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Integration in Banach spaces

When integrating a continuous function f : [a, b] → E, where E is a Banach
space, it usually suffices to use the Riemann integral. We shall be concerned
frequently with E-valued functions defined on some abstract measure space
(typically, a probability space), and in this context the notions of continuity
and Riemann integral make no sense. For this reason we start this first lecture
with generalising the Lebesgue integral to the E-valued setting.

1.1 Banach spaces

Throughout this lecture, E is a Banach space over the scalar field K, which
may be either R or C unless otherwise stated. The norm of an element x ∈ E

is denoted by ‖x‖E , or, if no confusion can arise, by ‖x‖. We write

BE = {x ∈ E : ‖x‖ 6 1}

for the closed unit ball of E.
The Banach space dual of E is the vector space E∗ of all continuous linear

mappings from E to K. This space is a Banach space with respect to the norm

‖x∗‖E∗ := sup
‖x‖61

|〈x, x∗〉|.

Here, 〈x, x∗〉 := x∗(x) denotes the duality pairing of the elements x ∈ E

and x∗ ∈ E∗. We shall simply write ‖x∗‖ instead of ‖x∗‖E∗ if no confusion
can arise. The elements of E∗ are often called (linear) functionals on E. The
Hahn-Banach separation theorem guarantees an ample supply of functionals
on E: for every convex closed set C ⊆ E and convex compact set K ⊆ E such
that C ∩ K = ∅ there exist x∗ ∈ E∗ and real numbers a < b such that

Re〈x, x∗〉 6 a < b 6 Re〈y, x∗〉
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for all x ∈ C and y ∈ K. As is well-known, from this one derives the Hahn-

Banach extension theorem: if F is a closed subspace of E, then for all y∗ ∈ F ∗

there exists an x∗ ∈ E∗ such that x∗|F = y∗ and ‖x∗‖ = ‖y∗‖. This easily
implies that for all x ∈ E we have

‖x‖ = sup
‖x∗‖61

|〈x, x∗〉|.

A linear subspace F of E∗ is called norming for a subset S of E if for all
x ∈ S we have

‖x‖ = sup
x∗∈F
‖x∗‖61

|〈x, x∗〉|.

A subspace of E∗ which is norming for E is simply called norming. The
following lemma will be used frequently.

Lemma 1.1. If E0 is a separable subspace of E and F is a linear subspace of

E∗ which is norming for E0, then F contains a sequence of unit vectors that

is norming for E0.

Proof. Choose a dense sequence (xn)∞n=1 in E0 and choose a sequence of unit
vectors (x∗

n)∞n=1 in F such that |〈xn, x∗
n〉| > (1 − εn)‖xn‖ for all n > 1, where

the numbers 0 < εn 6 1 satisfy limn→∞ εn = 0. The sequence (x∗
n)∞n=1 is

norming for E0. To see this, fix an arbitrary x ∈ E0 and let δ > 0. Pick
n0 > 1 such that 0 < εn0 6 δ and ‖x − xn0‖ 6 δ. Then,

(1 − δ)‖x‖ 6 (1 − εn0)‖x‖ 6 (1 − εn0)‖xn0‖ + (1 − εn0)δ

6 |〈xn0 , x
∗
n0
〉| + δ 6 |〈x, x∗

n0
〉| + 2δ.

Since δ > 0 was arbitrary it follows that ‖x‖ 6 supn>1 |〈x, x∗
n〉|. ⊓⊔

A linear subspace F of E∗ is said to separate the points of a subset S of E if
for every pair x, y ∈ S with x 6= y there exists an x∗ ∈ F with 〈x, x∗〉 6= 〈y, x∗〉.
Clearly, norming subspaces separate points, but the converse need not be true.

Lemma 1.2. If E0 is a separable subspace of E and F is a linear subspace of

E∗ which separates the points of E0, then F contains a sequence that separates

the points of E0.

