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Random variables in Banach spaces

In this lecture we take up the study of random variables with values in a Ba-
nach space E. The main result is the Itô-Nisio theorem (Theorem 2.17), which
asserts that various modes of convergence of sums of independent symmetric
E-valued random variables are equivalent. This result gives us a powerful tool
to check the almost sure convergence of sums of independent symmetric ran-
dom variables and will play an important role in the forthcoming lectures. The
proof of the Itô-Nisio theorem is based on a uniqueness property of Fourier
transforms (Theorem 2.8).

From this lecture onwards, we shall always assume that all spaces are real.
This assumption is convenient when dealing with Fourier transforms and, in
later lectures, when using the Riesz representation theorem to identify Hilbert
spaces and their duals. However, much of the theory also works for complex
scalars and can in fact be deduced from the real case. For some results it
suffices to note that every complex vector space is a real space (by restricting
the scalar multiplication to the reals); in others one proceeds by considering
real and imaginary parts separately. We leave it to the interested reader to
verify this in particular instances.

2.1 Random variables

A probability space is a triple (Ω, F , P), where P is a probability measure on
a measurable space (Ω, F ), that is, P is a non-negative measure on (Ω, F )
satisfying P(Ω) = 1.

Definition 2.1. An E-valued random variable is an E-valued strongly P-
measurable function X defined on some probability space (Ω, F , P).

We think of X as a ‘random’ element x of E, which explains the choice of
the letter ‘X ’.

The underlying probability space (Ω, F , P) will always be considered as
fixed, and the prefix ‘P-’ will be omitted from our terminology unless confusion
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may arise. For instance, ‘strongly measurable’ means ‘strongly P-measurable’
and ‘almost surely’ means ‘P-almost surely’, which is used synonymously with
‘P-almost everywhere’. All integrals of E-valued random variables will be
Bochner integrals unless stated otherwise, and the prefix ‘Bochner’ will usually
be omitted.

The integral of an integrable random variable X is called its mean value
or expectation and is denoted by

EX :=

∫

Ω

X dP.

If X is an E-valued random variable, then by Proposition 1.10 X has a
strongly F -measurable version X̃ and by Proposition 1.8 the event

{X̃ ∈ B} := {ω ∈ Ω : X̃(ω) ∈ B}

belongs to F for all B ∈ B(E). The probability P{X̃ ∈ B} does not depend

on the particular choice of the F -measurable version X̃ , a fact which justifies
the notation

P{X ∈ B} := P{X̃ ∈ B}

which will be used in the sequel without further notice.

Definition 2.2. The distribution of an E-valued random variable X is the
Borel probability measure µX on E defined by

µX(B) := P{X ∈ B}, B ∈ B(E).

Random variables having the same distribution are said to be identically dis-
tributed.

In the second part of this definition we allow the random variables to be
defined on different probability spaces. If X and Y are identically distributed
E-valued random variables and f : E → F is a Borel function, then f(X) and
f(Y ) are identically distributed. For example, for 1 6 p < ∞ it follows that

E‖X‖p = E‖Y ‖p

if at least one (and then both) of these expectations are finite.
The next proposition shows that every E-valued random variable is tight:

Proposition 2.3. If X is a random variable in E, then for every ε > 0 there
exists a compact set K in E such that P{X 6∈ K} < ε.

Proof. Since X is separably valued outside some null set, we may assume that
E is separable. Let (xn)∞n=1 be a dense sequence in E and fix ε > 0. For each
integer k > 1 the closed balls B(xn, 1

k
) cover E, and therefore there exists an

index Nk > 1 such that
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P

{
X ∈

Nk⋃

n=1

B
(
xn,

1

k

)}
> 1 −

ε

2k
.

The set K :=
⋂

k>1

⋃Nk

n=1 B
(
xn, 1

k

)
is closed and totally bounded. Since E is

complete, K is compact. Moreover,

P{X 6∈ K} <

∞∑

k=1

ε

2k
= ε. ⊓⊔

This result motivates the following definition.

Definition 2.4. A family X of random variables in E is uniformly tight if
for every ε > 0 there exists a compact set K in E such that

P{X 6∈ K} < ε ∀X ∈ X .

