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This week we introduce a new variant of the BB’84 quantum key distribution protocol we
studied last week. This variant is due to Ekert [Eke91] and is often referred to as the E’91 protocol
for quantum key distribution (since our protocol won’t exactly follow Ekert’s original proposal we
will simply call it the “DIQKD protocol”. Although it looks rather similar to the BB’84 protocol,
or more specifically its purified version, the key difference is that we use a different test for step 7.
in the protocol (see the description of BB’84 from last week’s notes).

Instead of the “matching outputs” test considered in the BB’84 protocol, Ekert’s protocol
uses a test based on the CHSH game (recall the game from week 2!). The advantage of using
this test is that it allows us to prove that the protocol is secure without relying on Alice and Bob
performing trusted measurements on their qubit in each round — in fact, without even relying on
the assumption that the system they measure is a qubit! This stronger notion of security is called
device-independent security, and we’ll define it in more detail later in these notes.

Before introducing Ekert’s protocol and its analysis, we first return to the CHSH game and give
a more detailed analysis of its properties than we did in week 2. This game turns out to have a
striking property, which forms the key to its use in the DIQKD protocol. This is the property of
rigidity, which states that optimal strategies for the players in the game are unique in a very strong
sense: any strategy that achieves the optimum success probability p∗CHSH = cos2 π/8, or even close
to the optimum, must be equivalent (in a sense to be made precise later) to the strategy we saw in
week 2. There is no alternative! As an immediate consequence we get that any strategy with close
to optimal success probability must involve a shared entangled state between Alice and Bob that is
equivalent to an EPR pair, just as the optimal strategy we described does. This fact does not need
us to assume any a priori knowledge about the state or the measurements used in the strategy.

7.1 Testing EPR pairs
Recall that in the CHSH game the referee sends each of the two players, Alice and Bob, a uniformly
random bit x,y ∈ {0,1} respectively. The players have to return outcomes a,b ∈ {0,1} such that
the CHSH condition a⊕b = x∧ y is satisfied. We saw that the maximum success probability of
classical non-communicating players in this game is pCHSH = 3/4, while if Alice and Bob are
quantum there is a strategy that allows them to succeed with probability p∗CHSH = cos2 π/8≈ 0.85.

In the strategy we described, Alice and Bob share an EPR pair |φ+〉AB and make the following
measurements. When x = 0, Alice measures her qubit in the standard basis {|0〉, |1〉}, and when
x = 1 she measures in the Hadamard basis {|+〉, |−〉}. When y = 0, Bob measures his qubit in the
basis {cos(π/8)|0〉+ sin(π/8)|1〉,−sin(π/8)|0〉+ cos(π/8)|1〉} and when y = 1, he measures in
the basis {cos(π/8)|0〉− sin(π/8)|1〉,sin(π/8)|0〉+ cos(π/8)|1〉}. Since these measurements are
binary projective measurements, with POVM elements of the form {Π,I−Π}, we can equivalently
describe them using the associated observables O = I−2Π. Note that O is a Hermitian operator
which squares to identity. For Alice’s measurements the observables are

A0 = |0〉〈0|− |1〉〈1|= Z (x = 0) and A1 = |+〉〈+|− |−〉〈−|= X (x = 1).

For Bob we have

B0 = H (y = 0) and B1 = H̃ =
1√
2

(
1 −1
−1 −1

)
(y = 1).

We introduced this as a “good” strategy for the players: it certainly beats the classical bound
pCHSH = 3/4, and achieves p∗CHSH = cos2 π/8. But could there be better strategies, achieving an
even larger value? Or, even if they are not better, different strategies, based on using a different
type of entangled state, for achieving the same success probability?

We’re going to show that this is not the case: the maximum success probability of any quantum
strategy in the CHSH game, as complicated as it may be, is p∗CHSH. Moreover, any strategy
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achieving this value must be “equivalent” to the strategy described above. What do we mean by
equivalent? We couldn’t possibly hope to claim that the strategy is strictly unique. For example,
if Alice and Bob were to rotate their basis choices by the same angle, then since the EPR pair is
itself rotation invariant their success probability would remain unchanged. The theorem shows that
this local degree of freedom is essentially the only flexibility that the players have in designing an
optimal strategy.

Theorem 7.1.1 — CHSH rigidity. Suppose given an entangled state |ψ〉AB ∈ CdA ⊗CdB and
observables A0,A1 for Alice and B0,B1 for Bob such that the corresponding strategy has a
success probability p∗CHSH = cos2 π/8 in the CHSH game. Then there exist local isometries
UA : CdA → C2⊗CdA′ and VB : CdB → C2⊗CdB′ such that

UA⊗VB|ψ〉AB = |φ+〉⊗ |junk〉A′B′

and

(UA⊗VB)(A0⊗ IB)|ψ〉= ((Z⊗ I)|φ+〉)⊗|junk〉,
(UA⊗VB)(A1⊗ IB)|ψ〉= ((X⊗ I)|φ+〉)⊗|junk〉,
(UA⊗VB)(IA⊗B0)|ψ〉= ((I⊗H)|φ+〉)⊗|junk〉,
(UA⊗VB)(IA⊗B1)|ψ〉= ((I⊗ H̃)|φ+〉)⊗|junk〉.

