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Sums of independent random variables

This lecture collects a number of estimates for sums of independent random
variables with values in a Banach space E. We concentrate on sums of the
form

∑N
n=1 γnxn, where the γn are real-valued Gaussian variables and the

xn are vectors in E. As we shall see later on such sums are the building
blocks of general E-valued Gaussian random variables and, perhaps more
importantly, stochastic integrals of E-valued step functions are of this form.
Furthermore, they are used in the definition of various geometric properties
of Banach spaces, such as type and cotype.

The highlights of this lecture are the Kahane contraction principle (The-
orem 3.1), a covariance domination principle (Theorem 3.9) and the Kahane-
Khintchine inequalities (Theorems 3.11 and 3.12).

3.1 Gaussian sums

We begin with an important inequality for sums of independent symmetric
random variables, due to Kahane.

Theorem 3.1 (Kahane contraction principle). Let (Xn)∞n=1 be a se-
quence of independent symmetric E-valued random variables. Then for all
a1, . . . , aN ∈ R and 1 6 p < ∞,
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Proof. For all (ε1, . . . , εN) ∈ {−1, +1}N the EN -valued random variables
(X1, . . . , XN ) and (ε1X1, . . . , εNXN ) are identically distributed and therefore
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For the general case we may assume that |an| 6 1 for all n = 1, . . . , N . Then
a = (a1, . . . , aN ) is a convex combination of the 2N elements of {−1, +1}N ,

say a =
∑2N

j=1 λ(j)ε(j). Hence,
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where the third step follows from the convexity of the function t 7→ tp (or an
application of Jensen’s inequality). ⊓⊔

As an application of the Kahane contraction principle we shall prove an
inequality which shows that Rademacher sums have the ‘smallest’ Lp-norms
among all random sums. Rademacher sums are easier to handle than the
Gaussian sums in which we are ultimately interested, and, as we shall see, there
are various techniques to pass on results for Rademacher sums to Gaussian
sums.

Let us begin with a definition. An {−1, +1}-valued random variable r is
called a Rademacher variable if

P{r = −1} = P{r = +1} =
1

2
.

Throughout these lectures, the notation (rn)∞n=1 will be used for a Rademacher
sequence, that is, a sequence of independent Rademacher variables.

Theorem 3.2 (Comparison). Let (ϕn)∞n=1 be a sequence of independent
symmetric integrable real-valued random variables satisfying E|ϕn| > 1 for all
n > 1. Then for all x1, . . . , xN ∈ E and 1 6 p < ∞ we have
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The proof of this theorem relies on an auxiliary lemma, for which we need
two definitions based on the following easy observation: if X1, . . . , XN are
random variables with values in E1, . . . , EN , then (X1, . . . , XN ) is a random
variable with values in E1 × · · · × EN .
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Definition 3.3. Two families of random variables (Xi)i∈I and (Yi)i∈I , where
I is some index set and Xi and Yi take values in a Banach space Ei, are
identically distributed if for all choices of i1, . . . , iN ∈ I the random variables
(Xi1 , . . . , XiN

) and (Yi1 , . . . , YiN
) are identically distributed.

Note that by Proposition 2.13, if (Xi)i∈I and (Yi)i∈I are families of inde-
pendent random variables such that Xi and Yi are identically distributed for
all i ∈ I, then (Xi)i∈I and (Yi)i∈I are identically distributed.

Definition 3.4. Two families of random variables (Xi)i∈I and (Yj)j∈J , where
I and J are index sets, Xi takes values in Ei for all i ∈ I and Yj takes values in
Fj for all j ∈ J , are independent of each other if for all choices i1, . . . , iM ∈ I
and j1, . . . , jN ∈ I the random variables (Xi1 , . . . , XiM

) and (Yj1 , . . . , YiN
) are

independent.

Lemma 3.5. Let (ϕn)∞n=1 be a sequence of independent symmetric real-valued
random variables and let (rn)∞n=1 be a Rademacher sequence independent of
(ϕn)∞n=1. The sequences (ϕn)∞n=1 and (rn|ϕn|)∞n=1 are identically distributed.