The following lemma will be useful in the proof of the Itô-Nisio theorem.

Lemma 2.5. If X is uniformly tight, then X − X = {X1 − X2 : X1, X2 ∈
X } is uniformly tight.

Proof. Let ε > 0 be arbitrary and fixed. Choose a compact set K in E such
that P{X ∈ K} > 1 − ε for all X ∈ X . The set L = {x − y : x, y ∈ K}
is compact, being the image of the compact set K × K under the continuous
map (x, y) 7→ x − y. Since X1(ω), X2(ω) ∈ K implies X1(ω) − X2(ω) ∈ L,

P{X1 − X2 6∈ L} 6 P{X1 6∈ K} + P{X2 6∈ K} < 2ε. ⊓⊔

2.2 Fourier transforms

We begin with a definition.

Definition 2.6. The Fourier transform of a Borel probability measure µ on
E is the function µ̂ : E∗ → C defined by

µ̂(x∗) :=

∫

E

exp(−i〈x, x∗〉) dµ(x).

The Fourier transform of a random variable X : Ω → E is the Fourier trans-
form of its distribution µX .
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Note that the above integral converges absolutely, as | exp(−i〈x, x∗〉)| = 1
for all x ∈ E since we are assuming that E is a real Banach space. By a change
of variable, the Fourier transform of a random variable X on E is given by

X̂(x∗) := E exp(−i〈X, x∗〉) =

∫

E

exp(−i〈x, x∗〉) dµX(x).

The proof of the next theorem is based upon a uniqueness result known as
Dynkin’s lemma. It states that two probability measures agree if they agree
on a sufficiently rich family of sets.

Lemma 2.7 (Dynkin). Let µ1 and µ2 be two probability measures defined
on a measurable space (Ω, F ). Let A ⊆ F be a collection of sets with the
following properties:

(1) A is closed under finite intersections;
(2) σ(A ), the σ-algebra generated by A , equals F .

If µ1(A) = µ2(A) for all A ∈ A , then µ1 = µ2.

Proof. Let D denote the collection of all sets D ∈ F with µ1(D) = µ2(D).
Then A ⊆ D and D is a Dynkin system, that is,

• Ω ∈ D ;
• if D1 ⊆ D2 with D1, D2 ∈ D , then also D2 \ D1 ∈ D ;
• if D1 ⊆ D2 ⊆ . . . with all Dn ∈ D , then also

⋃
n>1 Dn ∈ D .

By assumption we have D ⊆ F = σ(A ); we will show that σ(A ) ⊆ D . To
this end let D0 denote the smallest Dynkin system in F containing A . We
will show that σ(A ) ⊆ D0. In view of D0 ⊆ D , this will prove the lemma.

Let C = {D0 ∈ D0 : D0 ∩ A ∈ D0 for all A ∈ A }. Then C is a Dynkin
system and A ⊆ C since A is closed under taking finite intersections. It
follows that D0 ⊆ C , since D0 is the smallest Dynkin system containing A .
But obviously, C ⊆ D0, and therefore C = D0.

Now let C ′ = {D0 ∈ D0 : D0 ∩ D ∈ D0 for all D ∈ D0}. Then C ′

is a Dynkin system and the fact that C = D0 implies that A ⊆ C ′. Hence
D0 ⊆ C ′, since D0 is the smallest Dynkin system containing A . But obviously,
C ′ ⊆ D0, and therefore C ′ = D0.

It follows that D0 is closed under taking finite intersections. But a Dynkin
system with this property is a σ-algebra. Thus, D0 is a σ-algebra, and now
A ⊆ D0 implies that also σ(A ) ⊆ D0. ⊓⊔

Theorem 2.8 (Uniqueness of the Fourier transform). Let X1 and X2

be E-valued random variables whose Fourier transforms are equal:

X̂1(x
∗) = X̂2(x

∗) ∀x∗ ∈ E∗.

Then X1 and X2 are identically distributed.
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Proof. Since X1 and X2 are µ-separably valued there is no loss of generality
in assuming that E is separable.

