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Gaussian random variables

Having studied E-valued Gaussian sums of the form
∑N

n=1 γnxn in the previ-
ous lecture, we now turn to general theory of Gaussian random variables with
values in a Banach space E. The results of this lecture will be important for
the construction of an E-valued stochastic integral with respect to Brownian
motion.

We start with a proof of the Fernique theorem on integrability of Gaus-
sian random variables. This theorem makes it possible to investigate Lp-
convergence of sequences of Gaussian random variables. As it turns out, every
E-valued Gaussian random variable can be represented in a canonical way
as an Lp-convergent (finite or infinite) sum

∑
n>1 γnxn. This representation

theorem permits us to extend the covariance domination principle and the
Kahane-Khintchine inequality to arbitrary E-valued Gaussians.

4.1 Fernique’s theorem

A real-valued random variable γ is called Gaussian if there exists a number
q > 0 such that its Fourier transform is given by

E
(
exp(−iξγ)

)
= exp(− 1

2qξ2), ξ ∈ R.

By uniqueness of Fourier transforms one deduces that γ = 0 almost surely if
q = 0, and that γ has a distribution with density

fγ(t) =
1√
2πq

exp(
−t2

2q
)

if q > 0. It follows that Eγ = 0 and Eγ2 = q, which means that γ is centred
and has variance q. We call γ standard Gaussian if q = 1; this definition is
consistent with the one given in Lecture 3.

Let E be a real Banach space.
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Definition 4.1. An E-valued random variable X is Gaussian if the real-

valued random variable 〈X, x∗〉 is Gaussian for all x∗ ∈ E∗.

Much of the theory of Banach space-valued Gaussian random variables
depends on a fundamental integrability result due to Fernique. For its proof
we need a lemma.

Lemma 4.2. Let X and Y be independent and identically distributed E-valued

Gaussian random variables. Then U := (X + Y )/
√

2 and V := (X − Y )/
√

2
are independent and have the same distribution as X and Y .

Proof. Let µ be the common distribution of X and Y . Then µ̂(x∗) =
exp(− 1

2q(x∗)), where q(x∗) = E〈X, x∗〉2 = E〈Y, x∗〉2. Using the independence
of X and Y we have

E exp(−i〈U, x∗〉) = E exp(−i 1
2

√
2〈X, x∗〉)E exp(−i 1

2

√
2〈Y, x∗〉)

= exp(− 1
4q(x∗)) exp(− 1

4q(x∗)) = exp(− 1
2q(x∗)).

By the uniqueness theorem for the Fourier transform, this shows that U has
the same distribution as X and Y . A similar computation shows that V has
the same distribution as X and Y .

We will prove that U and V are independent by checking that µ(U,V ) =
µ × µ, where µ(U,V ) is the distribution of the E × E-valued random variable
(U, V ). Identifying (E × E)∗ with E∗ × E∗ with pairing 〈(x, y), (x∗, y∗〉) =
〈x, x∗〉 + 〈y, y∗〉, by the uniqueness theorem for the Fourier transform it is
enough to prove that µ̂(U,V )(x

∗, y∗) = µ̂(x∗)µ̂(y∗) for all x∗, y∗ ∈ E∗. But this
follows from

µ̂(U,V )(x
∗, y∗) = E exp

(
−i

(
〈U, x∗〉 + 〈V, y∗〉

))

= E exp
(
− 1

2 i
√

2
(
〈X, x∗ + y∗〉 + 〈Y, x∗ − y∗〉

))

= E exp
(
− 1

2 i
√

2〈X, x∗ + y∗〉
)
E exp

(
− 1

2 i
√

2〈Y, x∗ − y∗〉
)

= exp
(
− 1

4q(x∗ + y∗)
)
exp

(
− 1

4q(x∗ − y∗)
)

= exp
(
− 1

2 (q(x∗) + q(y∗))
)

= µ̂(x∗)µ̂(y∗). ⊓⊔

Theorem 4.3 (Fernique). Let X be an E-valued Gaussian variable. There

exists a constant β > 0 such that

E exp(β‖X‖2) < ∞. (4.1)