Proof. By independence and symmetry we have

P{rn|ϕn| ∈ B}
= P{rn = 1, ϕn > 0, ϕn ∈ B} + P{rn = 1, ϕn < 0, ϕn ∈ −B}

+ P{rn = −1, ϕn > 0, ϕn ∈ −B} + P{rn = −1, ϕn < 0, ϕn ∈ B}
= 1

2P{ϕn > 0, ϕn ∈ B} + 1
2P{ϕn < 0, ϕn ∈ −B}

+ 1
2P{ϕn > 0, ϕn ∈ −B} + 1
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= 1
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2P{ϕn > 0, ϕn ∈ B}

+ 1
2P{ϕn 6 0, ϕn ∈ B} + 1

2P{ϕn < 0, ϕn ∈ B}
= P{ϕn ∈ B}.

Since (ϕn)∞n=1 and (rn|ϕn|)∞n=1 are sequences of independent random vari-
ables, the lemma now follows from the observation preceding Definition 3.4.

⊓⊔

Proof (Proof of Theorem 3.2). We may assume that the sequences (ϕn)∞n=1

and (rn)∞n=1 are defined on distinct probability spaces Ωϕ and Ωr. By consid-
ering the ϕn and rn as random variables on the probability space Ωϕ × Ωr,
we may assume that (ϕn)∞n=1 and (rn)∞n=1 are independent of each other.

Since Eϕ|ϕn| > 1, with the Kahane contraction principle and Jensen’s
inequality we obtain
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where the last identity follows from Lemma 3.5. ⊓⊔

A real-valued random variable γ is called standard Gaussian if its distri-
bution has density

fγ(t) =
1√
2π

exp(− 1
2 t2)

with respect to the Lebesgue measure on R. For later reference we note that
γ is standard Gaussian if and only if its Fourier transform is given by

E exp(−iξγ) = exp(− 1
2ξ2), ξ ∈ R. (3.1)

The ‘only if’ statement follows from the identity

1√
2π

∫ ∞

−∞
exp(−iξt − 1

2 t2) dt = exp(− 1
2ξ2)

which can be proved by completing the squares in the exponential and then
shifting the path of integration from iξ+R to R by using Cauchy’s formula; the
‘if’ part then follows from the injectivity of the Fourier transform (Theorem
2.8).

For a standard Gaussian random variable γ we have

E|γ| =
1√
2π

∫ ∞

−∞
|t| exp(− 1

2 t2) dt =
2√
2π

∫ ∞

0

t exp(− 1
2 t2) dt =

√

2/π. (3.2)

From this point on, (γn)∞n=1 will always denote a Gaussian sequence, that is,
a sequence of independent standard Gaussian variables.

From (3.2) and Theorem 3.2 we obtain the following comparison result.

Corollary 3.6. For all x1, . . . , xN ∈ E and 1 6 p < ∞,
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The geometric notions of type and cotype will be introduced in the exer-
cises. Without proof we state the following important converse to Corollary
3.6 for Banach spaces with finite cotype. Examples of spaces with finite cotype
are Hilbert spaces, Lp-spaces for 1 6 p < ∞, and the UMD spaces which will
be introduced in later lectures.

Theorem 3.7. If E has finite cotype, there exists a constant C > 0 such that
for all x1, . . . , xN ∈ E,
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The Kahane-Khintichine inequalities (Theorems 3.11 and 3.12 below) can
be used to extend this inequality to arbitrary exponents 1 6 p < ∞.

The proof of Theorem 3.7 is beyond the scope of these lectures; we refer to
the Notes at the end of the lecture for references to the literature. When taken
together, Corollary 3.6 and Theorem 3.7 show that in spaces with finite cotype,
Gaussian sequences and Rademacher sums can be used interchangeably.

Without any assumptions on E, Theorem 3.7 fails. This is shown by the
next example.

Example 3.8. Let E = c0 and let (un)∞n=1 be the standard unit basis of c0.
Then
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For r = 1
2
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Hence, using the integration by parts formula of Exercise 2.1,
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Similar estimates show that the bound O(
√

log N) for N → ∞ is of the
correct order.

We conclude this section with an important comparison result for Gaussian
sums.
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Theorem 3.9 (Covariance domination). Let (γm)∞m=1 and (γ′
n)∞n=1 be

Gaussian sequences on probability spaces Ω and Ω′, respectively, and let
x1, . . . , xM and y1, . . . , yN be elements of E satisfying

M
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Proof. Denote by F the linear span of {x1, . . . , xM , y1, . . . , yN} in E. Define
Q ∈ L (F ∗, F ) by

Qz∗ :=

N
∑

n=1

〈yn, z∗〉yn −
M
∑

m=1

〈xm, z∗〉xm, z∗ ∈ F ∗.