Step 1 - First we prove: if λ1 and λ2 are Borel probability measures on

Rd with the property that λ̂1(t) = λ̂2(t) for all t ∈ Rd, then λ1 = λ2. By
Dynkin’s lemma, for the latter it suffices to prove that λ1(K) = λ2(K) for
all compact subsets K of Rd. By the dominated convergence theorem, for the
latter suffices to prove that

∫ ∞

−∞

f(ξ) dλ1(ξ) =

∫ ∞

−∞

f(ξ) dλ2(ξ) ∀f ∈ Cc(R
d), (2.1)

where Cc(R
d) denote the space of all compactly supported continuous func-

tions on Rd.
Let ε > 0 be arbitrary and fix an f ∈ Cc(R

d). We may assume that
‖f‖∞ 6 1. Let r > 0 be so large that the support of f is contained in [−r, r]d

and such that λj

(
∁[−r, r]d

)
6 ε for j = 1, 2. By the Stone-Weierstrass theorem

there exists a trigonometric polynomial p : Rd → C of period 2r such that
supt∈[−r,r]d |f(t) − p(t)| 6 ε. Then,

∣∣∣
∫

Rd

f(ξ) dλ1(ξ) −

∫

Rd

f(ξ) dλ2(ξ)
∣∣∣

6 4ε + 2(1 + ε)ε +
∣∣∣
∫

Rd

p(ξ) dλ1(ξ) −

∫

Rd

p(ξ) dλ2(ξ)
∣∣∣

= 4ε + 2(1 + ε)ε,

where the terms 2(1 + ε)ε come from the estimate ‖p‖∞ 6 1 + ε and the
last equality follows from the equality of the Fourier transforms of λ1 and λ2.
Since ε > 0 was arbitrary, this proves (2.1).

Step 2 - If µ is any Borel probability measure on E, then for all d > 1 and
all t = (t1, . . . , td) ∈ Rd and x∗

1, . . . , x
∗
d ∈ E∗ we have

µ̂
( d∑

j=1

tjx
∗
j

)
=

∫

E

e−i
P

d
j=1

〈x,tjx∗

j 〉 dµ(x) =

∫

Rd

e−i〈t,ξ〉 d(Tµ)(ξ) = T̂ µ(t),

where Tµ denotes Borel probability measure on Rd obtained as the image
measure of µ under the map T : E → Rd, x 7→ (〈x, x∗

1〉, . . . , 〈x, x∗
d〉), that is,

Tµ(B) := µ
{
x ∈ E : (〈x, x∗

1〉, . . . , 〈x, x∗
d〉) ∈ B

}
.

Step 3 - Applying Step 2 to the measures µX1
and µX2

it follows that

T̂ µX1
(t) = T̂ µX2

(t) for all t ∈ Rd. By Step 1, TµX1
= TµX2

. Hence µX1
and

µX2
agree on the collection C (E) consisting of all Borel sets in E of the form

{
x ∈ E : (〈x, x∗

1〉, . . . , 〈x, x∗
d〉) ∈ B

}

with d > 1, x∗
1, . . . , x

∗
d ∈ E∗ and B ∈ B(Rd). Since E is separable, every

closed ball {x ∈ E : ‖x− x0‖ 6 r} can be written as a countable intersection
of sets in C (E) (see Exercise 1.1). Thus the family C (E) generates the Borel
σ-algebra B(E) and µX1

= µX2
by Dynkin’s Lemma. ⊓⊔
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2.3 Convergence in probability

In the absence of integrability conditions the following definition for conver-
gence of random variables is often very useful.

Definition 2.9. A sequence (Xn)∞n=1 of E-valued random variables converges
in probability to an E-valued random variable X if for all r > 0 we have

lim
n→∞

P{‖Xn − X‖ > r} = 0.

If limn→∞ Xn = X in Lp(Ω; E) for some 1 6 p < ∞, then limn→∞ Xn =
X in probability. This follows from Chebyshev’s inequality, which states that
if ξ ∈ Lp(Ω), then for all r > 0 we have

P{|ξ| > r} 6
1

rp
E|ξ|p.

The proof is simple:

P{|ξ| > r} =
1

rp

∫

{|ξ|p>rp}

rp dP 6
1

rp

∫

{|ξ|p>rp}

|ξ|p dP 6
1

rp
E|ξ|p.