In words, the theorem says that if a strategy achieves the optimal value in CHSH then up to
some local rotations on Alice and Bob’s spaces it looks exactly as the strategy described above.
We called the rotation “isometries” because their range might not be the whole space; in particular
it is not necessarily the case that dA or dB are even. The state |junk〉 is an arbitrary state that does
not matter for the purposes of analyzing the strategy. This state is unavoidable, as any strategy
can always be made to appear more complicated by extending the entangled state arbitrarily, and
making the players’ measurements act as identity on the extended space.

Note also the theorem presupposes that the players’ strategy can be described by observables, or
equivalently binary projective measurements. More generally we may consider players that apply a
non-projective POVM. However, a POVM can always be simulated with a projective measurement
acting on a larger space, so the assumption is without loss of generality.

R In practice it will never be possible to certify that a given device implements a strategy
with optimal success probability in the CHSH game: at best, by repeated testing it will be
possible to verify that it achieves a success probability at least p∗CHSH− δ , where δ > 0
is a quantity depending on the quality of the device and on the accuracy of the testing
performed (i.e. the number of repetitions of the game). To handle this it is important to obtain
“robust” analogues of Theorem 7.1.1. Such a result is known, where the exact equalities
in Theorem 7.1.1 are replaced by approximations in trace distance with an error scaling as
O(
√

δ ) [mckague2012robust].

Before we get to the proof of the theorem we make a small detour and explore the notion of
angle between a pair of projection operators.

7.1.1 Principal angles and Jordan’s lemma
Consider two lines through the origin in the complex plane C2. Each line is described by a
unit vector |u〉, |v〉, and (ignoring any orientation) the angle between the two lines is the unique
θ ∈ [0,π/2) such that cos2 θ = |〈u|v〉|2. Up to a change of basis we can always consider that

|u〉=
(

1
0

)
and (up to an irrelevant phase) |v〉=

(
cosθ

sinθ

)
. A more pedantic way to describe the
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angle between the two lines is through the associated rank-1 projections P = |u〉〈u| and Q = |v〉〈v|:
there will always exist a choice of basis for C2 in which

P =

(
1 0
0 0

)
and Q =

(
cos2 θ cosθ sinθ

cosθ sinθ sin2
θ

)
,

for some θ ∈ [0,π/2).
How do we generalize the notion of angle to higher dimensional subspaces? The notion of

principal angle provides an inductive definition. Suppose P and Q are two orthogonal projections
in Cd . (We identify the projections with the space on which they project.) The smallest principal
angle between P and Q is defined as θ1 ∈ [0,π/2) such that

cos2
θ1 = sup

|u〉∈P,|v〉∈Q
|〈u|v〉|2,

where by |u〉 ∈ P we mean any unit vector in the range of P, i.e. such that P|u〉 = |u〉. This is a
natural definition: we are finding the lines lying in P and Q that form the smallest possible angle .
If P and Q intersect, then they share a vector and θ1 = 0.

𝜃1 = 0

𝜃2 > 0

Figure 7.1: Principal angles between two 2-dimensional subspaces in 3 dimensions. The subspaces
intersect, and the smallest angle is θ1 = 0. The second principal angle is θ2 > 0.

We define principal angles θ2, . . . ,θd , where d = min(rankP, rankQ), inductively via

cos2
θi = sup

|ui〉∈P, |ui〉⊥Span{|u1〉,...,|ui−1〉}
|vi〉∈Q, |vi〉⊥Span{|v1〉,...,|vi−1〉}

|〈ui|vi〉|2,

where |u1〉, . . . , |ui−1〉 are unit vectors in P that achieve the optimum in the definition of θ1, . . . ,θi−1
respectively, and similarly for the |v j〉 and Q.

Jordan’s lemma states that associated with the principal angles comes a very convenient
simultaneous block decomposition of P and Q.

Lemma 1 — Jordan’s lemma. Let P and Q be two projection operators in Cd . Then there exists
a basis of Cd in which P and Q are simultaneously block diagonal, with blocks of size one or two
such that either (for one-dimensional blocks)

P,Q ∈
{
(0), (1)},

or (for two-dimensional blocks)

P =

(
1 0
0 0

)
, Q =

(
cosθ 2

i cosθi sinθi

cosθi sinθi sinθ 2
i

)
,

with θ1, . . . ,θd ∈ (0,π/2], d = min(rankP, rankQ), the principal angles between P and Q.
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The proof of the lemma is not very hard, and considers an alternate definition of the principal
angles via the singular values of the operator PQ (see e.g. Exercise VII.1.10 of [Bha13]).

