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γ-Radonifying operators

Experience has taught that many results in analysis involving L2-techniques,
such as the Plancherel theorem in harmonic analysis and the Itô isometry in
stochastic analysis, carry over without difficulty to the Hilbert space-valued
setting. Often this fact characterises Hilbert spaces among all Banach spaces.

It has only been recently realised that many results do generalise beyond
the Hilbert space case if one does three things:

• Replace ‘functions’ by ‘γ-radonifying (integral) operators’;
• Replace ‘uniform boundedness’ by ‘γ-boundedness’;
• Replace ‘orthogonality’ by ‘unconditionality’.

This paradigm has had enormous impact in the areas of (parabolic) evolution
equations and harmonic analysis, more recently, in the theory of stochastic
(parabolic) evolution equations.

In this lecture we address the first item in the list and investigate properties
of γ-radonifying operators. These operators will be used in the next lecture to
give necessary and sufficient conditions for stochastic integrability, the main
idea being that the L2-norms occurring in the Itô isometry are replaced by
the γ-radonifying norms of associated integral operators.

5.1 γ-Summing operators

We begin with a discussion of the class of γ-summing operators. In the next
section, γ-radonifying operators are defined as the γ-summing operators which
can be approximated in the γ-summing norm by finite rank operators.

Continuing the notational conventions of the previous lectures, (γn)∞n=1

always denotes a Gaussian sequence, H is a Hilbert space (with inner prod-
uct [·, ·]), and E is a Banach space. Although we have made the standing
assumption that all spaces are real, most results of this lecture extend with
only minor changes to complex scalars.
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Definition 5.1. A linear operator S : H → E is called γ-summing if for some
(equivalently, for all) 1 6 p < ∞,

‖S‖γ∞

p (H,E) := sup
(

E

∥∥∥
k∑

j=1

γj Shj

∥∥∥
p) 1

p

< ∞,

the supremum being taken over all finite orthonormal systems {h1, . . . , hk}.

By considering singletons {h} we see that every γ-summing operator is
bounded and satisfies ‖S‖ 6 ‖S‖γ∞

p (H,E).

With respect to any one of the norms S 7→ ‖S‖γ∞

p (H,E), which are mutually

equivalent by the Kahane-Khintchine inequalities, the linear space γ∞(H, E)
of all γ-summing operators from H to E is a normed space. Unless otherwise
stated we shall write

‖S‖γ∞(H,E) := ‖S‖γ∞

2
(H,E).

Proposition 5.2. The space γ∞(H, E) is a Banach space.

Proof. If (Sn)∞n=1 is Cauchy in γ∞(H, E), then supn>1 ‖Sn‖γ∞(H,E) < ∞.
Let us denote this supremum by C. Since (Sn)∞n=1 is a Cauchy sequence in
L (H, E) it tends to an operator S in L (H, E). We will prove that S ∈
γ∞(H, E) and that limn→∞ Sn = S in the norm of γ∞(H, E).

If {h1, . . . , hk} is an orthonormal system in H , then by Fatou’s lemma,

E

∥∥∥
k∑

j=1

γj Shj

∥∥∥
2

6 lim inf
n→∞

E

∥∥∥
k∑

j=1

γj Snhj

∥∥∥
2

6 C.

It follows that S ∈ γ∞(H, E) and ‖S‖γ∞(H,E) 6 C.
Next we check that limn→∞ Sn = S in the norm of γ∞(H, E). Given

ε > 0, we choose N > 1 such that ‖Sn − Sm‖γ∞(H,E) < ε for all m, n > N .
Let {h1, . . . , hk} be an orthonormal system in H . By another application of
the Fatou lemma,

E

∥∥∥
k∑

j=1

γj (Sn − S)hj

∥∥∥
2

6 lim inf
m→∞

E

∥∥∥
k∑

j=1

γj (Sn − Sm)hj

∥∥∥
2

< ε2.