Proof. On a possibly larger probability space, let X ′ be independent copy of
X . For instance, identify X with the random variable X(ω1, ω2) := X(ω1) on
Ω × Ω and define X ′ on Ω × Ω by X ′(ω1, ω2) := X(ω2).
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Fix t > s > 0. By the lemma,

P{‖X‖ 6 s} · P{‖X ′‖ > t}

= P

{∥∥X − X ′

√
2

∥∥ 6 s
}
· P

{∥∥X + X ′

√
2

∥∥ > t
}

6 P

{∣∣‖X‖ − ‖X ′‖√
2

∣∣ 6 s,
‖X‖+ ‖X ′‖√

2
> t

}

(∗)

6 P

{
‖X‖ >

t − s√
2

, ‖X ′‖ >
t − s√

2

}

= P

{
‖X‖ >

t − s√
2

}
· P

{
‖X ′‖ >

t − s√
2

}
,

where in (∗) we used that the set

{
(ξ, η) ∈ R

2
+ : |ξ − η| 6 s

√
2 and ξ + η > t

√
2
}

is contained in the set

{
(ξ, η) ∈ R

2
+ : ξ >

t − s√
2

and η >
t − s√

2

}
.

Hence, since X and X ′ have the same distribution,

P{‖X‖ 6 s}P{‖X‖ > t} 6

(
P

{
‖X‖ >

t − s√
2

})2

. (4.2)

Choose r > 0 such that P{‖X‖ 6 r} >
2
3 . Define t0 := r and tn := r+

√
2tn−1

for n > 1. By induction it is checked that tn = r((
√

2)n+1 − 1)/(
√

2 − 1), so
tn 6 r(

√
2)n+4. Put

αn :=
P{‖X‖ > tn}
P{‖X‖ 6 r} .

Note that α0 6 (1 − 2
3 )/ 2

3 = 1
2 . From (4.2) with s = r, t = tn+1 we obtain

αn+1 6

(
P{‖X‖ > tn}
P{‖X‖ 6 r}

)2

= α2
n.

Therefore αn 6 α2n

0 6 2−2n

and it follows that

P{‖X‖ > tn} = αnP{‖X‖ 6 r} 6 2−2n

.

Using these estimates we obtain
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E(exp(β‖X‖2)) 6 P{‖X‖ 6 t0} · exp(βt20)

+

∞∑

n=0

P{tn < ‖X‖ 6 tn+1} · exp(βt2n+1)

6 exp(βr2) +

∞∑

n=0

2−2n

exp(βr22n+5)

= exp(βr2) +
∞∑

n=0

exp(2n[− log 2 + 32βr2]),

and this sum converges if β > 0 is taken small enough. ⊓⊔

In what follows we need much less: it will suffice to know that E‖X‖p < ∞
for all 1 6 p < ∞.

As a simple corollary to Fernique’s theorem we note that the expectation
of a Gaussian random variable is well-defined. In fact we have the following
result:

Corollary 4.4. If X is E-valued Gaussian, then EX = 0.

Proof. For all x∗ ∈ E∗ we have 〈EX, x∗〉 = E〈X, x∗〉 = 0 and we may appeal
to the Hahn-Banach theorem. ⊓⊔

4.2 The covariance operator

In order to characterise Gaussian variables in terms of their Fourier transforms
we introduce the following terminology.

Definition 4.5. A bounded operator Q ∈ L (E∗, E) is called

• positive, if 〈Qx∗, x∗〉 > 0 for all x∗ ∈ E∗;

• symmetric, if 〈Qx∗, y∗〉 = 〈Qy∗, x∗〉 for all x∗, y∗ ∈ E∗.

Proposition 4.6. For an E-valued random variable X the following asser-

tions are equivalent:

(1) X is Gaussian;

(2) there exists a positive symmetric operator Q ∈ L (E∗, E) such that the

Fourier transform of X is given by

E exp(−i〈X, x∗〉) = exp
(
− 1

2 〈Qx∗, x∗〉
)
, x∗ ∈ E∗.

