Alice to Bob and from Bob to Alice. We call such a protocol a two-way
or an interactive protocol. However, much more simpler, and in many circumstances, it is already
sufficient that the whole reconciliation consists of a single message from Alice to Bob, that is, the
communication happens one-way. We refer to such protocols as one-way reconciliation protocols,
where Alice encodes her string XA into a single (significantly shorter) message that we denote by
CA and sending it through the classical channel. Then Bob uses CA to eliminate errors from XB,
effectively recovering XA.

5.4 Syndrome coding

In the following we will explore one concrete one-way reconciliation scheme. The scheme that
we will describe is based on linear codes. Let us review the definition and main elements of linear
codes:

Definition 5.4.1 — Linear code. Let Fq be the finite field of size q, a (n,k) q-ary linear code
C is a linear subspace of Fn

q of dimension k.

The individual elements (which are q-ary strings of length n) contained in the subspace defining a
linear code are called codewords, and a (n,k) q-ary code has qk different codewords. We will only
be concerned with binary codes, so in the following we let q = 2.

Since a code is just a subspace, if we want to construct an n length binary code, any procedure
that characterizes a subspace of Fn

2 will allow us to construct a code. One convenient characterization
is by using a m×n-dimensional parity check matrix H. The code is defined as the set of vectors v
such that H · vT = 0. The dimension of the code induced by H is k = n− rank(H).

The map sH : Fn
2→ Fm

2 given by v 7→H ·vT is called the syndrome. It turns out that the syndrome
is very useful beyond inducing the code. In particular, an example of a reconciliation procedure is
when Alice and Bob agree on a particular parity matrix H. Let’s consider this in more detail. First,
let us discuss the encoding step performed by Alice. The reconciliation scheme is based on linear
codes, given a parity check matrix H and Alice’s vector XA, the encoding of XA is its syndrome.
That is, the message that Alice sends to Bob for information reconciliation is the syndrome of XA.

H𝑋" 𝐶"

Alice

Figure 5.3: The encoder in syndrome coding based reconciliation.

� Example 5.4.1 Let v = (001) and H =

(
110
011

)
. Then sH(v) = H ·vT = (01)T . What this means,

8

is that if v were the string of Alice, the message that Alice would send to Bob for reconciliation
would be sH(v) which as we calculated is: (01)T . �

Let us now move to Bob, who has a decoder, which is essentially a procedure that helps him to
estimate the error string S (where recall XB = XA +S), so that he may recover XA. The decoder is
a little bit more complicated than the encoder, since it takes both CA and XB as inputs. The first
thing that happens in the decoder is that it computes the syndrome of XB that we call CB. Then, Bob
computes CS =CB +CA, where recall that CA is the syndrome of XA. We call this resulting string
CS because it is indeed the syndrome of the error string, i.e. CS = sH(S). Then, CS is sent into a
module that estimates the error string S and outputs the estimate that we call Ŝ. Finally Ŝ is added
to XB and this will be the decoded string that Bob will receive.

Exercise 5.4.1 Show that CS is indeed the syndrome of the error string S, or in other words,
that sH(S) = sH(XA)+ sH(XB). �

𝑋" = 𝑋$+ 𝑆

𝑋'$

Bob

𝐶$

H

Error	
Estimator+ +

𝐶) 𝑆*

𝐶"

Figure 5.4: The decoder in syndrome coding based reconciliation.

Exercise 5.4.2 Show that if the error estimate is correct X̂A will equal XA. �

A simple but relevant property of the scheme is that as soon as the length of the string that Alice
sends Bob is smaller than the length of the string of Alice not all errors can be corrected. In order
to see this recall that X̂A is XB + Ŝ, but Ŝ is a function of CS, the syndrome of S. Hence, even if the
estimator function outputs a different value for each syndrome we have 2m different outputs while
there are 2n different error strings, in other words, unless m equals n, it is not possible to correct all
errors. However, if different errors occur with different probabilities we might be satisfied if we
correct the most likely errors.