Therefore, ‖Sn − S‖γ∞(H,E) 6 ε for all n > N . ⊓⊔

Proposition 5.3 (γ-Fatou lemma). Let (Sn)∞n=1 be a bounded sequence in
γ∞

p (H, E). If S ∈ L (H, E) is an operator such that

lim
n→∞

〈Snh, x∗〉 = 〈Sh, x∗〉 ∀h ∈ H, x∗ ∈ E∗,

then S ∈ γ∞(H, E) and for all 1 6 p < ∞ we have

‖S‖γ∞

p (H,E) 6 lim inf
n→∞

‖Sn‖γ∞

p (H,E).
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Proof. Let {h1, . . . , hk} be an orthonormal system in H . Let (x∗
n)∞n=1 be

a sequence of unit vectors in E∗ which is norming for the linear span of
{Sh1, . . . , Shk}. For all M > 1 we have, by the Fatou lemma,

E sup
m=1,...,M

∣∣∣
〈 k∑

j=1

γj Shj , x
∗

m

〉∣∣∣
p

6 lim inf
n→∞

E sup
m=1,...,M

∣∣∣
〈 k∑

j=1

γj Snhj , x
∗

m

〉∣∣∣
p

6 lim inf
n→∞

‖Sn‖p
γ∞

p (H,E).

Taking the limit M → ∞ we obtain, by the monotone convergence theorem,

E

∥∥∥
k∑

j=1

γj Shj

∥∥∥
p

6 lim inf
n→∞

‖Sn‖p
γ∞

p (H,E)

and the proposition follows. ⊓⊔

The next result shows that the class of γ-summing operators enjoys a
certain ideal property:

Proposition 5.4 (Ideal property I). Let S ∈ γ∞(H, E). If H ′ is another
Hilbert space and E′ another Banach space, then for all T ∈ L (H ′, H) and
U ∈ L (E, E′) we have UST ∈ γ∞(H ′, E′) and for all 1 6 p < ∞ we have

‖UST ‖γ∞

p (H′,E′) 6 ‖U‖ ‖S‖γ∞

p (H,E)‖T ‖.

Proof. It suffices to prove that ST ∈ γ∞(H ′, E) and ‖ST ‖γ∞(H′,E) 6
‖S‖γ∞(H,E)‖T ‖, the assertions concerning U being trivial.

Let {h′
1, . . . , h

′

k} be an orthonormal system in H ′. We denote by H̃ ′ and H̃
the spans in H ′ and H of {h′

1, . . . , h
′

k} and {Th′
1, . . . , Th′

k}, respectively. Let

Ẽ be the span in E of {STh′
1, . . . , STh′

k}. Then S and T restrict to operators

S̃ : H̃ → Ẽ and T̃ : H̃ ′ → H̃ .
Let {h1, . . . , hN} be an orthonormal basis for H̃ . For all x∗ ∈ Ẽ∗ we have

k∑

j=1

〈S̃T̃ h′

j , x
∗〉2 = ‖T̃ ∗S̃∗x∗‖2

eH′
6 ‖T̃ ∗‖2 ‖S̃∗x∗‖2

eH
= ‖T̃‖2

N∑

n=1

〈S̃hn, x∗〉2.

Hence, by Theorem 3.9,

E

∥∥∥
k∑

j=1

γj STh′

j

∥∥∥
p

6 ‖T ‖p
E

∥∥∥
N∑

n=1

γn Shn

∥∥∥
p

6 ‖T ‖p ‖S‖p
γ∞

p (H,E)

and the result follows. ⊓⊔

As a corollary we observe that we may ignore the kernel of S:
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Corollary 5.5. If S ∈ γ∞(H, E) and H0 is a closed subspace of H containing
(kerS)⊥, then the restriction S0 of S to H0 belongs to γ∞(H0, E) and for all
1 6 p < ∞,

‖S0‖γ∞

p (H0,E) = ‖S‖γ∞

p (H,E).

