Designing Dredging Equipment OE4671/WB3408

Section Dredging engineering

Delft University of Technology

Purpose of the lecture

- To design a particular type of dredger on basis of (simple) dredging processes.
- Such a method can be used for many design problems!

Course development

- Introduction lecture in the 5th quarter
- Assignment for one or two persons can be done the whole year around.
- Total 4 credits (ECT)

Assignments for hydraulic dredgers

- Trailing Suction Hopper Dredger (TSHD) for large reclamation works
- Multi Purpose TSHD for maintenance and beach
 nourishments
- Gravel Trailing Suction Hopper Dredgers
- Cutter Suction Dredger
- Environmental Dredger
- Plain Suction Dredger
- Dustpan Dredger

Assignments for mechanical dredgers

- The backhoe dredger
- The grab dredger
- Bucket ladder dredger

Trailing Suction Hopper Dredger

September 12, 2006

Cutter Dredger

TUDelft

Plain Suction Dredger

Plain Suction Dredger

TUDelft

9

Dustpan Dredger

September 12, 2006

The Environmental Dredger

September 12, 2006

The Backhoe Dredger

September 12, 2006

The Grab or Clamshell Dredger

September 12, 2006

Bucket Ladder Dredger

September 12, 2006

Work Load

The assignment for

- the TSHD, CSD are for 2 students
- The other ones are for 1 student

September 12, 2006

Design basis = yearly output in m³ (production)

- To be translated to the significant design parameters.
- Depends on the scale (or cycle) of the process.
- Large scales
 - Hopper dredger \Rightarrow volume and load per trip
 - Barge unloader dredger \Rightarrow Barge volume
 - Backhoe dredger \Rightarrow the volume per cycle
- Continuous operating dredgers or equipment m³/week or m³/month

Design Basis (2)

- Small scale:
 - "Wall" speed of a breach
 - Pump
 - Cutter head
 - Bucket ladder dredger
 - Backhoe dredger
 - Grab dredger

mm/s output in m³/s Excavated output in m³/s Buckets/min Bucket volume/cycle Grab volume/cycle

Problems during translation

- Change of volumes
- In many cases the contractor is paid in volumes removed, but many processes are based on mass.
- Working hours per week (168 or 84 or 40)
- Down time
- Overhaul & Maintenance
- Bunkering, crew changes, etc
- Delays due to weather conditions

Concentration (1/3)

• By volume
$$C_v = \frac{Volume \ sand}{Mixture \ volume} = \frac{U_s}{U_m}$$

• By weight $C_w = \frac{Sand \ mass}{Mixture \ mass} = \frac{\rho_s U_s}{\rho_m U_m} = \frac{\rho_s}{\rho_m} C_v$
• Delivered $C_{vd} = \frac{U_s \ / \ time}{U_m \ / \ time} = \frac{Q_s}{Q_m}$

Concentrations (2/3)

• Ratio between $C_{vd} \& C_v$ follows from:

$$C_{vd} = \frac{Q_s}{Q_m} = \frac{v_s A C_v}{v_m A} \Longrightarrow \frac{C_{vd}}{C_v} = \frac{v_s}{v_m}$$

• Ratio between $C_w \& C_v$

$$C_{w} = \frac{\rho_{s}}{\rho_{m}} C_{v} \implies \frac{C_{w}}{C_{v}} = \frac{\rho_{s}}{\rho_{m}}$$

Concentrations (2/3)

$$\frac{C_{vd}}{C_v} = \frac{v_s}{v_m}$$

•In horizontal transport $\nu_s < \nu_m \rightarrow \text{slip}$ •In vertical transport $\nu_s \approx \nu_m$ the difference is the settling velocity

• Mass_{mixture}=mass_{liquid}+mass_{solids}

$$\rho_m U_m = \rho_f U_f + \rho_s U_s \text{ with } C_v = \frac{U_s}{U_m}$$

$$\rho_m = \rho_f (1 - C_v) + \rho_s C_v$$

$$C_{v} = \frac{\rho_{m} - \rho_{f}}{\rho_{s} - \rho_{f}}$$
 "Note U is volume"

Volume changes

 When removing soil the insitu density will change; mostly from a dense to a loose state