The operator Q is uniquely determined by (2). Moreover,

E〈X, x∗〉2 = 〈Qx∗, x∗〉, x∗ ∈ E∗.
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Proof. (1)⇒(2): Since X is square integrable by Theorem 4.3, the random
variable 〈X, x∗〉X is integrable and we may define

Qx∗ := E〈X, x∗〉X, x∗ ∈ E∗.

From 〈Qx∗, y∗〉 = E〈X, x∗〉〈X, y∗〉 we see that Q is positive and symmetric.
Since 〈X, x∗〉 is Gaussian with variance E〈X, x∗〉2 = 〈Qx∗, x∗〉, we have

E exp(−i〈X, x∗〉) = exp(− 1
2 〈Qx∗, x∗〉).

(2)⇒(1): Replacing x∗ by ξx∗ in the assumption, we see that the Fourier
transform of 〈X, x∗〉 equals

E exp(−iξ〈X, x∗〉) = exp
(
− 1

2ξ2〈Qx∗, x∗〉
)
.

Thus 〈X, x∗〉 is Gaussian with variance 〈Qx∗, x∗〉.
If R is another positive symmetric operator satisfying condition (2), then

〈Qx∗, x∗〉 = 〈Rx∗, x∗〉 for all x∗ ∈ E∗. By polarisation this implies 〈Qx∗, y∗〉 =
〈Rx∗, y∗〉 for all x∗, y∗ ∈ E∗, and therefore Q = R. ⊓⊔

The operator Q is called the covariance operator of X . The reader is warned
that not every positive symmetric operator Q ∈ L (E∗, E) is the covariance
of an E-valued random variable X . This may happen even if E is a separable
infinite-dimensional Hilbert space (see Exercise 2).

Corollary 4.7. Every E-valued Gaussian random variable is symmetric.

Proof. Just note that X and −X have the same Fourier transforms. ⊓⊔

We proceed with two simple constructions to produce new Gaussian vari-
ables from old ones. The first asserts that sums of independent Gaussian
variables are Gaussian.

Proposition 4.8. Let X1, . . . , XN be independent E-valued Gaussian random

variables with covariance operators Q1, . . . , QN . Then the sum X :=
∑N

n=1 Xn

is Gaussian with covariance operator Q =
∑N

n=1 Qn.

Proof. For all x∗ ∈ E∗ we have, by independence,

E exp(−i〈X, x∗〉) = E

N∏

n=1

exp(−i〈Xn, x∗〉) =

N∏

n=1

E(exp(−i〈Xn, x∗〉))

=

N∏

n=1

exp(− 1
2 〈Qnx∗, x∗〉) = exp(− 1

2 〈Qx∗, x∗〉). ⊓⊔

Compositions of Gaussians with bounded operators are Gaussian again:
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Proposition 4.9. If X is E-valued Gaussian with covariance operator Q, and

if T ∈ L (E, F ) is a bounded operator, then TX is F -valued Gaussian with

covariance operator TQT ∗.

Proof. This follows by computing the Fourier transform of TX :

E(exp(−i〈TX, x∗〉)) = E(exp(−i〈X, T ∗x∗〉))
= exp(− 1

2 〈QT ∗x∗, T ∗x∗〉)) = exp(− 1
2 〈TQT ∗x∗, x∗〉)). ⊓⊔

As an application we prove next that if the E-valued random variables
X1, . . . , XN are jointly Gaussian, that is, if the EN -valued random variable
(X1, . . . , XN ) is Gaussian, then X1, . . . , XN are independent if and only if
they are uncorrelated in the sense that

E〈Xm, x∗〉〈Xn, y∗〉 = 0, ∀m 6= n, x∗, y∗ ∈ E∗.

Proposition 4.10. Let X1, . . . , XN be E-valued random variables such that

the EN -valued random variable X = (X1, . . . , XN ) is Gaussian. The following

assertions are equivalent:

(1) X1, . . . , XN are independent;

(2) X1, . . . , XN are uncorrelated.

Proof. We proceed in two steps.
Step 1 – First we consider the scalar case. Let γ1, . . . , γN be real-valued

random variables such that the RN -valued random variable γ = (γ1, . . . , γN )
is Gaussian. Note that each γn is Gaussian; this follows from Proposition
4.9 by applying coordinate projections. We shall prove that γ1, . . . , γN are
independent if and only if γ1, . . . , γN are uncorrelated.