Proof. The only nontrivial thing to prove is the inequality ‖S‖γ∞

p (H,E) 6

‖S0‖γ∞

p (H0,E). Let P0 be the orthonormal projection of H onto H0. Then
S = S0P0 and the desired inequality follows from Proposition 5.4. ⊓⊔

We are now in a position to prove the following characterisation of γ-
summing operators in terms of orthonormal bases. We formulate the result for
separable infinite-dimensional spaces; for finite-dimensional spaces the same
result holds with a slightly simpler proof.

Proposition 5.6. If H is separable and (hn)∞n=1 is an orthonormal basis for
H, then an operator S ∈ L (H, E) belongs to γ∞(H, E) if and only if for some
(equivalently, for all) 1 6 p < ∞,

sup
N>1

E

∥∥∥
N∑

n=1

γn Shn

∥∥∥
p

< ∞.

In this case,

‖S‖p
γ∞

p (H,E) = sup
N>1

E

∥∥∥
N∑

n=1

γn Shn

∥∥∥
p

.

Proof. Let {h′
1, . . . , h

′

k} be an orthonormal system in H . For K > 1 let PK

denote the orthogonal projection onto the span of {h1, . . . , hK}. For all x∗ ∈
E∗ and K > k we have

k∑

j=1

〈SPKh′

j , x
∗〉2 6 ‖PKS∗x∗‖2 =

K∑

n=1

〈Shn, x∗〉2.

Let 1 6 p < ∞. From Theorem 3.9 it follows that

E

∥∥∥
k∑

j=1

γj SPKh′

j

∥∥∥
p

6 E

∥∥∥
K∑

n=1

γn Shn

∥∥∥
p

6 sup
N>1

E

∥∥∥
N∑

n=1

γn Shn

∥∥∥
p

.

Hence by Fatou’s lemma,

E

∥∥∥
k∑

j=1

γj Sh′

j

∥∥∥
p

6 lim inf
K→∞

E

∥∥∥
k∑

j=1

γj SPKh′

j

∥∥∥
p

6 sup
N>1

E

∥∥∥
N∑

n=1

γn Shn

∥∥∥
p

.

It follows that

‖S‖p
γ∞

p (H,E) 6 sup
N>1

E

∥∥∥
N∑

n=1

γn Shn

∥∥∥
p

.

The converse inequality trivially holds and the proof is complete. ⊓⊔
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5.2 γ-Radonifying operators

When h is an element of a Hilbert space H and x an element of a Banach
space E, we denote by h ⊗ x the operator in L (H, E) defined by

(h ⊗ x)h′ := [h, h′]x, h′ ∈ H.

An operator in L (H, E) is said to be of finite rank if it is a linear combination
of operators of the above form. It is a trivial observation that every finite rank
operator from H to E belongs to γ∞(H, E). In fact we have:

Lemma 5.7. If S =
∑N

n=1 hn ⊗ xn is a finite rank operator with h1, . . . , hN

orthonormal in H and x1, . . . , xN ∈ E arbitrary, then S ∈ γ∞(H, E) and for
all 1 6 p < ∞ we have

‖S‖p
γ∞

p (H,E) = E

∥∥∥
N∑

n=1

γn xn

∥∥∥
p

.

Proof. Testing on h1, . . . , hN gives the inequality ‘>’. To prove the inequality
‘6’ let P be the orthogonal projection from H onto the span H̃ of {h1, . . . , hN}
and define S̃ ∈ L (H̃, E) by S̃ = SP ∗. The inequality then follows from

Proposition 5.4 applied to S = S̃P , and Proposition 5.6 applied to S̃. ⊓⊔

In view of this observation the following definition makes sense.

Definition 5.8. The space γ(H, E) is defined as the closure in γ∞(H, E) of
all finite rank operators. The operators in γ(H, E) are called γ-radonifying.

By definition, γ(H, E) is a Banach space with respect to the norm inherited
from γ∞(H, E). For notational simplicity, for R ∈ γ(H, E) we shall write

‖R‖γ(H,E) := ‖R‖γ∞(H,E)

and more generally ‖R‖γp(H,E) := ‖R‖γ∞

p (H,E) for 1 6 p < ∞.
A bounded operator is compact if the image of the unit ball is rela-

tively compact. Every γ-radonifying operator R is compact: if limn→∞ ‖Rn −
R‖γ(H,E) = 0 with each Rn of finite rank, then limn→∞ ‖Rn−R‖ = 0 and the
claim follows since each Rn is compact. Here we use that the uniform limit of
a sequence of compact operators is compact.