Proof. By the Hahn-Banach theorem, for each x ∈ E0 \ {0} there exists a
vector x∗(x) ∈ F such that 〈x, x∗(x)〉 6= 0. Defining

Vx := {y ∈ E0 \ {0} : 〈y, x∗(x)〉 6= 0}

we obtain an open cover {Vx}x∈E0\{0} of E0 \{0}. Since every open cover of a
separable metric space admits a countable subcover it follows that there exists
a sequence (xn)∞n=1 in E0 \ {0} such that {Vxn

}∞n=1 covers E0 \ {0}. Then the
sequence {x∗(xn)}∞n=1 separates the points of E0: indeed, every x ∈ E0 \ {0}
belongs to some Vxn

, which means that 〈x, x∗(xn)〉 6= 0. ⊓⊔
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1.2 The Pettis measurability theorem

We begin with a discussion of weak and strong measurability of E-valued
functions. The main result in this direction is the Pettis measurability the-
orem which states, roughly speaking, that an E-valued function is strongly
measurable if and only if it is weakly measurable and takes its values in a
separable subspace of E.

1.2.1 Strong measurability

Throughout this section (A, A ) denotes a measurable space, that is, A is a
set and A is a σ-algebra in A, that is, a collection of subsets of A with the
following properties:

1. A ∈ A ;
2. B ∈ A implies ∁B ∈ A ;
3. B1 ∈ A , B2 ∈ A , . . . imply

⋃∞
n=1 Bn ∈ A .

The first property guarantees that A is non-empty, the second expresses that
A is closed under taking complements, and the third that A is closed under
taking countable unions.

The Borel σ-algebra of a topological space T , notation B(T ), is the smallest
σ-algebra containing all open subsets of T . The sets in B(T ) are the Borel

sets of T .

Definition 1.3. A function f : A → T is called A -measurable if f−1(B) ∈ A

for all B ∈ B(T ).

The collection of all B ∈ B(T ) satisfying f−1(B) ∈ A is easily seen to be
a σ-algebra. As a consequence, f is A -measurable if and only if f−1(U) ∈ A

for all open sets U in T .
When T1 and T2 are topological spaces, a function g : T1 → T2 is Borel

measurable if g−1(B) ∈ B(T1) for all B ∈ B(T2), that is, if g is B(T1)-
measurable. Note that if f : A → T1 is A -measurable and g : T1 → T2 is
Borel measurable, then the composition g ◦ f : A → T2 is A -measurable.
By the above observation, every continuous function g : T1 → T2 is Borel
measurable.

It is a matter of experience that the notion of A -measurability does not
lead to a satisfactory theory from the point of view of vector-valued analysis.
Indeed, the problem is that this definition does not provide the means for
approximation arguments. It is for this reason that we shall introduce next
another notion of measurability. We shall restrict ourselves to Banach space-
valued functions, although some of the results proved below can be generalised
to functions with values in metric spaces.

Let E be a Banach space and (A, A ) a measurable space. A function

f : A → E is called A -simple if it is of the form f =
∑N

n=1 1An
xn with

An ∈ A and xn ∈ E for all 1 6 n 6 N . Here 1A denotes the indicator

function of the set A, that is, 1A(ξ) = 1 if ξ ∈ A and 1A(ξ) = 0 if ξ 6∈ A.
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Definition 1.4. A function f : A → E is strongly A -measurable if there

exists a sequence of A -simple functions fn : A → E such that limn→∞ fn = f

pointwise on A.

In order to be able to characterise strong A -measurability of E-valued
functions we introduce some terminology. A function f : A → E is called
separably valued if there exists a separable closed subspace E0 ⊆ E such
that f(ξ) ∈ E0 for all ξ ∈ A, and weakly A -measurable if the functions
〈f, x∗〉 : A → K, 〈f, x∗〉(ξ) := 〈f(ξ), x∗〉, are A -measurable for all x∗ ∈ E∗.

Theorem 1.5 (Pettis measurability theorem, first version). Let (A, A )
be a measurable space and let F be a norming subspace of E∗. For a function

f : A → E the following assertions are equivalent:

(1) f is strongly A -measurable;

(2) f is separably valued and 〈f, x∗〉 is A -measurable for all x∗ ∈ E∗;

(3) f is separably valued and 〈f, x∗〉 is A -measurable for all x∗ ∈ F .