The ‘only if’ part follows from Eγmγn = EγmEγn = 0 for all m 6= n. For
the ‘if’ part we note that if γ1, . . . , γN are uncorrelated, the covariance matrix
of γ is diagonal: Q = diag(q1, . . . , qN) with qn = E γ2

n. Then the Fourier
transform of γ is given by

E
(
exp(−i〈γ, ξ〉)

)
= exp(− 1

2 〈Qξ, ξ〉) = exp
(
− 1

2

N∑

n=1

qnξ2
n

)

=
N∏

n=1

exp(− 1
2qnξ2

n) =
N∏

n=1

E exp(−iξnγn), ξ ∈ R
N .

Let µ and µn denote the distributions of γ and γn, respectively. The above
identity implies that µ and the product measure µ1 × · · · ×µN have the same
Fourier transform. Hence from Theorem 2.8 we deduce that µ = µ1×· · ·×µN .
This implies that γ1, . . . , γN are independent.

Step 2 – Next we turn to the proof of the proposition. For all choices
of x∗

1, . . . , x
∗
N ∈ E∗ the RN -valued random variable (〈X1, x

∗
1〉, . . . , 〈XN , x∗

N 〉)



4.3 Series representation 49

is Gaussian by Proposition 4.9, since it is the image of (X1, . . . , XN) under the
linear transformation from EN to RN , (x1, . . . , xn) 7→ (〈x1, x

∗
1〉, . . . , 〈xN , x∗

N 〉).
(1)⇒(2): This implication follows from the corresponding implication in

Step 1 since the independence of X1, . . . , Xn implies the independence of
〈X1, x

∗
1〉, . . . , 〈XN , x∗

N 〉.
(2)⇒(1): By Step 1, for all x∗

1, . . . , x
∗
N ∈ E∗ the random variables

〈X1, x
∗
1〉, . . . , 〈XN , x∗

N 〉 are independent and therefore

̂µ(X1,...,XN )(x
∗
1, . . . , x

∗
N ) = E exp(−i

N∑

n=1

〈Xn, x∗
n〉) =

N∏

n=1

E exp(−i〈Xn, x∗
n〉)

=
N∏

n=1

µ̂Xn
(x∗

n) = ̂µX1
× · · · × µXN

(x∗
1, . . . , x

∗
N ).

Hence µ(X1,...,XN ) = µX1
× · · · × µXN

by Theorem 2.8. ⊓⊔

The joint Gaussianity condition cannot be relaxed to Gaussianity of each
of the Xn; see Exercise 1.

4.3 Series representation

The main result of this section states that every E-valued Gaussian random
variable can be represented as a Gaussian sum of the form

∑
n>1 γnxn, where

(γn)n>1 is a Gaussian sequence and (xn)n>1 is a (finite or infinite) sequence
in E. This fact enables us to extend various results for Gaussian sums, such as
the Kahane-Khintchine inequality, to arbitrary Gaussian random variables.

We start with a simple proposition stating that limits of Gaussian variables
are Gaussian.

Proposition 4.11. If (Xn)∞n=1 is a sequence of E-valued Gaussian variables

and X is a random variable such that

lim
n→∞

〈Xn, x∗〉 = 〈X, x∗〉 in probability for all x∗ ∈ E∗,

then X is Gaussian. Its covariance operator Q ∈ L (E∗, E) is given by

〈Qx∗, y∗〉 = limn→∞〈Qnx∗, y∗〉 for x∗, y∗ ∈ E∗.

Proof. Fixing x∗ ∈ E∗, after passing to a subsequence we may assume that
limn→∞〈Xn, x∗〉 = 〈X, x∗〉 almost surely. Then, by the dominated conver-
gence theorem,

E exp(−iξ〈X, x∗〉) = lim
n→∞

E exp(−iξ〈Xn, x∗〉) = lim
n→∞

exp(− 1
2ξ2〈Qnx∗, x∗〉).