7.1.2 Proof of the rigidity theorem

The proof of Theorem 7.1.1 proceeds in two steps. In the first step we use Jordan’s lemma to
reduce the case of general strategies to the case of “qubit strategies”, for which the shared state is a
two-qubit entangled states and the players’ observables single-qubit observables. In the second step
we analyze qubit strategies in detail and show that they must take the form of Pauli measurements
on an EPR pair.

1. Reduction to qubit strategies.
Consider an arbitrary strategy |ψ〉AB, A0,A1,B0,B1. Apply Jordan’s lemma to the projections
P = 1

2(I+A0) and Q = 1
2(I+A1). The lemma gives a basis for Alice’s space CdA such that both P

and Q are block-diagonal in that basis, with blocks of size at most 2×2. Then A0 = 2P− I and
A1 = 2Q− I are block-diagonal in the same basis.

This block-diagonal decomposition lets us reformulate Alice’s strategy as follows: each of her
two-outcome projective measurements is equivalent to a measurement which (i) applies a multiple-
outcome projective measurement that projects on the individual blocks of the decomposition, and
(ii) depending on the block obtained as outcome performs the basis measurement associated with
the restriction of A0 (or A1) to that block.

Exercise 7.1.1 Suppose that after application of Jordan’s lemma we discover a basis

{|u1〉, |u2〉, |u3〉, |u4〉, |u5〉} (7.1)

of C5 in which

A0 =


1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

 and A1 =


1
2 −1

2 0 0 0
−1

2
1
2 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1

 .

Consider the two-outcome projective measurements associated with A0 and A1. Give an
equivalent description of these measurements as the combination of a projective measure-
ment {Π0,Π1,Π2} followed by a basis measurement involving at most 2 basis elements. The
projective measurement should be independent of Alice’s input x, while the basis measurement
should depend both on the outcome of the projective measurement and Alice’s input. �

The same argument can be applied to Bob’s observables. Now the key point is that, since
the block decomposition is the same for A0 and A1 (resp. B0 and B1), step (i) associated with
projection on the blocks does not depend on the player’s question. Thus the step could be performed
even before the game even starts, without affecting their success probability! But then the players
are really playing the game with a qubit strategy — whichever qubit strategy corresponds to the
outcomes they obtained when applying the projective measurement from step (i).

This reformulation of an arbitrary strategy shows that it can always be reduced to a convex
combination of qubit strategies, and it will be sufficient to analyze the latter.

2. Optimal qubit strategies.
To prove the theorem we first express the success probability p∗win of a given quantum strategy in
terms of the observables Ax and By.
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Exercise 7.1.2 Using the definition of the winning criterion a⊕ b = x∧ y and the relation
between observables and binary measurements, show that

p∗win =
1
2
+

1
8
〈ψ|A0⊗B0 +A0⊗B1 +A1⊗B0−A1⊗B1|ψ〉. (7.2)

�

Let’s call the operator appearing inside the bra-ket in (7.2) the CHSH operator,

CHSH = A0⊗B0 +A0⊗B1 +A1⊗B0−A1⊗B1.

The main trick in the proof is to consider the square of this operator. Using A2
0 = A2

1 = B2
0 = B2

1 = I,
we get

CHSH2 =
(
(A0 +A1)⊗B0 +(A0−A1)⊗B1

)2

= (A0 +A1)
2⊗ I+(A0−A1)

2⊗ I+(A0 +A1)(A0−A1)⊗B0B1

+(A0−A1)(A0 +A1)⊗B1B0

= 4I+[A0,A1]⊗ [B1,B0], (7.3)

where [A0,A1] = A0A1−A1A0 and [B1,B0] = B1B0−B0B1 are the commutators. Since the operator
norm (the largest singular value) of [A0,A1] and [B0,B1] is each at most 2, the norm of CHSH2

(which is simply the largest overlap of CHSH2 with a unit vector) is at most 8. Plugging back
into (7.2), even an optimal choice of |ψ〉 (i.e. an eigenvector of CHSH associated to its largest
singular value) will give a value at most p∗win ≤ 1/2+

√
8/8 = cos2 π/8 = p∗CHSH. Thus cos2 π/8

is indeed the maximum probability of success in the CHSH game.
Note that so far we have not used the reduction to qubit strategies discussed in the previous

section, and the preceding argument is completely general. Let’s now assume we are working
with a qubit strategy which achieves the optimal p∗win = p∗CHSH. Then all inequalities discussed
above must be tight. In particular, |ψ〉 must be an eigenvector of CHSH with eigenvalue 2

√
2, and

as a consequence of (7.3) |ψ〉 must also be an eigenvector of [A0,A1]⊗ [B0,B1] with associated
eigenvalue 4. Squaring this operator,(

[A0,A1]
2⊗ [B0,B1]

2)|ψ〉= 16|ψ〉.