The assumption of the theorem implies that 〈Qz∗, z∗〉 > 0 for all z∗ ∈ F ∗,
and it is clear that 〈Qz∗1 , z∗2〉 = 〈Qz∗2 , z∗1〉 for all z∗1 , z∗2 ∈ F ∗. Since F is finite-
dimensional, by linear algebra we can find a sequence (xj)

M+k
j=M+1 in F such

that Q is represented as

Qz∗ =

M+k
∑

j=M+1

〈xj , z
∗〉xj , z∗ ∈ F ∗.

We leave the verification of this statement as an exercise for the moment and
shall return to this issue from a more general point of view in the next lecture.

Now,
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It follows from (3.1) that the random variables X :=
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2
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n=1〈yn, x∗〉2). Hence by (3.4) and

Theorem 2.8, X and Y are identically distributed. Thus, for all 1 6 p < ∞,
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By Proposition 2.16,
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and the proof is complete. ⊓⊔

3.2 The Kahane-Khintchine inequality

The main result of this section states that all Lp-norms of an E-valued Gaus-
sian sum are comparable, with universal constants depending only on p. First
we prove the analogous result for Rademacher sums; then we use the central
limit theorem to pass it on to Gaussian sums.

The starting point is the following inequality, which is a consequence of
Lévy’s inequality.

Lemma 3.10. For all x1, . . . , xN ∈ E and r > 0 we have
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Proof. Let us write Sn :=
∑n

j=1 rjxj . As in the proof of Lemma 2.18 we put

An := {‖S1‖ 6 r, . . . , ‖Sn−1‖ 6 r, ‖Sn‖ > r}.

If for an ω ∈ An we have ‖SN (ω)‖ > 2r, then ‖SN (ω)−Sn−1(ω)‖ > r. Now the
crucial observation is that (r1, . . . , rN ) and (r1, . . . , rn, rnrn+1, . . . , rnrN )
are identically distributed; we leave the easy proof as an exercise. From this
and the fact that |rn| = 1 almost surely we obtain
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and similarly P{‖SN − Sn−1‖ > r} = P{‖xn + (SN − Sn)‖ > r}. Hence, by
the independence of An and SN − Sn,

P(An ∩ {‖SN‖ > 2r}) 6 P(An ∩ {‖SN − Sn−1‖ > r})
= P(An)P{‖xn + (SN − Sn)‖ > r}
= P(An)P{‖SN − Sn−1‖ > r} 6 2P(An)P{‖SN‖ > r},

where the last step follows from Lévy’s inequality after changing the order
of summation. Summing over n = 1, . . . , N and using Lévy’s inequality once
more we obtain

P{‖SN‖ > 2r} =
N
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}

P{‖SN‖ > r} 6 4[P{‖SN‖ > r}]2. ⊓⊔

We are now ready to prove the following result, which is the Banach space
generalisation due to Kahane of a classical result for scalar random variables
of Khintchine.

Theorem 3.11 (Kahane-Khintchine inequality - Rademacher sums).
For all 1 6 p, q < ∞ there exists a constant Kp,q, depending only on p and

q, such that for all finite sequences x1, . . . , xN ∈ E we have
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Proof. By Hölder’s inequality it suffices to consider the case p > 1 and q = 1.
Fix vectors x1, . . . , xN ∈ E. Writing Xn = rnxn and SN =

∑N
n=1 Xn, we

may assume that E‖SN‖ = 1.
Let j > 1 be the unique integer such that 2j−1 < p 6 2j . By successive

applications of Lemma 3.10 for r > 0 we have

P{‖SN‖ > 2jr} 6 42j−1(P{‖SN‖ > r})2j

.

Chebyshev’s inequality gives rP{‖SN‖ > r} 6 E‖SN‖ = 1. Hence,
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∫ ∞
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⊓⊔

The best possible constants Kp,q in this inequality are called the Kahane-
Khintchine constants. Note that Kp,q = 1 if p 6 q by Hölder’s inequality.
The bound on Kp,1 produced in the above proof is not the best possible: for

instance it is known that Kp,1 = 21− 1

p ; see the Notes at the end of the lecture.
By an application of the central limit theorem, the Kahane-Khintchine

inequality extends to Gaussian sums:

Theorem 3.12 (Kahane-Khintchine inequality - Gaussian sums). For
all 1 6 p, q < ∞ and all finite sequences x1, . . . , xN ∈ E we have

(

E

∥

∥

∥

N
∑

n=1

γnxn

∥

∥

∥

p) 1

p

6 Kp,q

(

E

∥

∥

∥

N
∑

n=1

γnxn

∥

∥

∥

q) 1

q

,

where Kp,q is the Kahane-Khintchine constant.