Since each of the terms 〈Qnx∗, x∗〉 is non-negative, this implies that the limit
q(x∗) := limn→∞〈Qnx∗, x∗〉 exists. From the resulting identity
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E exp(−iξ〈X, x∗〉) = exp(− 1
2ξ2q(x∗))

we conclude that 〈X, x∗〉 is Gaussian for all x∗ ∈ E∗. By definition this means
that X is Gaussian.

Denote by Q the covariance operator of X . For all ξ ∈ R,

exp(− 1
2ξ2〈Qx∗, x∗〉) = E exp(−iξ〈X, x∗〉) = exp(− 1

2ξ2q(x∗)).

From this we deduce that 〈Qx∗, x∗〉 = q(x∗) = limn→∞〈Qnx∗, x∗〉. Applying
this to x∗ + y∗ we find 〈Qx∗, y∗〉 = limn→∞〈Qnx∗, y∗〉 for all x∗, y∗ ∈ E∗. ⊓⊔

For a Gaussian random variable X with covariance operator Q, we denote
by HX the closed linear subspace in L2(Ω) spanned by the random variables
{〈X, x∗〉 : x∗ ∈ E∗}. The operator iX : HX → E,

iX〈X, x∗〉 := E〈X, x∗〉X = Qx∗, (4.3)

is well-defined and bounded by Hölder’s inequality and Fernique’s theorem.
Its adjoint is given by i∗Xx∗ = 〈X, x∗〉. This leads to the factorisation

Q = iXi∗X . (4.4)

Here, and in similar situations later on, we identify HX and its dual H∗
X by

means of the Riesz representation theorem. Since we are working over the real
scalar field this identification is linear and should never lead to any confusion.
For a generalisation of the factorisation (4.4) to arbitrary positive symmetric
operators Q see Exercise 3.

Theorem 4.12 (Karhunen-Loève expansion). Let X be an E-valued

Gaussian random variable.

(1) The space HX is separable.

(2) If (γn)n>1 is an orthonormal basis of HX , then (γn)n>1 is a Gaussian

sequence and ∑

n>1

γniXγn = X,

where convergence holds almost surely and in Lp(Ω; E) for all 1 6 p < ∞.

Proof. Define H̃X as the closed linear subspace of L2(E, µX) spanned by
E∗; here we think of the functionals x∗ ∈ E∗ as functions on E. In view of
E〈X, x∗〉2 =

∫
E
〈x, x∗〉2 dµX(x), the mapping x∗ 7→ 〈X, x∗〉 extends uniquely

to an isometry of Hilbert spaces H̃X ≃ HX .
Let E0 be a separable closed subspace of E containing the essential range

of X . Then µX(E0) = 1 and therefore the identity mapping gives an isometry
L2(E0, µX) ≃ L2(E, µX). Since the Borel σ-algebra B(E0) is generated by
a countable family of open sets (take a dense sequence (xn)∞n=1 in E0 and
consider the open balls B(xn, q) with rational q > 0), the space L2(E0, µX) is



4.4 Convergence 51

separable. It follows that L2(E, µX) is separable and hence so is H̃X , it being
a closed subspace of L2(E, µX). It follows that HX is separable.

Let (γn)n>1 be a (finite or countably infinite) orthonormal basis of HX .
Every random variable in HX is Gaussian by Proposition 4.11. In particu-
lar, linear combinations of the γn are Gaussian, which means that all vectors
(γn1

, . . . , γnN
) are Gaussian as RN -valued random variables. Therefore Propo-

sition 4.10 implies that the γn are independent.
For all x∗ ∈ E∗ we have the identities

∑

n>1

γn〈iXγn, x∗〉 =
∑

n>1

γn Eγn〈X, x∗〉 = 〈X, x∗〉

in HX , noting that the middle expression is the expansion of 〈X, x∗〉 with
respect to the orthonormal basis (γn)n>1 of HX . The result now follows from
the Itô-Nisio theorem. ⊓⊔

For the readers familiar with weak∗-topologies we sketch an alternative,
more functional analytic proof of the separability of HX . The dual E∗

0 is
weak∗-separable, by the separability of E0. Regarding iX as a bounded injec-
tive operator from HX to E0, the adjoint i∗X is weak∗-continuous and maps
E∗

0 onto a weak∗-separable and weak∗-dense subspace of HX . But the weak∗-
topology of the Hilbert space HX is the same as the weak topology. By the
Hahn-Banach theorem, the weak closure of i∗XE∗

0 equals its strong closure,
and the separability of HX follows.