Proof. (1)⇒(2): Let (fn)∞n=1 be a sequence of A -simple functions converging
to f pointwise and let E0 be the closed subspace spanned by the countably
many values taken by these functions. Then E0 is separable and f takes its
values in E0. Furthermore, each 〈f, x∗〉 is A -measurable, being the pointwise
limit of the A -measurable functions 〈fn, x∗〉.

(2)⇒(3): This implication is trivial.
(3)⇒(1): Using Lemma 1.1, choose a sequence (x∗

n)∞n=1 of unit vectors in
F that is norming for a separable closed subspace E0 of E where f takes its
values. By the A -measurability of the functions 〈f, x∗

n〉, for each x ∈ E0 the
real-valued function

ξ 7→ ‖f(ξ) − x‖ = sup
n>1

|〈f(ξ) − x, x∗
n〉|

is A -measurable. Let (xn)∞n=1 be a dense sequence in E0.
Define the functions sn : E0 → {x1, . . . , xn} as follows. For each y ∈ E0

let k(n, y) be the least integer 1 6 k 6 n with the property that

‖y − xk‖ = min
16j6n

‖y − xj‖

and put sn(y) := xk(n,y). Notice that

lim
n→∞

‖sn(y) − y‖ = 0 ∀y ∈ E0

since (xn)∞n=1 is dense in E0. Now define fn : A → E by

fn(ξ) := sn(f(ξ)), ξ ∈ A.

For all 1 6 k 6 n we have
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{ξ ∈ A : fn(ξ) = xk}

=
{
ξ ∈ A : ‖f(ξ) − xk‖ = min

16j6n
‖f(ξ) − xj‖

}

∩
{
ξ ∈ A : ‖f(ξ) − xl‖ > min

16j6n
‖f(ξ) − xj‖ for l = 1, . . . , k − 1

}
.

Note that the sets on the right hand side are in A . Hence each fn is A -simple,
and for all ξ ∈ A we have

lim
n→∞

‖fn(ξ) − f(ξ)‖ = lim
n→∞

‖sn(f(ξ)) − f(ξ)‖ = 0. ⊓⊔

Corollary 1.6. The pointwise limit of a sequence of strongly A -measurable

functions is strongly A -measurable.

Proof. Each function fn takes its values in a separable subspace of E. Then
f takes its values in the closed linear span of these spaces, which is separable.
The measurability of the functions 〈f, x∗〉 follows by noting that each 〈f, x∗〉
is the pointwise limit of the measurable functions 〈fn, x∗〉. ⊓⊔

Corollary 1.7. If an E-valued function f is strongly A -measurable and φ :
E → F is continuous, where F is another Banach space, then φ◦f is strongly

A -measurable.

Proof. Choose simple functions fn converging to f pointwise. Then φ ◦ fn →
φ ◦ f pointwise and the result follows from the previous corollary. ⊓⊔

Proposition 1.8. For a function f : A → E, the following assertions are

equivalent:

(1) f is strongly A -measurable;

(2) f is separably valued and for all B ∈ B(E) we have f−1(B) ∈ A .

Proof. (1)⇒(2): Let f be strongly A -measurable. Then f is separably-valued.
To prove that f−1(B) ∈ A for all B ∈ B(E) it suffices to show that f−1(U) ∈
A for all open sets U .

Let U be open and choose a sequence of A -simple functions fn converging
pointwise to f . For r > 0 let Ur = {x ∈ U : d(x, ∁U) > r}, where ∁U denotes
the complement of U . Then f−1

n (Ur) ∈ A for all n > 1, by the definition of
an A -simple function. Since

f−1(U) =
⋃

m>1

⋃

n>1

⋂

k>n

f−1
k (U 1

m

)

(the inclusion ‘⊆’ being a consequence of the fact that U is open) it follows
that also f−1(U) ∈ A .