Proof. Fix k = 1, 2, . . . and define ϕ
(k)
n := 1√

k

∑k
j=1 rnk+j . For each k we have
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The proof is completed by passing to the limit k → ∞ and using the central
limit theorem. ⊓⊔

The attentive reader has noticed that we are cheating a bit in the above
proof, as the usual formulation of the central limit theorem only asserts that

limk→∞(ϕ
(k)
1 , . . . , ϕ

(k)
N ) = (γ1, . . . , γN) in distribution, that is,

lim
k→∞

Ef(ϕ
(k)
1 , . . . , ϕ

(k)
N ) = Ef(γ1, . . . , γN)

for all bounded continuous functions f : R
N → R. We will show next how,

in the present situation, the convergence of the Lr-norms (with r = p, q) of
the sums can be deduced from this. The main idea is contained in the next
lemma.

Lemma 3.13. Suppose ϕ0, ϕ1, . . . and ϕ are R
N -valued random variables

such that for all bounded continuous functions f : R
N → R we have

lim
k→∞

Ef(ϕk) = Ef(ϕ).
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Let Φ : R
N → R be a Borel function such that supk>1 E |Φ(ϕk)| < ∞ and

E |Φ(ϕ)| < ∞. If g : R
N → R is a continuous function satisfying

|g(t)| 6 |c(t)||Φ(t)|, t ∈ R
N ,

where c : R
N → R is a bounded function satisfying lim|t|→∞ |c(t)| = 0, then

lim
k→∞

Eg(ϕk) = Eg(ϕ).

Proof. Let gR := g · 1{|g|<R} + R · 1{g>R}−R · 1{g6−R} denote the truncation
of g at the levels ±R. By assumption we have

lim
k→∞

EgR(ϕk) = EgR(ϕ). (3.5)

Furthermore, by dominated convergence,

lim
R→∞

EgR(ϕ) = Eg(ϕ). (3.6)

Fix ε > 0 and choose R0 > 0 so large that sup|t|>R0
|c(t)| < ε. Choose

R1 > 0 so large that |g(t)| > R1 implies |t| > R0. Then, for all R > R1,

sup
k>0

E|g(ϕk) − gR(ϕk)| 6 sup
k>0

E(1{|g|>R}(ϕk)|g(ϕk)|)

6 sup
k>0

E(1{|g|>R}(ϕk)|c(t)||Φ(ϕk)|)

6 ε sup
k>0

E|Φ(ϕk)|,

(3.7)

Combined with (3.6) and (3.5), this gives the desired result. ⊓⊔

Now we can finish the proof of Theorem 3.12:

Lemma 3.14. With the notations of Theorem 3.12, for all 1 6 r < ∞ and
x1, . . . , xN ∈ E we have

lim
k→∞

E

∥

∥

∥

N
∑

n=1

ϕ(k)
n xn

∥

∥

∥

r

= E

∥

∥

∥

N
∑

n=1

γnxn

∥

∥

∥

r

,

where γ1, . . . , γN are independent standard Gaussian variables.

Proof. Without loss of generality we may assume that max16n6N ‖xn‖ 6 1.
We fix 1 6 r < ∞ and check the condition of Lemma 3.13 for the functions
Φ : R

N → R and g : R
N → R defined by

Φ(t) := exp
(

N
∑

n=1

|tn|‖xn‖
)

, g(t) :=
∥

∥

∥

N
∑

n=1

tnxn

∥

∥

∥

r

,

where ϕk := (ϕ
(k)
1 , . . . , ϕ

(k)
N ) and ϕ := (γ1, . . . , γN ).
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If ϕ is a symmetric real-valued random variable, then

E exp(|ϕ|) = E exp(−1{ϕ<0}ϕ) + E exp(1{ϕ>0}ϕ)

= E exp(1{−ϕ<0}ϕ) + E exp(1{ϕ>0}ϕ) 6 2E exp(ϕ).

Hence, since max16n6N ‖xn‖ 6 1,

E Φ(ϕk) 6

N
∏

n=1

E exp(|ϕ(k)
n |) 6 2N

N
∏

n=1

E exp(ϕ(k)
n )

= 2N

N
∏

n=1

k
∏

j=1

E exp
(rnk+j√

k

)

= 2N
(1

2
exp

( 1√
k

)

+
1

2
exp

(−1√
k

)

)kN

= 2N
O

(

1 +
1

2k

)kN

= 2N exp(N/2) · O(1) as k → ∞. ⊓⊔

3.3 Exercises

1. Let (Xn)N
n=1 be a sequence of independent symmetric E-valued random

variables, and let (rn)N
n=1 be a Rademacher sequence which is indepen-

dent of (Xn)N
n=1. Prove that the sequences (Xn)N

n=1 and (rnXn)N
n=1 are

identically distributed.