� Example 5.4.2 Let us go back to Example 5.4.1. Let us now describe the decoder, for this we
need to make explicit the estimation function. There are four different syndromes. We will assign
as error estimate for each syndrome the following strings:

5.5 Limits of reconciliation 9

Syndrome Error Estimate
00 000
01 001
10 100
11 010

Can you guess why we chose this particular map? The idea is that if there is zero or one errors,
the estimator will output the correct error estimate. However, this also means that any other error
string will be wrongly estimated. �

5.5 Limits of reconciliation

We have seen a concrete scheme for reconciliation. What are the fundamental limits of reconcilia-
tion? In order to answer this question we need some structure. Let us assume that the strings of
Alice and Bob, that we denote for precision Xn

A and Xn
B , are of length n, where each of the symbols

is drawn independently from the same joint distribution PXAXB (where XA,XB are binary random
variables). Then, any information reconciliation protocol that leaks |C| bits satisfies:

|C| ≥ n ·H(XA|XB) (5.6)

Moreover, the inequality can be achieved when n→ ∞ [SW73].
In a realistic scenario n is finite and the information reconciliation protocol needs to be

computationally efficient. Instead of dealing with the implementation details of an information
reconciliation protocol, it is sometimes convenient to approximate the leakage value of a realistic
protocol by ξ ·nH(XA|XB), where ξ > 1 is the reconciliation efficiency. The constant ξ is often
chosen ξ ≈ 1.2. However, this approximation should be used with care since ξ will be a function
of the length, the noise model and the correctness considered [Tom+14].

The errors between Alice’s and Bob’s string can also generally be modelled by a BSC. That
is, we can see their strings as the input and output of a BSC: whenever Alice inputs a bit x, Bob
receives x with probability p, but with probability 1− p the bit is flipped to x+11. In the case of a
BSC, Eq. (5.6) simplifies to |C| ≥ nh(p) where h(p) =−p log(p)− (1− p) log(1− p) is the binary
entropy function.

Alice BobX1,X2,...,Xn
BSC(p)

Figure 5.5: The errors between Alice’s and Bob’s string are generally modelled by a BSC.

5.6 Further reading

So let us conclude this module on reconciliation with some considerations.
The example that we described in Examples 5.4.1 and 5.4.2, works but it does not scale up, if

we try to extend the same ideas to a parity check matrix of m by n, we will need a table with 2m

entries to decide the output of the estimator module. However, the method of reconciliation based

1In the context of quantum key distribution (QKD), this error probability 1− p is also often called the quantum
bit-error rate (QBER).

10

on syndrome can be adapted to use any family of linear codes. Previous work has obtained leakage
close to the theoretical optimal using LDPC codes, polar codes, turbo codes, etc.

Previous to this idea of using linear error correcting codes and one-way reconciliation, there
was some ad-hoc two-way protocol, proposed specially for information reconciliation. Its name is
Cascade [BS93], it has a reasonably simple description and it is not very difficult to implement.
However, the original version was suboptimal from the point of view of leakage. Fortunately,
there are some nice modifications that make it competitive with the error correcting codes based
reconciliation.

Acknowledgments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International Licence. This chapter of the lecture notes was written by David Elkouss, Nelly Ng,
Thomas Vidick and Stephanie Wehner. We thank Kenneth Goodenough, Jonas Helsen, Jérémy
Ribeiro, and Jalex Stark for proofreading.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Bibliography

[BS93] Gilles Brassard and Louis Salvail. “Secret-key reconciliation by public discussion”. In:
Workshop on the Theory and Application of of Cryptographic Techniques. Springer.
1993, pages 410–423 (cited on page 10).

[Ren05] R. Renner. “Security of Quantum Key Distribution”. PhD thesis. ETH Zurich, 2005
(cited on page 5).

[SW73] David Slepian and Jack Wolf. “Noiseless coding of correlated information sources”.
In: IEEE Transactions on information Theory 19.4 (1973), pages 471–480 (cited on
page 9).

[Tom+14] Marco Tomamichel et al. “Fundamental finite key limits for information reconciliation
in quantum key distribution”. In: 2014 IEEE International Symposium on Information
Theory. IEEE. 2014, pages 1469–1473 (cited on page 9).

	5.1 Secure key distribution
	5.2 Distributing keys given a special classical channel
	5.3 Information reconciliation
	5.4 Syndrome coding
	5.5 Limits of reconciliation
	5.6 Further reading