(2)⇒(1): By assumption, f is A -measurable, and therefore 〈f, x∗〉 is A -
measurable for all x∗ ∈ E∗. The result now follows from the Pettis measura-
bility theorem. ⊓⊔

Thus if E is separable, then an E-valued function f is strongly A -
measurable if and only if it is A -measurable.
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1.2.2 Strong µ-measurability

So far, we have considered measurability properties of E-valued functions
defined on a measurable space (A, A ). Next we consider functions defined on
a σ-finite measure space (A, A , µ), that is, µ is a non-negative measure on a
measurable space (A, A ) and there exist sets A(1) ⊆ A(2) ⊆ . . . in A with
µ(A(n)) < ∞ for all n > 1 and A =

⋃∞
n=1 A(n).

A µ-simple function with values in E is a function of the form

f =

N∑

n=1

1An
xn,

where xn ∈ E and the sets An ∈ A satisfy µ(An) < ∞.
We say that a property holds µ-almost everywhere if there exists a µ-null

set N ∈ A such that the property holds on the complement ∁N of N .

Definition 1.9. A function f : A → E is strongly µ-measurable if there

exists a sequence (fn)n>1 of µ-simple functions converging to f µ-almost ev-

erywhere.

Using the σ-finiteness of µ it is easy to see that every strongly A -
measurable function is strongly µ-measurable. Indeed, if f is strongly A -
measurable and limn→∞ fn = f pointwise with each fn an A -simple func-
tions, then also limn→∞ 1A(n)fn = f pointwise, where A =

⋃∞
n=1 A(n) as

before, and each 1A(n)fn is µ-simple. The next proposition shows that in the
converse direction, every strongly µ-measurable function is equal µ-almost
everywhere to a strongly A -measurable function.

Let us call two functions which agree µ-almost everywhere µ-versions of
each other.

Proposition 1.10. For a function f : A → E the following assertions are

equivalent:

(1) f is strongly µ-measurable;

(2) f has a µ-version which is strongly A -measurable.

Proof. (1)⇒(2): Suppose that fn → f outside the null set N ∈ A , with each
fn µ-simple. Then we have limn→∞ 1∁Nfn = 1∁Nf pointwise on A, and since
the functions 1∁Nfn are A -simple, 1∁Nf is strongly A -measurable. It follows
that 1∁Nf is a strongly A -measurable µ-version of f .

(2)⇒(1): Let f̃ be a strongly A -measurable µ-version of f and let N ∈ A

be a null set such that f = f̃ on ∁N . If (f̃n)∞n=1 is a sequence of A -simple

functions converging pointwise to f̃ , then limn→∞ f̃n = f on ∁N , which means
that limn→∞ f̃n = f µ-almost everywhere.

Write A =
⋃∞

n=1 A(n) with A(1) ⊆ A(2) ⊆ · · · ∈ A and µ(A(n)) < ∞ for all

n > 1. The functions fn := 1A(n) f̃n are µ-simple and we have limn→∞ fn = f

µ-almost everywhere. ⊓⊔
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We say that f is µ-separably valued if there exists a closed separable sub-
space E0 of E such that f(ξ) ∈ E0 for µ-almost all ξ ∈ A, and weakly µ-

measurable if 〈f, x∗〉 is µ-measurable for all x∗ ∈ E∗.

Theorem 1.11 (Pettis measurability theorem, second version). Let

(A, A , µ) be a σ-finite measure space and let F be a norming subspace of E∗.

For a function f : A → E the following assertions are equivalent:

(1) f is strongly µ-measurable;

(2) f is µ-separably valued and 〈f, x∗〉 is µ-measurable for all x∗ ∈ E∗;

(3) f is µ-separably valued and 〈f, x∗〉 is µ-measurable for all x∗ ∈ F .