Using further that [A0,A1]
2 ≤ 4I and [B0,B1]

2 ≤ 4I we get that necessarily(
[A0,A1]

2⊗ I
)
|ψ〉=

(
I⊗ [B0,B1]

2)|ψ〉= 4|ψ〉, (7.4)

as neither operator can reduce the norm of |ψ〉. Assume |ψ〉 is not trivial, in the sense that its
reduced density matrices on A and B have rank 2 (if this is not the case then it is easy to see that the
strategy boils down to a classical strategy, which cannot achieve a success probability larger than
pCHSH = 3/4). Tracing out the A or B qubits in (7.4) and inverting the reduced density matrix of |ψ〉
on the remaining qubit gives us the operator equalities A0A1 =−A1A0 and B1B0 =−B0B1: Alice’s
and Bob’s observables pairwise anti-commute. It turns out that anti-commutation is a surprisingly
strong constraint, as shown in the following exercise.

Exercise 7.1.3 Suppose that R and S are two observables on C2 such that RS = −SR. Then
there exists a basis of C2 in which R = Z and S = X . [Hint: first show that we cannot have R = I
or R =−I, and deduce the eigenvalues of R. Use this to write R in a convenient form, and then
use the anti-commutation relation to express S.] �
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Applying the results of the exercise to A0 and A1 we obtain a rotation UA on Alice’s qubit such
that UAA0U†

A = Z and UAA1U†
A = X . Similarly, for Bob’s observables we may find a unitary UB

such that UBB0U†
B = H and UBB1U†

B = H̃. Note that for Bob we are using H and H̃ in lieu of X and
Z, but any pair of single-qubit observables will do. To conclude it remains to show the following.

Exercise 7.1.4 Show that the operator

Z⊗H +X⊗H +X⊗ H̃−Z⊗ H̃

has largest eigenvalue 2
√

2, with a unique associated eigenvector equal to |φ+〉. �

3. Putting everything together.
We are almost done with the proof of Theorem 7.1.1. To summarize, we start with an arbitrary
strategy |ψ〉AB, A0,A1,B0,B1 with success probability p∗win = p∗CHSH in the CHSH game. Using
part 1. this strategy can be decomposed in a convex combination of qubit strategies. More formally,
there are projective measurements ΠA = {ΠA

1 , . . . ,Π
A
kA
} and ΠB = {ΠB

1 , . . . ,Π
N
kB
} for Alice and Bob,

made of projectors with rank at most 2 each, such that Ax = ∑ j ΠA
j AxΠA

j and By = ∑ j ΠB
j ByΠB

j . The
associated block decomposition can be specified by a unitary changes of basis U ′A and U ′B on Alice
and Bob’s systems respectively.

Using the first steps of part 2., we know that any strategy can have success probability at
most p∗CHSH, therefore all the qubit strategies, given by (ΠA

j ⊗ΠB
` |ψ〉,ΠA

j AxΠA
j ,Π

B
` ByΠB

` ) for any
j ∈ {1, . . . ,kA} and ` ∈ {1, . . . ,kB}, must have success probability p∗CHSH (otherwise the overall
strategy wouldn’t achieve the optimal success probability).

By the remainder of part 2., for of these qubit strategies there exists a local change of basis UA
j

and UB
` in which it is equivalent to the canonical optimal strategy. By combining the unitaries UA

(resp. UB), which specify the blocks, with the unitaries UA
j (resp. UB

` ), which identify a basis for
each block in which ΠA

j A0ΠA
j = Z, ΠA

j A1ΠA
j = X , and similarly for Bob and H, H̃, we obtain the

isometries claimed in the theorem: the proof is complete!

7.2 A device independent QKD protocol

In the previous section we gave mathematical justification for our intuition that the CHSH game
can serve as a good test for entanglement. We’re now going to see how the game can be embedded
as a test in a key distribution protocol to make the protocol device-independent. Let’s first explore
more precisely what this notion of security covers — and does not cover.