Our first aim is to show that if (Xn)∞n=1 converges in probability, then
some subsequence converges almost surely. For this we need a lemma which
is known as the Borel-Cantelli lemma.

Lemma 2.10 (Borel-Cantelli). If (A, A , µ) is a measure space and (An)∞n=1

is a sequence in A satisfying
∑∞

n=1 µ(An) < ∞, then

µ
( ⋂

k>1

⋃

n>k

An

)
= 0.

Proof. Let k0 > 1. Then,

µ
( ⋂

k>1

⋃

n>k

An

)
6 µ

( ⋃

n>k0

An

)
6

∞∑

n=k0

µ(An),

and the right hand side tends to 0 as k0 → ∞. ⊓⊔

Note that ω ∈
⋂

k>1

⋃
n>k An if and only if ω ∈ An for infinitely many

indices n.

Proposition 2.11. If a sequence (Xn)∞n=1 of E-valued random variables con-
verges in probability, then it has an almost surely convergent subsequence
(Xnk

)∞k=1.
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Proof. Let limn→∞ Xn = X in probability. Choose an increasing sequence of
indices n1 < n2 < . . . satisfying

P

{
‖Xnk

− X‖ >
1

k

}
<

1

2k
∀k > 1.

By the Borel-Cantelli lemma,

P

{
‖Xnk

− X‖ >
1

k
for infinitely many k > 1

}
= 0.

Outside this null set we have limk→∞ Xnk
= X pointwise. ⊓⊔

2.4 Independence

Next we recall the notion of independence. The reader who is already familiar
with it may safely skip this section.

Definition 2.12. A family of random variables (Xi)i∈I , where I is some in-
dex set and each Xi takes values in a Banach space Ei, is independent if for
all choices of distinct indices i1, . . . , iN ∈ I and all Borel sets B1, . . . , BN in
Ei1 , . . . , EiN

we have

P{Xi1 ∈ B1, . . . , XiN
∈ BN} =

N∏

n=1

P{Xin
∈ Bn}.

Note that (Xi)i∈I is independent if and only if every finite subfamily of
(Xi)i∈I is independent. Thus, in order to check independence of a given family
of random variables it suffices to consider its finite subfamilies.

We assume that the reader is familiar with the elementary properties of
independent real-valued random variables such as covered in a standard course
on probability. Here we content ourselves recalling that if η and ξ are real-
valued random variables which are integrable and independent, then their
product ηξ is integrable and E(ηξ) = Eη Eξ.

In the next two propositions, X1, . . . , XN are random variables with values
in the Banach spaces E1, . . . , EN , respectively. If ν1, . . . , νn are probability
measures, we denote by ν1 × · · ·× νn their product measure. The distribution
of the EN -valued random variable (X1, . . . , XN ) is denoted by µ(X1,...,XN ).

Proposition 2.13. The random variables X1, . . . , XN are independent if and
only if

µ(X1,...,XN ) = µX1
× · · · × µXN

.

Proof. By definition, the random variables X1, . . . , XN are independent if
and only if µ(X1,...,XN ) and µX1

× · · · × µXN
agree on all Borel rectangles

B1 × · · ·×BN in E1 × · · ·×EN . By Dynkin’s lemma this happens if and only
if µ(X1,...,XN ) = µX1

× · · · × µXN
. ⊓⊔
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We record two corollaries.

Proposition 2.14. If limn→∞ Xn = X and limn→∞ Yn = Y in probability
and each Xn is independent of Yn, then X and Y are independent.

Proof. By passing to a subsequence we may assume that limn→∞ Xn = X

and limn→∞ Yn = Y almost surely. We consider the E × E-valued random
variables Zn = (Xn, Yn) and Z = (X, Y ). Identifying the dual of E × E with
E∗ × E∗, by dominated convergence we obtain

µ̂Z(x∗, y∗) = E exp(−i(〈X, x∗〉 + 〈Y, y∗〉))

= lim
n→∞

E exp(−i(〈Xn, x∗〉 + 〈Yn, y∗〉))

= lim
n→∞

E exp(−i〈Xn, x∗〉)E exp(−i〈Yn, y∗〉)

= E exp(−i〈X, x∗〉)E exp(−i〈Y, y∗〉)

= µ̂X(x∗)µ̂Y (y∗) = ̂µX × µY (x∗, y∗).