Proof. The implication (1)⇒(2) follows the corresponding implication in The-
orem 1.5 combined with Proposition 1.10, and (2)⇒(3) is trivial. The impli-
cation (3)⇒(1) is proved in the same way as the corresponding implication

in Theorem 1.5, observing that this time the functions fn have µ-versions f̃n

that are A -simple. If we write A =
⋃∞

n=1 A(n) as before with each A(n) of fi-

nite µ-measure, the functions 1A(n) f̃n are µ-simple and converge to f µ-almost
everywhere. ⊓⊔

By combining Proposition 1.10 with Corollaries 1.6 and 1.7 we obtain:

Corollary 1.12. The µ-almost everywhere limit of a sequence of strongly µ-

measurable E-valued functions is strongly µ-measurable.

Corollary 1.13. If an E-valued function f is strongly µ-measurable and φ :
E → F is continuous, where F is another Banach space, then φ◦f is strongly

µ-measurable.

The following result will be applied frequently.

Corollary 1.14. If f and g are strongly µ-measurable E-valued functions

which satisfy 〈f, x∗〉 = 〈g, x∗〉 µ-almost everywhere for every x∗ ∈ F , where F

is subspace of E∗ separating the points of E. Then f = g µ-almost everywhere.

Proof. Both f and g take values in a separable closed subspace E0 µ-almost
everywhere, say outside the µ-null set N . Since E0 is separable, by Lemma
1.2 some countable family of elements (x∗

n)∞n=1 in F separates the points of
E0. Since 〈f, x∗

n〉 = 〈g, x∗
n〉 outside a µ-null set Nn, we conclude that f and g

agree outside the µ-null set N ∪
⋃∞

n=1 Nn. ⊓⊔

1.3 The Bochner integral

The Bochner integral is the natural generalisation of the familiar Lebesgue
integral to the vector-valued setting.

Throughout this section, (A, A , µ) is a σ-finite measure space.
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1.3.1 The Bochner integral

Definition 1.15. A function f : A → E is µ-Bochner integrable if there

exists a sequence of µ-simple functions fn : A → E such that the following

two conditions are met:

(1) limn→∞ fn = f µ-almost everywhere;

(2) lim
n→∞

∫

A

‖fn − f‖ dµ = 0.

Note that f is strongly µ-measurable. The functions ‖fn−f‖ are µ-measurable
by Corollary 1.13.

It follows trivially from the definitions that every µ-simple function is µ-
Bochner integrable. For f =

∑N
n=1 1An

xn we put

∫

A

f dµ :=

N∑

n=1

µ(An)xn.

It is routine to check that this definition is independent of the representation
of f . If f is µ-Bochner integrable, the limit

∫

A

f dµ := lim
n→∞

∫

A

fn dµ

exists in E and is called the Bochner integral of f with respect to µ. It is routine
to check that this definition is independent of the approximating sequence
(fn)∞n=1.

If f is µ-Bochner integrable and g is a µ-version of f , then g is µ-Bochner
integrable and the Bochner integrals of f and g agree. In particular, in the
definition of the Bochner integral the function f need not be everywhere
defined; it suffices that f be µ-almost everywhere defined.

If f is µ-Bochner integrable, then for all x∗ ∈ E∗ we have the identity

〈∫

A

f dµ, x∗
〉

=

∫

A

〈f, x∗〉 dµ.

For µ-simple functions this is trivial, and the general case follows by approx-
imating f with µ-simple functions.

Proposition 1.16. A strongly µ-measurable function f : A → E is µ-

Bochner integrable if and only if

∫

A

‖f‖ dµ < ∞,

and in this case we have

∥∥∥
∫

A

f dµ
∥∥∥ 6

∫

A

‖f‖ dµ.
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Proof. First assume that f is µ-Bochner integrable. If the µ-simple functions
fn satisfy the two assumptions of Definition 1.15, then for large enough n we
obtain ∫

A

‖f‖ dµ 6

∫

A

‖f − fn‖ dµ +

∫

A

‖fn‖ dµ < ∞.

Conversely let f be a strongly µ-measurable function satisfying
∫

A
‖f‖ dµ <

∞. Let gn be µ-simple functions such that limn→∞ gn = f µ-almost every-
where and define

fn := 1{‖gn‖62‖f‖}gn.