As an application of Theorem 4.12 we extend Theorem 3.12 to arbitrary
E-valued Gaussian random variables.

Corollary 4.13 (Kahane-Khintchine inequality). Let X be an E-valued

Gaussian variable. Then for all 1 6 p, q < ∞ we have

(E‖X‖p)
1

p 6 Kp,q(E‖X‖q)
1

q .

Proof. For the special case where X =
∑N

n=1 γnxn this was proved in Theorem
3.12. The general case follows by combining this with the Karhunen-Loève
expansion. ⊓⊔

4.4 Convergence

As an application of the Kahane-Khintchine inequality, we show next that
if a sequence of Gaussian random variables converges in probability, then it
converges in Lp for all 1 6 p < ∞.

We start with a classical inequality for non-negative random variables.

Lemma 4.14 (Paley-Zygmund inequality). Let ξ be a non-negative ran-

dom variable. If 0 < Eξ2 6 c(Eξ)2 < ∞ for some c > 0, then for all 0 < r < 1
we have

P{ξ > rEξ} >
(1 − r)2

c
.
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Proof. Using the non-negativity of ξ we have

(1 − r)Eξ = E(ξ − rEξ) 6 E(1{ξ>rEξ}(ξ − rEξ)) 6 E(1{ξ>rEξ}ξ)

and therefore, by the Cauchy-Schwarz inequality,

(1 − r)2(Eξ)2 6
(
E(1{ξ>rEξ}ξ)

)2
6 E1{ξ>rEξ}Eξ2.

The result follows upon dividing both sides by Eξ2. ⊓⊔

Theorem 4.15. For a sequence (Xn)∞n=1 of E-valued Gaussian random vari-

ables the following assertions are equivalent:

(1) the sequence (Xn)∞n=1 converges in probability to a random variable X;

(2) for some 1 6 p < ∞ the sequence (Xn)∞n=1 converges in Lp(Ω; E) to a

random variable X;

(3) for all 1 6 p < ∞ the sequence (Xn)∞n=1 converges in Lp(Ω; E) to a

random variable X.

In this situation the limit random variable X is Gaussian.

Proof. Fix 1 6 p < ∞. It suffices to prove that limn→∞ Xn = X in probability
implies limn→∞ Xn = X in Lp(Ω; E). Note that X is Gaussian by Proposition
4.11.

Step 1 - Fix 1 6 q < ∞. By Fernique’s theorem we have E‖Xn‖q < ∞ for
all n > 1. In this step we prove the uniform bound

sup
n>1

E‖Xn‖q < ∞. (4.5)

From the Paley-Zygmund inequality, for all n > 1 we obtain

P
{
‖Xn‖2 >

1

2
E‖Xn‖2

}
>

1

4K4
4,2

, (4.6)

where K4,2 is the Kahane-Khintchine constant corresponding to p = 4 and
q = 2. On the other hand, given ε > 0, for any r > 0 we find an index N > 1
such that for all n > N ,

P
{
‖Xn‖2 > r

}

6 P
{
‖X‖ >

1

2

√
r
}

+ P
{
‖Xn − X‖ >

1

2

√
r
}

6 P
{
‖X‖ >

1

2

√
r
}

+ ε.

Thus for large enough r0 > 0 we find an index N0 > 1 such that for n > N0,

P
{
‖Xn‖2 > r0

}
< 2ε.

If for some subsequence we had limk→∞ E‖Xnk
‖2 = ∞, then for all sufficiently

large k we would obtain
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P
{
‖Xnk

‖2 >
1

2
E‖Xnk

‖2
}

6 P
{
‖Xnk

‖2 > r0

}
< 2ε,

contradicting (4.6). We conclude that supn>1 E‖Xn‖2 < ∞. Now (4.5) follows
from the Kahane-Khintchine inequality.