 \Rightarrow Increase in porosity; f.I. From 40 to 50%

 \Rightarrow Porosity n is ratio pore volume over total volume \Rightarrow Condition: V₁(1-n₁)=V₂(1-n₂)

Examples:

 \Rightarrow Sand; n₁=0.4 and n₂=.5 gives V₂/V₁=0.6/0.5=1.2 \Rightarrow Rock; n₁=0 and n₂=.4 gives V₂/V₁=1/0.6=1.7

Every dredging process can have losses, called spillage

- More excavated than picked up by the flow or bucket
- Non removed loads in TSHD's, particular when the loads is pumped ashore or rainbowed.
- Unstable slopes after dredging (plain suction dredgers)
- In accurate placing of material
- Losses due to current and waves

Mechanical excavation Specific Energy Concept (SPE)

Energy required to excavated 1m³ of soil Dimension is Joule/m³

or per unit of time J/s/m³/s=W/m³/s,

That equals a power over production

 $SPE = \frac{power}{production} \Rightarrow power = SPE \times production$

Mechanical Excavating

Mechanical Excavating

September 12, 2006

Mechanical Excavating

September 12, 2006

Hydraulic excavation Momentum of flow

A reasonable assumption is that the jet- production is linear with the total momentum flux of the jet system independent of the trail speed.

$$Q_{sand} = (1-n)Q_{dredged}$$
$$M_{sand} = Q_{sand}\rho_{sand} = (1-n)Q_{dredged}\rho_{sand}$$

$$\mathbf{M}_{\text{sand}} = \boldsymbol{\alpha} \cdot \mathbf{I} = \alpha \rho_{\text{w}} \cdot \mathbf{Q} = \alpha \rho_{\text{w}} \cdot \mathbf{Q} \sqrt{\frac{2p}{\rho_{\text{w}}}} = \alpha \sqrt{2\rho_{\text{w}}} \frac{P_{\text{power}}}{\sqrt{p_{\text{pressure}}}}$$

32

Excavation by dragheads is hydraulically

September 12, 2006

Water injection dredger

September 12, 2006

Mechanical transport

- Trailing suction hopper dredger
- Barges
- Be aware of the effective load, because the unloading is not always 100%

Transport by barges

September 12, 2006

By Trailing Suction Hopper Dredgers

Hydraulic transport

September 12, 2006

Methods of deposing (1/2)

Methods of deposing (2/2)

″UDelft

disposing

September 12, 2006

Rainbowing

September 12, 2006

Mechanical Assistance

September 12, 2006

Design examples

September 12, 2006

TSHD

Example 1

Design a Trailing Suction Hopper Dredger that can dredge yearly 5 Mm³ coarse sand & gravel at 75 nautical miles from a port.

The dredger works 5 days at 24 hours Bunkers will be taken in the weekend Overhaul 2 weeks Weather delays 3 weeks Workability 95% Christmas 1 week

September 12, 2006

September 12, 2006

Cycle time

First estimate of dredge cycle:

Sailing to the dredging area: 75/15=3.0 hr Loading = 1.5 Sailing to the unloading area: = 3.0 <u>Unloading = 1.5</u> Total = 9.0 hr

Required load/trip

Available hours: (52-6)x5x24=5520 Effective hours: 0.95x 5520=5244 Number of trips per year: 5244/9= 582 Required volume per trip: 5,000,000/582=8591 m³ In coarse sand & gravel max.filling hopper is 90% Required hopper volume: $8591/.9 = 9546 \implies 10000 \text{ m}^3$ Density of sand & gravel in hopper 2000 kg/m³ PayLoad is: 8600x2=17200 ton Hopper density: load/volume=1.72 t/m³.

Deadweight & lightweight

Crew and their possessions, consumer goods, spare parts, and ballast water and payload.

Deadweight=1.05 x payload

53

Displacement

September 12, 2006

Block coefficient

Ship Numbers

September 12, 2006

Pump capacities

- 10000 m³ in 90 min=1.85 m³/s including pores or 1.85x0.6=1.11 m³/s excluding pores
- Assume $C_{vd}=0.2 \rightarrow capacity \ Q=1.11/0.25=5.55 \ m^3/s$ or per suction tube 2.8 m³/s
- Critical velocity for course sand is 5 m/s, so pipe diameter is 0.85 m \rightarrow 0.85 m
- In coarse sand and gravel there are no overflow losses to account for.