Then fn is µ-simple, and clearly we have limn→∞ fn = f µ-almost everywhere.
Since we have ‖fn‖ 6 2‖f‖ pointwise, the dominated convergence theorem can
be applied and we obtain

lim
n→∞

∫

A

‖fn − f‖ dµ = 0.

The final inequality is trivial for µ-simple functions, and the general case
follows by approximation. ⊓⊔

As a simple application, note that if f : A → E is µ-Bochner integrable,
then for all B ∈ A the truncated function 1Bf : A → E is µ-Bochner inte-
grable, the restricted function f |B : B → E is µ|B-Bochner integrable, and
we have ∫

A

1Bf dµ =

∫

B

f |B dµ|B.

Henceforth, both integrals will be denoted by
∫

B
f dµ.

In the following result, conv(V ) denotes the convex hull of a subset V ⊆ E,

i.e., the set of all finite sums
∑k

j=1 λjxj with λj > 0 satisfying
∑k

j=1 λj = 1
and xj ∈ V for j = 1, . . . , k. The closure of this set is denoted by conv(V ).

Proposition 1.17. Let f : A → E be a µ-Bochner integrable function. If

µ(A) = 1, then ∫

A

f dµ ∈ conv{f(ξ) : ξ ∈ A}.

Proof. Let us say that an element x ∈ E is strictly separated from a set V ⊆ E

by a functional x∗ ∈ E∗ if there exists a number δ > 0 such that

|Re〈x, x∗〉 − Re〈v, x∗〉| > δ ∀v ∈ V.

The Hahn-Banach separation theorem asserts that if V is convex and x 6∈ V ,
then there exists a functional x∗ ∈ E∗ which strictly separates x from V .

For x∗ ∈ E∗, let

m(x∗) := inf{Re〈f(ξ), x∗〉 : ξ ∈ A},

M(x∗) := sup{Re〈f(ξ), x∗〉 : ξ ∈ A},
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allowing these values to be −∞ and ∞, respectively. Then, since µ(A) = 1,

Re
〈 ∫

A

f dµ, x∗
〉

=

∫

A

Re〈f, x∗〉 dµ ∈ [m(x∗), M(x∗)].

This shows that
∫

A
f dµ cannot be strictly separated from the convex set

conv{f(ξ) : ξ ∈ A} by functionals in E∗. Therefore the conclusion follows by
an application of the Hahn-Banach separation theorem. ⊓⊔

As a rule of thumb, results from the theory of Lebesgue integration carry
over to the Bochner integral as long as there are no non-negativity assumptions
involved. For example, there are no analogues of the Fatou lemma and the
monotone convergence theorem, but we do have the following analogue of the
dominated convergence theorem:

Proposition 1.18 (Dominated convergence theorem). Let fn : A → E

be a sequence of functions, each of which is µ-Bochner integrable. Assume

that there exist a function f : A → E and a µ-Bochner integrable function

g : A → K such that:

(1) limn→∞ fn = f µ-almost everywhere;

(2) ‖fn‖ 6 |g| µ-almost everywhere.

Then f is µ-Bochner integrable and we have

lim
n→∞

∫

A

‖fn − f‖ dµ = 0.

In particular we have

lim
n→∞

∫

A

fn dµ =

∫

A

f dµ.

Proof. We have ‖fn−f‖ 6 2|g| µ-almost everywhere, and therefore the result
follows from the scalar dominated convergence theorem. ⊓⊔

It is immediate from the definition of the Bochner integral that if f : A →
E is µ-Bochner integrable and T is a bounded linear operator from E into
another Banach space F , then Tf : A → F is µ-Bochner integrable and

T

∫

A

f dµ =

∫

A

Tf dµ.

This identity has a useful extension to a suitable class of unbounded oper-
ators. A linear operator T , defined on a linear subspace D(T ) of E and taking
values in another Banach space F , is said to be closed if its graph

G (T ) := {(x, Tx) : x ∈ D(T )}

is a closed subspace of E × F . If T is closed, then D(T ) is a Banach space
with respect to the graph norm
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‖x‖D(T ) := ‖x‖ + ‖Tx‖

and T is a bounded operator from D(T ) to E.
The closed graph theorem asserts that if T : E → F is a closed operator

with domain D(T ) = E, then T is bounded.