From Theorem 2.8 we conclude that µZ = µX × µY . Now the result follows
from Proposition 2.13. ⊓⊔

Definition 2.15. An E-valued random variable X is called symmetric if X

and −X are identically distributed.

Proposition 2.16. If X is symmetric and independent of Y , then for all
1 6 p < ∞ we have

E‖X‖p 6 E‖X + Y ‖p.

Proof. The symmetry of X and the independence of X and Y imply that
X + Y and −X + Y are identically distributed, and therefore

(
E‖X‖p

) 1

p = 1
2

(
E‖(X + Y ) + (X − Y )‖p

) 1

p

6 1
2

(
E‖X + Y ‖p

) 1

p + 1
2

(
E‖X − Y ‖p

) 1

p =
(
E‖X + Y ‖p

) 1

p . ⊓⊔

2.5 The Itô-Nisio theorem

In this section we prove a celebrated result, due to Itô and Nisio, which
states that a sum of symmetric and independent E-valued random variables
converges (weakly) almost surely if and only if it converges in probability.

Here is the precise statement of the theorem:

Theorem 2.17 (Itô-Nisio). Let Xn : Ω → E, n > 1, be independent sym-
metric random variables, put Sn :=

∑n

j=1 Xj, and let S : Ω → E be a random
variable. The following assertions are equivalent:
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(1) for all x∗ ∈ E∗ we have limn→∞〈Sn, x∗〉 = 〈S, x∗〉 almost surely;
(2) for all x∗ ∈ E∗ we have limn→∞〈Sn, x∗〉 = 〈S, x∗〉 in probability;
(3) we have limn→∞ Sn = S almost surely;
(4) we have limn→∞ Sn = S in probability.

If these equivalent conditions hold and E‖S‖p < ∞ for some 1 6 p < ∞, then

lim
n→∞

E‖Sn − S‖p = 0.

We begin with a tail estimate known as Lévy’s inequality.

Lemma 2.18. Let X1, . . . , Xn be independent symmetric E-valued random
variables, and put Sk :=

∑k

j=1 Xj for k = 1, . . . , n. Then for all r > 0 we
have

P

{
max

16k6n
‖Sk‖ > r

}
6 2P{‖Sn‖ > r}.

Proof. Put

A :=
{

max
16k6n

‖Sk‖ > r
}

,

Ak := {‖S1‖ 6 r, . . . , ‖Sk−1‖ 6 r, ‖Sk‖ > r}; k = 1, . . . , n.

The sets A1, . . . , An are disjoint and
⋃n

k=1 Ak =
{

max16k6n ‖Sk‖ > r
}

.

The identity Sk = 1
2 (Sn + (2Sk − Sn)) implies that

{‖Sk‖ > r} ⊆ {‖Sn‖ > r} ∪ {‖2Sk − Sn‖ > r}.

We also note (X1, . . . , Xn) and (X1, . . . , Xk,−Xk+1, . . . ,−Xn) are identically
distributed (see Exercise 2), which, in view of the identities

Sn = Sk + Xk+1 + · · · + Xn, 2Sk − Sn = Sk − Xk+1 − · · · − Xn,

implies that (X1, . . . , Xk, Sn) and (X1, . . . , Xk, 2Sk − Sn) are identically dis-
tributed. Hence,

P(Ak) 6 P(Ak ∩ {‖Sn‖ > r}) + P(Ak ∩ {‖2Sk − Sn‖ > r})

= 2P(Ak ∩ {‖Sn‖ > r}).

Summing over k we obtain

P(A) =

n∑

k=1

P(Ak) 6 2

n∑

k=1

P(Ak ∩ {‖Sn‖ > r}) = 2P{‖Sn‖ > r}. ⊓⊔
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Proof (Proof of Theorem 2.17). We prove the implications (2)⇒(4)⇒(3), the
implications (3)⇒(1)⇒(2) being clear.

(2)⇒(4): We split this proof into two steps.