7.2.1 Device-independent security

Device independence is a notion of security for cryptography that is motivated by the practical
difficulty of characterizing the quantum mechanical devices, such as photon emitters or receptors,
used in protocols such as the one for BB’84. The protocol calls for Alice to “prepare a qubit in
the Hadamard basis”, and for Bob to “measure his qubit in the π/8-rotated basis”. When Alice
prepares her qubit, and when Bob measures it, can they really trust their equipment to implement the
prescribed task? What if Bob’s measurement apparatus fails some percentage of the time: should
he treat these failures as noise, or could they be adversarial (for example, the failure rate could
vary depending on his basis choice or on the state of the qubit)? What if Alice’s preparation device
sometimes created two qubits, instead of a single one, without her noticing; could the additional
qubit be intercepted by Eve and provide her with additional information, without Alice or Bob
noticing? The following exercise shows that these such misbehavior of Alice and Bob’s equipment
can lead to serious security issues.
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� Example 7.2.1 — Taken from [Pir+09]. Consider the purified variant of the BB’84 protocol.
Suppose that Eve prepares a state ρABE of the following form:

ρABE =
1

∑
x,z=0
|x,z〉〈x,z|A⊗|x,z〉〈x,z|B⊗|x,z〉〈x,z|E . (7.5)

Now suppose Alice and Bob’s measurement devices, instead of measuring a single qubit in the
standard or Hadamard bases, as they think the device does, in fact performs the following:
• When the device is told to measure in the standard basis, it measures the first qubit of the

two-qubit system associated with the device in (7.5) in the standard basis;
• When the device is told to measure in the Hadamard basis, it measures the second qubit of

the two-qubit system associated with the device in (7.5) in the standard basis.
If the devices perform as described they perfectly pass all tests performed in the protocol: indeed,
when the basis choice is the same the outcome is the same, whereas when the bases are different
the outcomes are perfectly uncorrelated. But any key extracted from ρABE in (7.5) is completely
insecure! (Exercise: Give an explicit attack for Eve.) �

The difficulty is not only theoretical. In fact, one of the first “attacks” on the BB’84 protocol
is that the photon receptor used in an early experiment made a different clicking noise when it
measured in one of Bob’s bases, thereby “leaking” Bob’s basis choice to any eavesdropper within
earshot! Many such side-channel attacks have been demonstrated, and implemented, in practice.
Some of the most effective are called “detector blinding” attacks, in which the eavesdropper can
take complete control of Bob’s receptor by shining a very bright laser right into it (without Bob
noticing!).

Device-independence aims to guarantee security even in the context of such seemingly dramatic
failures of Alice and Bob’s equipment. But we have to be careful what we promise exactly.
For example, at the extreme we could imagine that Bob’s device contains radio equipment that
automatically transmits all its measurement results to Eve: in this case security is compromised, but
there is no way for Bob to detect the radio transmitter unless he opens the device. In a similar vein,
if the random number generator used by Alice to make her basis choices is biased, or controlled
by Eve, then security cannot hold. The specific kinds of failures that are allowed by a device-
independent proof of security thus have to be specified on a case-by-case basis. For quantum key
distribution we will make the following assumptions:

1. Alice and Bob’s labs are perfectly isolated: once the protocol starts no information enters or
exits their respective labs that is not specified in the protocol.

2. Alice and Bob’s random number generators are perfect.
3. The devices used by Alice and Bob to perform measurements are arbitrary. These devices are

initialized in a state ρABE that may be chosen by the adversary. At each step of the protocol,
each of Alice and Bob’s devices makes a measurement when instructed, and always produces
an outcome x ∈ {0,1}. The measurement that is performed is arbitrary. In particular the
device may have memory and behave differently in each round.

4. At the end of the protocol the devices are discarded and will never be re-used. It is assumed
that they will never fall in Eve’s hands.

Device-independence refers to the freedom in assumption 3., which allows the devices to
perform any kind of measurement, on any state; both may have been decided on by Eve as part of
her “attack”.

The last assumption is important: as will be apparent from the protocol, the devices themselves
know what Alice and Bob’s raw key is, and could potentially store it in memory. It is important
that this memory is never allowed to leak to any adversary.
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7.2.2 The protocol
The security of the DIQKD protocol we are about to give, a variant of Ekert’s original proposal for
quantum key distribution [Eke91], is based on the rigidity properties of the CHSH game that we
explored earlier on: a high success probability in the game can be used to certify an EPR pair, even
when the measurements being performed could a priori be arbitrary.

Before we proceed, there is a small technicality we have to deal with. In the honest optimal
strategy for the CHSH game it is never the case that Alice and Bob use the same basis, and thus
they never produce perfectly correlated outcomes. In order to produce a key it will be convenient
for them to be able to rely on (almost) perfectly correlated outcomes for at least one choice of
a pair of inputs. Therefore in the protocol we think of Bob’s device as having 3, instead of 2,
possible inputs: the inputs θ̃ ∈ {0,1} correspond to the usual CHSH inputs (for which the ideal
device would measure using observables H and H̃ respectively), and the additional input θ̃ = 2
instructs the device to measure in the standard basis, so that on inputs (θ , θ̃) = (0,2) the devices
are expected to produce matching outcomes (of course, in practice the device may implement any
measurement it likes).