Theorem 1.19 (Hille). Let f : A → E be µ-Bochner integrable and let T

be a closed linear operator with domain D(T ) in E taking values in a Banach

space F . Assume that f takes its values in D(T ) µ-almost everywhere and the

µ-almost everywhere defined function Tf : A → F is µ-Bochner integrable.

Then
∫

A
f dµ ∈ D(T ) and

T

∫

A

f dµ =

∫

A

Tf dµ.

Proof. We begin with a simple observation which is a consequence of Propo-
sition 1.16 and the fact that the coordinate mappings commute with Bochner
integrals: if E1 and E2 are Banach spaces and f1 : A → E1 and f2 : A → E2

are µ-Bochner integrable, then f = (f1, f2) : A → E1 × E2 is µ-Bochner
integrable and ∫

A

f dµ =
( ∫

A

f1 dµ,

∫

A

f2 dµ
)
.

Turning to the proof of the proposition, by the preceding observation the
function g : A → E × F , g(ξ) := (f(ξ), T f(ξ)), is µ-Bochner integrable.
Moreover, since g takes its values in the graph G (T ), we have

∫
A

g(ξ) dµ(ξ) ∈
G (T ). On the other hand,

∫

A

g(ξ) dµ(ξ) =
( ∫

A

f(ξ) dµ(ξ),

∫

A

Tf(ξ) dµ(ξ)
)
.

The result follows by combining these facts. ⊓⊔

We finish this section with a result on integration of E-valued functions
which may fail to be Bochner integrable.

Theorem 1.20 (Pettis). Let (A, A , µ) be a finite measure space and let 1 <

p < ∞ be fixed. If f : A → E is strongly µ-measurable and satisfies 〈f, x∗〉 ∈
Lp(A) for all x∗ ∈ E∗, then there exists a unique xf ∈ E satisfying

〈xf , x∗〉 =

∫

A

〈f, x∗〉 dµ.

Proof. We may assume that f is strongly A -measurable.
It is easy to see that the linear mapping S : E∗ → Lp(A), Sx∗ := 〈f, x∗〉

is closed. Hence S is bounded by the closed graph theorem.
Put An := {‖f‖ 6 n}. Then An ∈ A and by Proposition 1.16 the integral∫

An

f dµ exists as a Bochner integral in E. For all x∗ ∈ E∗ and n > m, by
Hölder’s inequality we have
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∣∣∣
〈 ∫

An\Am

f dµ(x), x∗
〉∣∣∣ 6

(
µ(An\Am)

) 1
q

( ∫

A

|〈f, x∗〉|p dµ(x)
) 1

p

6
(
µ(An\Am)

) 1
q ‖S‖ ‖x∗‖.

Taking the supremum over all x∗ ∈ E∗ with ‖x∗‖ 6 1 we see that

lim sup
m,n→∞

∥∥∥
∫

An\Am

f dµ
∥∥∥ 6 lim

m,n→∞

(
µ(An\Am)

) 1
q ‖S‖ = 0.

Hence the limit xf := limn→∞

∫
An

f dµ exists in E. Clearly,

〈xf , x∗〉 = lim
n→∞

∫

An

〈f, x∗〉 dµ =

∫

A

〈f, x∗〉 dµ

for all x∗ ∈ E∗. Uniqueness is obvious by the Hahn-Banach theorem. ⊓⊔

The element xf is called the Pettis integral of f with respect to µ.