Step 2 - Fix 1 6 p < q < ∞. By Step 1, the triangle inequality in Lq(Ω; E),
and a scaling argument we may assume that supk>1 E‖Xk − X‖q 6 1. Using

this together with Hölder’s inequality (with 1
p

= 1
q

+ 1
r
), for fixed ε > 0 we

obtain

E‖Xk − X‖p = E(1{‖Xk−X‖6ε}‖Xk − X‖p) + E(1{‖Xk−X‖>ε}‖Xk − X‖p)

6 εp + E(1{‖Xk−X‖>ε}‖Xk − X‖p)

6 εp + (P{‖Xk − X‖ > ε}) p

r .

Since limk→∞ Xk = X in probability, it follows that

lim sup
k→∞

E‖Xk − X‖p
6 εp.

This being true for all ε > 0 we arrive at lim supk→∞ E‖Xk − X‖p = 0. ⊓⊔

4.5 Exercises

1. This exercise presents an example of two uncorrelated Gaussian random
variables which are not independent. This shows that the joint Gaussianity
condition in Proposition 4.10 cannot be omitted.
Let γ be a standard Gaussian random variable on a probability space
(Ω1, F1, P1) and let r be a Rademacher variable on a probability space
(Ω2, F2, P2). Define the random variables ϕ1 and ϕ2 on the product space
(Ω, F , P) = (Ω1 × Ω2, F1 × F2, P1 × P2) by

ϕ1(ω1, ω2) = γ(ω1), ϕ2(ω1, ω2) = γ(ω1)r(ω2).

a) Show that ϕ1 and ϕ2 are Gaussian.
b) Show that ϕ1 and ϕ2 are uncorrelated.
c) Show that ϕ1 and ϕ2 fail to be independent.

Hint: Consider, for instance, the events {|ϕ1| 6 1} and {|ϕ2| 6 1}.
2. In this exercise we prove Sazanov’s theorem: a bounded linear operator

Q on a separable Hilbert space H with inner product [·, ·] is a Gaussian
covariance operator if and only if Q is positive, self-adjoint and the sum∑∞

n=1[Qhn, hn] converges for some (equivalently, for every) orthonormal
basis (hn)∞n=1 of H .

a) Suppose Q satisfies the conditions of the Sazanov theorem, let (hn)∞n=1

be an orthonormal basis of H , and put xn := Q
1

2 hn. Show that the
Gaussian sum

∑∞
n=1 γnxn converges in L2(Ω; H) and defines a Gaus-

sian H-valued random variable with covariance Q.
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b) Suppose conversely that X is an H-valued Gaussian random variable
with covariance operator Q. Then Q is positive and symmetric. Show
that if (hn)∞n=1 is any orthonormal basis for H , then

∞∑

n=1

[Qhn, hn] = E‖X‖2.

c) Deduce that the identity operator on a separable infinite-dimensional
Hilbert space fails to be a Gaussian covariance operator.

3. (!) The identity (4.4) shows that every Gaussian covariance operator can
be written as Q = TT ∗ for a suitable operator T from a Hilbert space
into E. In this exercise we generalise this observation to arbitrary positive
symmetric operators.
Let Q ∈ L (E∗, E) be positive and symmetric.
a) Show that the formula

[Qx∗, Qy∗] := 〈Qx∗, y∗〉
defines an inner product on the range of Q.

The Hilbert space completion of the range of Q with respect to this inner
product is denoted by HQ.

b) Show that the identity mapping Qx∗ 7→ Qx∗ extends uniquely to a
bounded operator iQ from HQ into E.

c) Prove the identity
iQi∗Q = Q.

d) Prove the statement concerning Q in the proof of Theorem 3.9.
Hint: Consider an orthonormal basis of the (finite-dimensional)
Hilbert space HQ.

4. Suppose that X is an E-valued Gaussian random variable with covariance
operator Q. We compare the mappings iX : HX → E defined by (4.3) and
iQ : HQ → E of the previous exercise.

a) Show that the mapping 〈X, x∗〉 7→ i∗Qx∗ extends uniquely to an isom-
etry from HX onto HQ.

b) Prove that iX(HX) = iQ(HQ) and show that X takes its values in

iX(HX) = iQ(HQ) almost surely.