Protocol 1 Device independent QKD. Outputs k ∈ {0,1}` to both Alice and Bob.
1. Alice chooses a uniformly random basis string θ = θ1, . . . ,θn ∈ {0,1}n and sequentially

instructs her measurement device to measure in the bases θ . The device returns a string of
outcomes x = x1, . . . ,xn.

2. Bob chooses a uniformly random basis string θ̃ = θ̃1, . . . , θ̃n ∈ {0,1,2}n and sequentially
instructs his measurement device to measure in the bases θ̃ . The device returns a string of
outcomes x̃ = x̃1, . . . , x̃n.

3. Alice and Bob tell each other their basis strings θ and θ̃ respectively over the CAC.
4. Alice selects a random subset T ⊆ [n] of size n/2 and announces T to Bob. They set

T ′ = { j ∈ T, θ̃ j ∈ {0,1}}, T ′′ = { j ∈ T,θ j = 0∧ θ̃ j = 2}, and R = { j /∈ T,θ j = 0∧ θ̃ j = 2}.
5. Alice and Bob announce xT and x̃T to each other over the CAC. They compute the success

probabilities pwin = |{ j ∈ T ′, x j⊕ x̃ j = θ j∧ θ̃ j}|/|T ′| and pmatch = |{ j ∈ T ′′, x j = x̃ j}|/|T ′′|.
If pwin < cos2 π/8−δ or pmatch < 1−δ they abort.

6. Alice and Bob perform information reconciliation and privacy amplification on their respec-
tive outcomes xR, x̃R.

As already mentioned security of the protocol is based on the rigidity of the CHSH correlations.
However, as we already saw in last week’s analysis, the kind of strong guarantees provided by
Theorem 7.1.1 are very difficult to expand to the analysis of a full protocol, where not just one but
many CHSH games are played sequentially. Luckily, these guarantees are also more than we really
need: ultimately, what need to show is security of the classical key — however it is obtained at the
quantum mechanical level. In fact, due to the last steps of information reconciliation and privacy
amplification (which are unchanged from the BB’84 protocol) the only thing we really need to
establish is uncertainty in Alice’s outputs xR, given the side information E. To show this, we use
yet another variant of the guessing game, this time based on the CHSH correlations.

7.2.3 A CHSH-based guessing game
Consider the following guessing game. There are three players, Alice, Bob and Eve. Alice receives
an input θ ∈ {0,1}, Bob receives a θ̃ ∈ {0,1,2}, and Eve receives no input (equivalently, her input
is always the same). The players produce outcomes x, x̃,z ∈ {0,1} respectively. They win the game
if and only if the following conditions hold:
• If θ̃ ∈ {0,1} then x⊕ x̃ = θ ∧ θ̃ .
• If θ = 0 and θ̃ = 2 then x = z.

Lemma 2 — CHSH guessing lemma. Consider an arbitrary strategy for the players in the CHSH
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guessing game. Let pwin be the probability that the first test passes (conditioned on θ̃ ∈ {0,1})
and pid the probability that the second test passes (conditioned on θ = 0 and θ̃ = 2). Suppose that
pwin ≥ cos2 π/8−δ . Then pid ≤ 1/2+2δ 1/2.

We will not give a proof of the lemma here. There are many ways it can be shown, yielding
bounds of varying quality. The simplest analysis would consider a relaxation of the problem where
the three players are allowed any kind of non-signaling strategy: in this case a bound can be
obtained via linear programming. The bound can then be strengthened by considering the fact that
the players must be quantum, using a semidefinite relaxation of the problem. But the optimal bound
can be obtained by a direct analytic calculation, using the fact that Alice only has two possible
inputs to reduce to the two-dimensional case via an application of Jordan’s lemma. This is done
in [Pir+10], from which the bound given here, which is due to [VV14], can be derived.

7.3 Security of device-independent quantum key distribution

Let’s analyze the security of our DIQKD protocol. Our goal is to show that there is an ε > 0
(the error) and a κ > 0 (the key rate), depending on the parameters of the protocol, such that the
following holds:

For any strategy of the eavesdropper Eve, specified by an initial state ρABE of the
devices and a choice of measurements to be made at every step in the protocol, either
Alice and Bob abort in step 5. of the protocol with probability larger than ε , or
Alice’s outcomes xR at step 6. satisfy Hε

min(XR|EK) ≥ κn, where K denotes all the
communication exchanged on the CAC during the protocol.

A few comments regarding this statement. First, by focusing on establishing a sufficiently large
rate of min-entropy in Alice’s raw key bits we are putting the steps of information reconciliation and
privacy amplification behind us. We studied these steps in detail in previous weeks and understand
them well, but they have to be performed, and as a result the length of key produced will be slightly
reduced.