Step 1 – In this step we prove that the sequence (Sn)n>1 is uniformly tight.
For all m > n and x∗ ∈ E∗ the random variables 〈Sm − Sn, x∗〉 and

±〈Sn, x∗〉 are independent. Hence by Proposition 2.14, 〈S − Sn, x∗〉 and
±〈Sn, x∗〉 are independent. Next we claim that S and S − 2Sn are identi-
cally distributed. Indeed, denote their distributions by µ and λn, respectively.
By the independence of 〈S − Sn, x∗〉 and ±〈Sn, x∗〉 and the symmetry of Sn,
for all x∗ ∈ E∗ we have

µ̂(x∗) = E
(
e−i〈S,x∗〉

)
= E

(
e−i〈S−Sn,x∗〉

)
· E

(
e−i〈Sn,x∗〉

)

= E
(
e−i〈S−Sn,x∗〉

)
· E

(
e−i〈−Sn,x∗〉

)

= E
(
e−i〈S−2Sn,x∗〉

)
= λ̂n(x∗).

By Theorem 2.8, this shows that µ = λn and the claim is proved.
Given ε > 0 we can find a compact set K ⊆ E with µ(K) = P{S ∈ K} >

1− ε. The set L := 1
2 (K −K) is compact as well, and arguing as in the proof

of Lemma 2.5 we have

P{Sn 6∈ L} 6 P{S 6∈ K} + P{S − 2Sn 6∈ K} = 2P{S 6∈ K} < 2ε.

It follows that P{Sn ∈ L} > 1 − 2ε for all n > 1, and therefore the sequence
(Sn)∞n=1 is uniformly tight.

Step 2 – By Lemma 2.5, the sequence (Sn − S)n>1 is uniformly tight. Let
νn denote the distribution of Sn − S. We need to prove that for all ε > 0 and
r > 0 there exists an index N > 1 such that

P{‖Sn − S‖ > r} = νn(∁B(0, r)) < ε ∀n > N.

Suppose, for a contradiction, that such an N does not exist for some ε > 0
and r > 0. Then there exists a subsequence (Snk

)k>1 such that

νnk
(∁B(0, r)) > ε, k > 1.

On the other hand, by uniform tightness we find a compact set K such that
νnk

(K) > 1 − 1
2ε for all k > 1. It follows that

νnk
(K ∩ ∁B(0, r)) > 1

2ε, k > 1.

By covering the compact set K ∩ ∁B(0, r) with open balls of radius 1
2r and

passing to a subsequence, we find a ball B not containing 0 and a number
δ > 0 such that

νnkj
(K ∩ B) = P{Snkj

− S ∈ K ∩ B} > δ, j > 1.
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By the Hahn-Banach separation theorem, there is a functional x∗ ∈ E∗ such
that 〈x, x∗〉 > 1 for all x ∈ B. For all ω ∈ {Snk

− S ∈ K ∩ B} it follows
that 〈Snkj

(ω) − S(ω), x∗〉 > 1. Thus, 〈Snk
, x∗〉 fails to converge to 〈S, x∗〉 in

probability. This contradiction concludes the proof.

(4)⇒(3): Assume that limn→∞ Sn = S in probability for some random
variable S. By Proposition 2.11 there is a subsequence (Snk

)∞k=1 converging
almost surely to S. Fix k and let m > nk. Then by Lévy’s inequality,

P

{
sup

nk6j6m

‖Sj − Snk
‖ > r

}
6 2P(‖Sm − Snk

‖ > r)

6 2P

{
‖Sm − S‖ >

r

2

}
+ 2P

{
‖S − Snk

‖ >
r

2

}
.

Letting m → ∞ we find

P

{
sup
j>nk

‖Sj − Snk
‖ > r

}
6 2P

{
‖S − Snk

‖ >
r

2

}
,

and hence, upon letting k → ∞,

lim
k→∞

P

{
sup
j>nk

‖Sj − Snk
‖ > r

}
= 0.

Since Snk
→ S pointwise a.e., it follows that

P

{
lim

k→∞
sup
j>nk

‖Sj − S‖ > 2r
}

6 lim
k→∞

P

{
sup
j>nk

‖Sj − S‖ > 2r
}

6 lim
k→∞

P

{
sup
j>nk

‖Sj − Snk
‖ > r

}
+ lim

k→∞
P

{
sup
j>nk

‖Snk
− S‖ > r

}
= 0.