1.3.2 The Lebesgue-Bochner spaces Lp(A; E)

Let (A, A , µ) be a σ-finite measure space. For 1 6 p < ∞ we define Lp(A; E)
as the linear space of all (equivalence classes of) strongly µ-measurable func-
tions f : A → E for which

∫

A

‖f‖p dµ < ∞,

identifying functions which are equal µ-almost everywhere. Endowed with the
norm

‖f‖Lp(A;E) :=
(∫

A

‖f‖p dµ
) 1

p

,

the space Lp(A; E) is a Banach space; the proof for the scalar case carries
over verbatim. Repeating the second part of the proof of Proposition 1.16 we
see that the µ-simple functions are dense in Lp(A; E).

Note that the elements of L1(A; E) are precisely the equivalence classes of
µ-Bochner integrable functions.

We define L∞(A; E) as the linear space of all (equivalence classes of)
strongly µ-measurable functions f : A → E for which there exists a number
r > 0 such that µ{‖f‖ > r} = 0. Endowed with the norm

‖f‖L∞(A;E) := inf
{

r > 0 : µ{‖f‖ > r} = 0
}
,

the space L∞(A; E) is a Banach space.

Example 1.21. For each 1 6 p 6 ∞, the Fubini theorem establishes a canonical
isometric isomorphism

Lp(A1; L
p(A2; E)) ≃ Lp(A1 × A2; E),

which is uniquely defined by the mapping 1A1 ⊗ (1A2 ⊗ x) 7→ 1A1×A2 ⊗ x and
linearity. Here 1A ⊗ y ∈ Lp(A; F ) is defined by (1A ⊗ y)(ξ) := 1A(ξ)y.
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1.4 Exercises

1. (!)1 Let E be a separable Banach space and let C be a closed convex subset
of E. Prove that there exists a sequence (x∗

n)∞n=1 of norm one elements in
E∗ and a sequence (Fn)∞n=1 of closed sets in K such that

C =
∞⋂

n=1

{
x ∈ E : 〈x, x∗

n〉 ∈ Fn

}
.

Hint: Separate C from the elements of a dense sequence in its complement
∁C using the Hahn-Banach separation theorem.

2. Prove that the function f : (0, 1) → L∞(0, 1) defined by f(t) = 1(0,t) is
weakly measurable, but not strongly measurable.
Hint: In the real case, elements in the dual of L∞(0, 1) can be decomposed
into a positive and negative part. The complex case, consider real and
imaginary parts separately.

3. Let E be a Banach space and f : [0, 1] → E a continuous function. Show
that f is Bochner integrable, and that its Bochner integral coincides with
its Riemann integral.

4. A familiar theorem of calculus asserts that

d

dx

∫ 1

0

f(x, y) dy =

∫ 1

0

∂f

∂x
(x, y) dy

for suitable functions f : [0, 1]× [0, 1] → K. Show that this is a special case
of Hille’s theorem and deduce a set of rigorous conditions for this result.

5. Let (A, A , µ) be a σ-finite measure space and let 1 6 p, q 6 ∞ satisfy
1
p

+ 1
q

= 1. Let E be a Banach space and let F be a norming subspace

of E∗. Prove that Lq(A; F ) is a norming subspace of (Lp(A; E))∗ with
respect to the duality pairing

〈f, g〉 =

∫

A

〈f(ξ), g(ξ)〉 dµ(ξ), f ∈ Lp(A; E), g ∈ Lq(A; E∗).

Hint: First find simple functions in Lq(A; F ) which norm simple functions
in Lp(A; E).

Notes. The material in this lecture is standard and can be found in many
textbooks. More complete discussions of measurability in Banach spaces can
be found in the monographs by Bogachev [8] and Vakhania, Tarieladze,
Chobanyan [105]. Systematic expositions of the Bochner integral are pre-
sented in Arendt, Batty, Hieber, Neubrander [3], Diestel and Uhl

[36], Dunford and Schwartz [37] and Lang [66].

1 Results proved in the exercises marked with (!) are needed in the main text.
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The Pettis measurability theorems 1.5 and 1.11 as well as Theorem 1.20
are due to Pettis [90]. Both versions of the Pettis measurability theorem
remain correct if we only assume f to be weakly measurable with respect to
the functionals from a subspace F of E∗ which separates the points of E, but
the proof is more involved. For more details we refer to [36] and [105].