Second, ε enters in the statement twice. First, we are assuming that the probability of an abort
in step 5. is not too large, not larger than 1− ε . The reason this is needed is that conditioning on
very low probability events can have drastic consequences. There is always the chance that Eve
prepares states that have a very high failure probability, but such that conditioned on passing all
the tests (which might still happen with low probability — for instance in the extremely unlikely
event that the sets T ′ and T ′′ are both empty!) the protocol becomes completely broken. Second, ε

also appears in the bound Hε
min(XR|EK)≥ κn. This bound is evaluated on the joint state of Alice

and Eve in step 6., conditioned on not aborting in step 5. It is unrealistic to hope to prove a bound
directly on the min-entropy of that state. For instance, even though Alice and Bob did not abort
there is always a small chance that Eve still attacked a large number of rounds of the protocol (by
preparing a malicious entangled state) but got extremely lucky in the tests. Thus we will only be
able to show that the state at step 6. is close, in trace distance, to a state whose min-entropy is large;
this is the meaning of the ε in the smooth min-entropy condition Hε

min(XR|EK).

Now that we understand precisely our target — let’s prove security! There are two main steps.
The first is to use the testing condition from step 5. to infer a lower bound on the conditional
min-entropy Hmin(X j|EK) in individual rounds of the protocol, for j ∈ R. The second is to combine
these bounds into a bound on the whole string XR.

We will show how both steps can be performed under the restriction that the eavesdropper is
limited to so-called collective attacks. A collective attack is one in which the initial state of the
devices takes the form ρ

⊗n
ABE , and moreover the measurement performed by the device in each round
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is the same (on the same inputs), i.e. the device is memoryless. (The name “collective” comes
from the fact that at the end of the protocol we still allow Eve to perform a joint measurement
simultaneously on all the E systems, as well as all the classical information she has acquired, when
making her best guess for the key.)

The most general attacks, without these two assumptions, are called coherent attacks. These
allow Eve to introduce significant complications by choosing an initial state that is entangled across
all rounds; in fact the state may not have n pre-specified qubits and the device could measure
the same, or partially overlapping, high-dimensional systems in different rounds. This makes the
analysis much more involved, and we will only outline an important tool that can be used to adapt
our security proof against collective attacks to a full proof of security against coherent attacks.

7.3.1 Collective attacks
The assumption of collective attacks allows us to model the behavior of the device in each round
as independent from its actions in previous (or subsequent) rounds. In particular, the device has
a well-defined success probability in the CHSH game: if it is given inputs θ , θ̃ ∈ {0,1} in any
particular round, how well does it perform in the game?

This is precisely the quantity that is estimated at step 5. of the protocol. Let Z1, . . . ,Zk, where
k = |T ′|, be binary random variables such that Z j equals 1 if the CHSH condition in round j is
satisfied. Then pwin = |T ′|−1

∑ j∈T ′ Z j. Note that this is an “observed” quantity; let p̂win be the “true
value”, i.e. the probability of success of the device in the CHSH game. How different can pCHSH
and p̂CHSH be?

We can think of the inputs for the rounds T ′ as being selected after the set of rounds T ′ itself is
chosen by Alice: for instance, we could imagine Bob choosing rounds in which θ̃J = 2 at random,
and Alice choosing a random set T ; this defines the set T ′ but the players still have the freedom to
choose specific inputs for those rounds. Since the probability of any given round lying in T is 1/2,
and independently the probability that Bob chooses θ̃ j = 2 is 1/3, the expected size of |T ′| is n/6.
To show that the chance that the actual size differs from the expected size by too much is small we
need a simple concentration inequality.

Theorem 7.3.1 — Chernoff bound [Che81]. Let X1, . . . ,Xn be i.i.d. random variables taking
values in {0,1}, and µ = E[Xi]. Then for all 0 < α < 1,

Pr
(∣∣∣1

n

n

∑
i=1

Xi−µ

∣∣∣> αµ

)
≤ 2e−

α2µn
3 .

If we apply the proposition with µ = 1/6 and α = 1/4 we obtain that the probability that
|T ′|< n/8 is at most e−n/(3·6·16). Let’s assume this is not the case. Then we can apply the same
bound once more to obtain

Pr
(

∑
j∈T ′

Z j > (1+α)|T ′|p̂win

)
≤ 2e−

α2 p̂win|T
′ |

3 .

Hence, using our lower bound on the size of |T ′| as well as p̂win ≥ 1/2−
√

2/4 (exercise: why?),

Pr
(

p̂win <
1

1+α
pwin

)
≤ 2e−

α2n
C

for some large constant C.