Excavation process

September 12, 2006

Calculated the required jet pressure

Sand mass follows from production

 $Q_{sand} = (1-n)Q_{dredged}$ $M_{sand} = Q_{sand}\rho_{sand} = (1-n)Q_{dredged}\rho_{sand}$

•Momentum follows from: With $\alpha = 0.1$ $M_{sand} = \alpha \cdot I$

$$\alpha \cdot I = \alpha \rho_{w} \cdot Q_{jet} u = \alpha \rho_{w} \cdot Q_{\sqrt{\frac{2p}{\rho_{w}}}} = \alpha \sqrt{2\rho_{w}} \frac{P_{power}}{\sqrt{p_{pressure}}}$$

Relation between Qmix, Qjet and Qerosion

September 12, 2006

September 12, 2006

Hydraulic transport

- From seabed into the hopper
- From hopper to the shore
 - Mostly empirical relations (Matousek)

• For gravel dredgers this is mostly be mechanically

Pump characteristics

September 12, 2006

Propulsion power

Bow trust power

General Arrangement

September 12, 2006

General Arrangement of gravel dredger

Simple general arrangment

The Cutter Suction Dredger

September 12, 2006

Design a cutter dredger that can dredge dredge yearly 5 Mm³ rock with a unconfined compressive strength of 5 MPa. The tensile strength is 1 Mpa The dredgers have to work 168 hrs a week. Yearly overhaul 4 weeks Christmas leave 1 week General delays 10% Dredging delays 20 SPE~qu

Required cut production

```
Available hours (52-5)x168=7896
Non dredging hours:0.3x7896=2369
Dredging hours 7896-2369=5527
Estimated spillage 25%
Required hourly output: 1.25x500000/5527 = \pm 1130 \text{ m}^3.
Q_{dredged} = 1130/3600 = 0.314 \text{ m}^3/\text{s}
Time losses due to stepping, spud changes 15%
Q_{cut} = 0.31/0.85 = 0.37 \text{ m}^3/\text{s}
SPF = 5MJ/m^3.
Required mean cutter power 0.37x5=1.85 MW
```

Cutter head productions c.q. Spillage

- •The rotational speed of the cutter head causes spillage.
- •The productivity c.q. spillage depends on the ratio:
- •For sand the productivity is: P,

$$P_r \approx 2.5 \frac{Q_{pump}}{\omega R_{cutter}^3}$$

•For rock the productivity is much lower

Cutter head productions c.q. Spillage

Cutter head production process in rock or gravel

Cutter head dimensions for rock with 25 % spillage

ÚDelft

Pump capacity and concentrations

 $Q_{dredged} = 0.314 \text{ m}^3/\text{s}$ $Q_{mixture} = 3.5 \text{ m}^3/\text{s}$

$$C_{vd} = \frac{Q_{sand}}{Q_{mixture}} = \frac{Q_{dredged} \left(1 - n\right)}{Q_{mixture}}$$

Pumping distances and installed pump power

- Knowledge of hydraulic losses can be found in the lecture notes of Matousek c.q. Talmon
- Knowledge of dredge pump can be found on our website and is downloadable.

Lightweight of pontoon

Pontoon dimensions (1/2)

Pontoon dimensions (2/2)

Simple Plan

Backhoe dredger

September 12, 2006

- A backhoe dredger have to dredge 500 m³/in fine sand with a SPE of .7MJ/m³.
- Calculated the Bucket size and cylinder forces

Fill Degree & Bulk factor

Soil type	Filling degree	Bulking factor
Soft clay	1.5	1.1
Hard clay	1.1	1.3
Sand & Gravel	1	1.05
Rock; well blasted	0.7	1.5
Rock, unblasted	0.5	1.7

Dredge Cycle

- Cycle times of the bucket depends on the dredging depth and soil type, but are in the order between 20 and 40 seconds.
- The cycle consists of:
- • Digging
- • Lifting and swinging
- • Dumping
- • Swinging and lowering
- • Positioning.

Crane weight versus bucket size for soft soil

Required power

Relation for existing dredgers

September 12, 2006

Light weight pontoon

Pontoon volume

September 12, 2006

Ships numbers for BHD

September 12, 2006

Simple Plan

Newer ideas can be discussed

September 12, 2006

The shallow draught TSHD