Hint: As in the proof of Theorem 3.2 it may be assumed that (Xn)N
n=1 and

(rn)N
n=1 are defined on distinct probability spaces. Use Fubini’s theorem

together with the result of Exercise 2.2.

Remark: This technique for introducing Rademacher variables is known
as randomisation. It enables one to apply inequalities for Rademacher
sums in E to sums of independent symmetric random variables in E.

2. (!) Let (r′n)∞n=1 and (r′′n)∞n=1 be independent Rademacher sequences on
probability spaces (Ω′, F ′, P′) and (Ω′′, F ′′, P′′). Prove that on the prod-
uct (Ω, F , P) = (Ω′ × Ω′′, F ′ ⊗ F ′′, P′ ⊗ P

′′), the sequence (r′mr′′n)∞m,n=1

consists of Rademacher variables, but as a (doubly indexed) sequence it
fails to be a Rademacher sequence (that is, the random variables r′mr′′n
fail to be independent).

3. (!) We continue with the notations of the previous exercise. Prove that
for 1 6 p < ∞ the following version of the contraction principle holds
for double Rademacher sums in the spaces Lp(A), where (A, A , µ) is a
σ-finite measure space: there exists a constant Cp > 0 such that for all
finite sequences (fmn)N

m,n=1 in Lp(A) and all scalars (amn)N
m,n=1 we have

E

∥

∥

∥

N
∑

m,n=1

amnr′mr′′nfmn

∥

∥

∥

p

6 Cp
p

(

max
16m,n6N

|amn|p
)

E

∥

∥

∥

N
∑

m,n=1

r′mr′′nfmn

∥

∥

∥

p

.
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Hint: Proceed in three steps: (i) the result holds for E = R with exponent
2; (ii) the result holds for E = R with exponent p; (iii) the result holds
for E = Lp(A) with exponent p.

4. Let 1 6 p 6 2. A Banach space E is said to have type p if there exists a
constant Cp > 0 such that for all finite sequences x1, . . . , xN in E we have

(

E

∥

∥

∥

N
∑

n=1

rnxn

∥

∥

∥

2) 1

2

6 Cp

(

N
∑

n=1

‖xn‖p
)

1

p

.

Let 2 6 q 6 ∞. The space E is said to have cotype q if there exists a
constant Cq > 0 such that for all finite sequences x1, . . . , xN in E we have

(

N
∑

n=1

‖xn‖q
)

1

q

6 Cq

(

E

∥

∥

∥

N
∑

n=1

rnxn

∥

∥

∥

2) 1

2

.

For q = ∞ we make the obvious adjustment in the second definition.
Prove the following assertions:
a) Every Banach space has type 1 and cotype ∞ (accordingly, a Banach

space is said to have non-trivial type if it has type p ∈ (1, 2] and finite
cotype if it has cotype q ∈ [2,∞)).

b) Every Hilbert space has type 2 and cotype 2.
c) If a Banach space has type p for some p ∈ [1, 2], then it has type p′

for all p′ ∈ [1, p]; if a Banach space has cotype q for some q ∈ [2,∞],
then it has cotype q′ for all q′ ∈ [q,∞].

d) Let p ∈ [1, 2]. Prove that if E has type p, then the dual space E∗ has
cotype p′, 1

p
+ 1

p′
= 1.

Hint: For each x∗
n ∈ E∗ choose xn ∈ E of norm one such that ‖x∗

n‖ >
1
2 |〈xn, x∗

n〉|. Then use Hölder’s inequality to the effect that for all scalar
sequences (bn)N

n=1 one has

(

N
∑

n=1

|bn|p
′

)
1

p′

= sup
{

N
∑

n=1

anbn :
(

N
∑

n=1

|an|p
)

1

p

6 1
}

.

Remark: The analogous result for spaces with cotype fails. Indeed, the
reader is invited to check that l1 has cotype 2 while its dual l∞ fails to
have non-trivial type.