So far we have managed to show that, except with probability exponentially small in n, provided
the protocol does not abort in step 5. of the protocol it must be the case that p̂win ≥ pwin/(1+α)≥
cos2 π/8−2δ (if we choose α = δ ). Now is time to apply the CHSH guessing lemma, Lemma 2.
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The condition pid ≤ 1/2+2(2δ )1/2 that results gives a direct bound on the guessing probability of
the device,

Hmin(X j|E)≥− log2

(1
2
+2(2δ )1/2

)
≥ 1−C

√
δ (7.6)

for some small constant C.
Using the assumption that the device behaves identically and independently in each round

of the protocol, the bound (7.6) does not only apply in the tested rounds j ∈ T ′, but also in the
rounds j ∈ R used for the raw key. Thus as a final step we use (7.6) for j ∈ R, together with
the fact that the devices are in tensor product form, to add up the entropies and conclude that
Hmin(XR|E)≥ |R|(1−C

√
δ ) — exactly what we set out to show!

A final subtlety is that this bound on the min-entropy holds under the conditions |T ′| ≥ n/8
and p̂win ≥ pwin(1−δ ). As we showed, conditioned on not aborting both conditions hold except
with probability ε that is exponentially small. Taking this into account we obtain a lower bound
on the smooth min-entropy of the raw key, Hε

min(XR|E)≥ |R|(1−C
√

δ ). This bound is sufficient
for privacy amplification to apply (the smoothing parameter ε will simply have to be added to the
error of the extractor used for privacy amplification). Thus, provided that privacy amplification and
information reconciliation are implemented correctly, Alice and Bob can generate a secure key.

7.3.2 Coherent attacks
The two-step approach we followed to analyze security against collective attacks no longer works
against coherent attacks. First, since the devices may now have memory we cannot directly infer
properties of the devices in the rounds used for the raw key from its behavior in the testing rounds.
Second, since the global state prepared by Eve is no longer assumed to have a tensor product form
we can no longer claim that the min-entropy adds up across rounds.

The first difficulty can be handled by using a variant of the concentration bound in Theorem 7.3.1
that applies to processes which may have memory, but still have a sequential nature and satisfy
certain regularity properties. Such bounds are called martingale inequalities; one of the most useful
is due to Azuma. By applying that inequality it is possible to obtain a similar bound as in (7.6) on
the min-entropy per round for the raw key rounds from success of the CHSH test in the test rounds.

The second difficulty is more thorny. Given a lower bound Hmin(X j|E)≥ h for some h > 0 for
all j ∈ R, can we conclude a meaningful lower bound on Hmin(XR|E)? Unfortunately in general
the answer is no: the quantum conditional min-entropy (in contrast to conditional von Neumann
entropy) doesn’t satisfy a nice form of the chain rule. To make progress we again need to use
the sequential nature of our process. At this point there are different approaches to finishing the
proof, and we mention just one, based on a technical result called “entropy accumulation theorem”
(EAT) [DFR16]. The EAT gives conditions under which min-entropy “accumulates”, and these
conditions are satisfied by our setup. (The most important conditions are that the outputs are
generated sequentially in each round, and are only a function of the state of the devices in that
round; moreover the test, when it is performed, should be a deterministic function of the inputs and
outputs in the round.)

Once it applies, the EAT is rather powerful, and it provides essentially the same consequences
are we were able to derive in the case of collective attacks (except with a small loss in the parameter
ε). Let’s state the final result as a theorem.

Theorem 7.3.2 The DIQKD protocol, Protocol 1, satisfies the following properties. There is a
0 < κ ≤ 1 and C ≥ 1 (depending on the tolerance parameter δ ) such that the following hold for
`= κn and ε ≤ 2−Cn.

First, there is an implementation of the devices such that the protocol does not abort with
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probability at least 1− ε .
Second, for any implementation of the devices, either the protocol aborts with probability

larger than 1− ε , or conditioned on not aborting Alice and Bob each produces a key of length `
such that Pr(KA 6= KB)≤ ε and

(1−Pr(abort))D(ρKAE ,U`⊗ρE)≤ ε,

where E denotes all the side information available to the eavesdropper at the end of the protocol.

R In our analysis we considered the min-entropy per round, and argued that it could be added
up to obtain a bound on the min-entropy of the string xR corresponding to Alice’s raw key. A
stronger bound can be obtained by using the fact that, when considering a large number of
samples of a random variable X , the min-entropy converges to the von-Neumann entropy:

1
n

Hε
min(X1 · · ·Xn)≈n→∞ H(X)

for i.i.d. X , provided the smoothing parameter ε is chosen sufficiently large. This is called the
“asymptotic equipartition property”. Using this property it is possible to show that a lower
bound on the von Neumann entropy in each round is enough to conclude a lower bound on
the min-entropy of the whole string. Since the von Neumann entropy can in general be larger
than the min-entropy this leads to better bounds on the key rate.
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