It remains to prove the assertion about Lp-convergence. First we note that
S = Sn+(S−Sn) with Sn and S−Sn independent (by the independence of Sn

and Sm−Sn for m > n and Proposition 2.14), and therefore E‖Sn‖
p 6 E‖S‖p

by Proposition 2.16. Hence by an integration by parts (see Exercise 1) and
Lévy inequality,

E sup
16k6n

‖Sk‖
p =

∫ ∞

0

prp−1P

{
sup

16k6n

‖Sk‖ > r
}

dr

6 2

∫ ∞

0

prp−1P{‖Sn‖ > r} dr = 2E‖Sn‖
p 6 2E‖S‖p.

Hence E supk>1 ‖Sk‖
p 6 2E‖S‖p by the monotone convergence theorem. Now

limn→∞ ‖Sn − S‖p = 0 follows from the dominated convergence theorem. ⊓⊔

2.6 Exercises

1. (!) Let ξ be a non-negative random variable and let 1 6 p < ∞. Prove the
integration by parts formula
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Eξp =

∫ ∞

0

pλp−1P{ξ > λ} dλ.

Hint: Write P{ξ > λ} = E1{ξ>λ} and apply Fubini’s theorem.

2. (!) Let X1, . . . , XN be independent symmetric E-valued random variables.
Show that for all choices of ε1, . . . , εN ∈ {−1, +1} the EN -valued random
variables (X1, . . . , XN ) and (ε1X1, . . . , εNXN) are identically distributed.

3. (!) Define the convolution of two Borel measures µ and ν on E by

µ ∗ ν(B) :=

∫

E

∫

E

1B(x + y) dµ(x) dν(y), B ∈ B(E).

Prove that for all x∗ ∈ E∗ we have µ̂ ∗ ν(x∗) = µ̂(x∗)ν̂(x∗).

4. A sequence of E-valued random variables (Xn)∞n=1 is Cauchy in probability
if for all ε > 0 and r > 0 there exists an index N > 1 such that

P{‖Xn − Xm‖ > r} < ε ∀m, n > N.

Show that (Xn)∞n=1 is Cauchy in probability if and only if (Xn)∞n=1 con-
verges in probability.

Hint: For the ‘if’ part, first show that some subsequence of (Xn)∞n=1

converges almost surely.

5. Let (Xn)∞n=1 be a sequence of E-valued random variables. Prove that if
limn→∞ Xn = X in probability, then (Xn)∞n=1 is uniformly tight.

Notes. There are many excellent introductory texts on Probability Theory,
among them the classic by Chung [21]. The more analytically inclined reader
might consult Stromberg [101]. A comprehensive treatment of modern Prob-
ability Theory is offered by Kallenberg [55].

Thorough discussions of Banach space-valued random variables can be
found in the monographs by Kwapień and Woyczyński [65], Ledoux and
Talagrand [69], and Vakhania, Tarieladze, and Chobanyan [105].

The Itô-Nisio theorem was proved by Itô and Nisio in their beautiful
paper [52] which we recommend for further reading. The usual proofs of this
theorem are based upon the following celebrated and non-trivial compactness
theorem due to Prokhorov:

Theorem 2.19 (Prokhorov). For a family M of Borel probability mea-
sures on a separable complete metric space M the following assertions are
equivalent:

(1) M is uniformly tight;
(2) Every sequence (µn)∞n=1 in M has a weakly convergent subsequence.
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Here, (1) means that for all ε > 0 there exists a compact set K in M such
that µ(∁K) < ε for all µ ∈ M , and (2) means that there exist a subsequence
(µnk

)k>1 and a Borel probability measure µ such that

lim
k→∞

∫

M

f dµnk
=

∫

M

f dµ

for all bounded continuous functions f : M → R. This theorem is the starting
point of measure theory on metric spaces. Expositions of this subject can be
found in the monographs by Billingsley [7] and Parthasarathy [88], as
well as in the recent two-volume treatise on measure theory by Bogachev

[9]. Readers familiar with it will have noticed that some of the results which
we have stated for E-valued random variables, such as Proposition 2.3 and
Theorem 2.8, could just as well be stated for probability measures on E.