5. Let Q be a positive self-adjoint operator on a Hilbert space H and let
√

Q
be its unique positive square root.
a) Show that the range of

√
Q is a Hilbert space with respect to the norm

|||
√

Qh||| := inf{‖h′‖ : h′ ∈ H,
√

Qh′ =
√

Qh}.
b) Show that the identity mapping Qh 7→ Qh extends uniquely to an

isometry
HQ ≃ range(

√
Q),

where HQ is defined as in the previous two exercises.
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Notes. A comprehensive treatment of the theory of Gaussian variables is
given in Bogachev [8]. See also the monographs of Janson [53], Vakhania,
Tarieladze, Chobanyan [105], and the older lecture notes of Kuo [62].

Theorem 4.3 is a celebrated result due to Fernique [39]. By a (non-trivial)
modification of the proof one obtains the following stronger result: if X is
a uniformly tight family of E-valued Gaussian random variables, then there
exist constants β > 0 and C > 0 such that

E(exp(β‖X‖2) 6 C ∀X ∈ X .

Using powerful concentration of measure inequalities it can be shown that
the supremum of all admissible constants β for which the conclusion of Fer-
nique’s theorem holds is equal to 1/2σ2(X), where

σ2(X) = sup
‖x∗‖61

E〈X, x∗〉2.

We refer to Kwapień and Woyczyński [65], Ledoux [68], and Ledoux and
Talagrand [69] for expositions of this result and further reading.

The proof of Theorem 4.15 is taken from Rosiński and Suchanecki [96].
For more on the Karhunen-Loève expansion of Gaussian variables we rec-

ommend [65]. The convergence of the series can be alternatively deduced
from the martingale convergence theorem for Banach space-valued martin-
gales, but we have chosen not to do so here in order to keep the presentation
self-contained.

A Borel measure µ on a Banach space E is called Gaussian if it is the
distribution of an E-valued Gaussian random variable X , or equivalently, if
the image measure 〈µ, x∗〉 are Gaussian on R for all x∗ ∈ E∗ (to see that
the latter implies the former consider the random variable X(x) := x on the
probability space (E, µ)). The covariance operator of µ is then defined as the
covariance operator Q of X . In view of the identities 〈Qx∗, x∗〉 = E〈X, x∗〉2 =∫

E
〈x, x∗〉2 dµ(x) this is well-defined. For the sake of unity of presentation we

have stated all results in terms of random variables. Some results, such as
Theorem 4.3 and Propositions 4.6 and 4.9, can equally well be formulated in
terms of Gaussian measures.

Exercise 2 c) tells us that on an infinite-dimensional Hilbert space H there
is no standard Gaussian measure, that is, a Gaussian measure whose covari-
ance operator is the identity operator. More can be said, however. Let us call
a subset C of H cylindrical if it is of the form

C = {h ∈ H : ([h, h1], . . . , [h, hn]) ∈ B}

for certain h1, . . . , hn ∈ H and a Borel set B in Rn. More generally, cylindrical
sets in Banach spaces can be defined by replacing the role of the hj by func-
tionals x∗

j . We have already used cylindrical sets in the proof of the uniqueness
theorem for the Fourier transform (Theorem 2.8). The cylindrical sets form
an algebra of sets in H . It can be shown that there exists a unique finitely
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additive measure γH on this algebra with the property that the restrictions
of γH to finite-dimensional subspaces of H are standard Gaussian measures.

The pair (iQ, HQ) constructed in Exercise 3 is called the reproducing kernel

associated with Q. The operator iQ : HQ → E is in fact injective, and the
factorisation Q = iQi∗Q is minimal in the following sense: if H is a Hilbert
space and T : H → E is a bounded operator such that Q = TT ∗, then there
exists a bounded surjection P : H → HQ such that T = iQP . For more
information on reproducing kernel Hilbert spaces as well as an explanation
of the terminology we refer the interested reader to Schwartz [98] and the
book by Vakhania, Tarieladze, Chobanyan [105].