5. Let p ∈ [1, 2]. Prove that a Banach space E has type p if and only if it
has Gaussian type p, that is, if and only if there exists a constant C > 0
such that for all finite sequences x1, . . . , xN in E we have

(

E

∥

∥

∥

N
∑

n=1

γnxn

∥

∥

∥

2) 1

2

6 C
(

N
∑

n=1

‖xn‖p
)

1

p

.
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Hint: One direction follows from Corollary 3.6. For the other direction
use a randomisation argument.

Remark: The corresponding assertion for cotype is also true but much
harder to prove; see the Notes.

Notes. The results of this lecture are classical and can be found in many
textbooks. Our presentation borrows from Albiac and Kalton [1] and Di-

estel, Jarchow, Tonge [35]. Both are excellent starting points for further
reading.

The Kahane contraction principle is due to Kahane [54], who also ex-
tended the classical scalar Khintchine inequality to arbitrary Banach spaces.
It is an open problem to determine the best constants Kp,q in the Kahane-
Khintchine inequality; a recent result of Latala and Oleszkiewicz [67] as-

serts that the constant Kp,1 = 21− 1

p is optimal for 1 6 p 6 2.
For a proof of Theorem 3.7 see, e.g., [35]. The proofs of Theorems 3.9 and

3.11 are taken from Albiac and Kalton [1]. The central limit argument in
Lemma 3.14 is adapted from Tomczak-Jaegermann [102].

The contraction principle for double Rademacher sums of Exercise 3 has
been introduced by Pisier [92]. This property, nowadays known under the
rather unsuggestive name ‘property (α)’ plays an important role in many
advanced results in Banach space-valued harmonic analysis. It can be shown
that the Rademachers can be replaced by Gaussians without changing the
class of spaces under consideration. Not every Banach space has property (α);
a counterexample is the space c0.

The notions of type and cotype were developed in the 1970s by Maurey

and Pisier. As we have seen in Exercise 4, Hilbert spaces have type 2 and
cotype 2. A celebrated theorem of Kwapień [64] asserts that Hilbert spaces
are the only spaces with this property: a Banach space E is isomorphic to a
Hilbert space if and only if E has type 2 and cotype 2. Another class of spaces
of which the type and cotype can be computed are the Lp-spaces. For the
interested reader we include a proof that the spaces Lp(A), with 1 6 p < ∞
and (A, A , µ) σ-finite, have type min{p, 2}. A similar argument can be used
to prove that they have cotype max{p, 2}.

Let f1, . . . , fN ∈ Lp(A) and put r := min{p, 2}. Using the Fubini theo-
rem, the scalar Kahane-Khintchine inequality, the type p inequality, Hölder’s
inequality, and the triangle inequality in L

p

r (A), we obtain
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(

E

∥

∥

∥

N
∑

n=1

rnfn

∥

∥

∥

p

Lp(A)

)
1

p

=
(

∫

A

E

∣

∣

∣

N
∑

n=1

rnfn(ξ)
∣

∣

∣

p

dµ(ξ)
)

1

p

6 Kp,2

(

∫

A

(

E

∣

∣

∣

N
∑

n=1

rnfn(ξ)
∣

∣

∣

2) p
2

dµ(ξ)
)

1

p

= Kp,2

(

∫

A

(

N
∑

n=1

|fn(ξ)|2
)

p

2

dµ(ξ)
)

1

p

6 Kp,2

(

∫

A

(

N
∑

n=1

|fn(ξ)|r
)

p

r

dµ(ξ)
)

1

p

= Kp,2

∥

∥

∥

N
∑

n=1

|fn|r
∥

∥

∥

1

r

L
p
r (A)

6 Kp,2

(

N
∑

n=1

∥

∥

∥
|fn|r

∥

∥

∥

L
p
r (A)

)
1

r

= Kp,2

(

N
∑

n=1

‖fn‖r
Lp(A)

)
1

r

.

An application of the Kahane-Khintchine inequality for Lp(A) to replace the
Lp-moment in the left hand side by the L2-moment finishes the proof.

It was noted in Exercise 4 that if E has type p, then E∗ has cotype p′

(where 1
p

+ 1
p′

= 1) and that the analogous duality result for cotype fails. It

is a deep result of Pisier [93] that if E has cotype q ∈ [2,∞) and non-trivial
type, then E∗ has type q′, 1

q
+ 1

q′
= 1.

The fact that a Banach space has cotype q if and only if it has Gaussian
cotype q can be deduced from a deep result of Maurey and Pisier (see
[1, Chapter 11]) which gives a purely geometric characterisation of type and
cotype. For the details we refer to [35].