Without proof we mention the following theorem, which rephrases a fa-
mous result due to Hoffmann-Jorgensen and Kwapień on the almost sure
convergence of random sums whose partial sums are almost surely bounded.

Theorem 5.9 (Hoffmann-Jorgensen and Kwapień). Let H be an infin-
ite-dimensional Hilbert space. For a Banach space E the following assertions
are equivalent:
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(1) γ∞(H, E) = γ(H, E);
(2) E does not contain a closed subspace isomorphic to c0.

An explicit example of an operator which is γ-summing but not γ-
radonifying is the multiplication operator R : ℓ2 → c0 defined by

R
(
(αn)∞n=1

)
:= (αn/

√
log(n + 1))∞n=1

The proof of this statement depends on some subtle estimates for Gaussian
sums and is omitted.

As an immediate consequence of Definition 5.8, every R ∈ γ(H, E) is
‘supported’ on a separable closed subspace of H :

Proposition 5.10. If R ∈ γ(H, E), then (ker(R))⊥ is separable.

Proof. Suppose that R = limn→∞ Rn in γ(H, E) with each Rn of finite rank,

say Rnh =
∑kn

j=1[h, hjn]xjn. Let H0 denote the closed linear span of all vectors
hjn, n > 1, 1 6 j 6 kn. Then H0 is separable and if h ⊥ H0, then Rnh = 0
for all n > 1 and consequently Rh = 0. ⊓⊔

The ideal property of γ∞(H, E) carries over to γ(H, E):

Proposition 5.11 (Ideal property II). Let R ∈ γ(H, E). If H ′ is another
Hilbert space and E′ another Banach space, then for all T ∈ L (H ′, H) and
U ∈ L (E, E′) we have URT ∈ γ(H ′, E′) and for all 1 6 p < ∞ we have

‖URT ‖γp(H′,E′) 6 ‖U‖ ‖R‖γp(H,E)‖T ‖.

Proof. If R is of finite rank, then also URT is of finite rank. Moreover if
limn→∞ Rn = R in γ∞

p (H, E), then ‖U(R − Rn)T ‖γ∞

p (H′,E′) 6 ‖U‖ ‖R −
Rn‖γ∞

p (H,E)‖T ‖ and therefore URT ∈ γ(H ′, E′). The estimate follows from
the corresponding estimate for the γ-summing norms. ⊓⊔

We mention a simple but useful application.

Proposition 5.12 (Convergence by right multiplication). If H1 and H2

are Hilbert spaces and S1, S2, . . . and S are operators in L (H1, H2) satisfy-
ing S∗h = limn→∞ S∗

nh for all h ∈ H2, then for all R ∈ γ(H2, E) we have
limn→∞ RSn = RS in γ(H1, E).

Proof. The uniform boundedness principle implies that supn>1 ‖Sn‖ < ∞.
Hence, by the estimate ‖RT ‖γ(H1,E) 6 ‖R‖γ(H2,E)‖T ‖ for T ∈ L (H1, H2), it
suffices to consider finite rank operators R ∈ γ(H2, E). Fix such an operator,

say R =
∑M

m=1 h′
m ⊗xm, and let (hj)

k
j=1 be orthonormal in H1. Then, by the

triangle inequality in L2(Ω; E),
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(
E

∥∥∥
k∑

j=1

γjR(S − Sn)hj

∥∥∥
2) 1

2

=
(

E

∥∥∥
M∑

m=1

k∑

j=1

γj [S
∗h′

m − S∗

nh′

m, hj]xm

∥∥∥
2) 1

2

6

M∑

m=1

(
E

∣∣∣
k∑

j=1

γj [S
∗h′

m − S∗

nh′

m, hj ]
∣∣∣
2) 1

2 ‖xm‖

=

M∑

m=1

( k∑

j=1

|[S∗h′

m − S∗

nh′

m, hj ]|2
) 1

2 ‖xm‖

6

M∑

m=1

‖S∗h′

m − S∗

nh′

m‖‖xm‖.

Hence,

‖R(S − Sn)‖γ(H1,E) 6

M∑

m=1

‖S∗h′

m − S∗

nh′

m‖‖xm‖,

and by assumption the right hand side tends to zero as n → ∞. ⊓⊔

Here is a simple illustration:

Example 5.13. Consider an operator R ∈ γ(H, E) and let (hn)∞n=1 be an or-
thonormal basis for (ker(R))⊥. Let Pn denote the orthogonal projection in H
onto the span of {h1, . . . , hn}. Then limn→∞ RPn = R in γ(H, E).

Proposition 5.14 (Measurability). Let (A, A , µ) be a σ-finite measure
space and H a separable Hilbert space. For a function Φ : A → γ(H, E)
define Φh : A → E by (Φh)(ξ) := Φ(ξ)h for h ∈ H. The following assertions
are equivalent:

(1) Φ is strongly µ-measurable;
(2) Φh is strongly µ-measurable for all h ∈ H.

Proof. It suffices to prove that (2) implies (1). If (hn)∞n=1 is an orthonormal
basis for H , then with the notations of the Example 5.13 for all ξ ∈ A we have

Φ(ξ) = lim
n→∞

Φ(ξ)Pn = lim
n→∞

n∑

j=1

[ · , hj]Φ(ξ)hj ,

with convergence in the norm of γ(H, E). ⊓⊔

We proceed with the main result of this section which states, loosely speak-
ing, that an operator is γ-radonifying if and only if it maps orthonormal se-
quences into γ-summable sequences.

Theorem 5.15. If H is separable, then for an operator R ∈ L (H, E) the
following assertions are equivalent:

(1) R ∈ γ(H, E);
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(2) for all orthonormal bases (hn)∞n=1 in H and all 1 6 p < ∞ the sum∑∞

n=1 γn Rhn converges in Lp(Ω; E);
(3) for some orthonormal basis (hn)∞n=1 in H and some 1 6 p < ∞ the sum∑∞

n=1 γn Rhn converges in Lp(Ω; E).

In this situation, the sums in (2) and (3) converge almost surely and define
an E-valued Gaussian random variable with covariance operator RR∗. For all
orthonormal bases (hn)∞n=1 of H and 1 6 p < ∞ we have

‖R‖p
γp(H,E) = E

∥∥∥
∞∑

n=1

γn Rhn

∥∥∥
p

.

Proof. (1)⇒(2): Fix R ∈ γ(H, E) and 1 6 p < ∞, and let (hn)∞n=1 be an
orthonormal basis of H . Let Pn denote the orthogonal projection in H onto
the linear span of {h1, . . . , hn}. By Proposition 5.12 we have limn→∞ RPn = R
in γ(H, E), and by Proposition 5.6 for all m < n we have

E

∥∥∥
n∑

j=m+1

γjRhj

∥∥∥
p

= ‖RPn − RPm‖p
γp(H,E).

Since the right-hand side tends to 0 as m, n → ∞, this proves the convergence
of the sum

∑∞

n=1 γnRhn in Lp(Ω; E).
(2)⇒(3): This implication is trivial.
(3)⇒(1): With the notations as before, by Proposition 5.6 we have

lim
m,n→∞

‖RPn − RPm‖p
γp(H,E) = lim

m,n→∞
E

∥∥∥
n∑

j=m+1

γjRhj

∥∥∥
p

= 0.

It follows that (RPn)∞n=1 is a Cauchy sequence in γ(H, E). Its limit equals R,
since limn→∞ RPnh = Rh for all h ∈ H .

This proves the equivalence of (1), (2), (3) as well as the final identity. The
almost sure convergence in (2) and (3) follows from the Itô-Nisio theorem. ⊓⊔

We are now ready to characterise Gaussian covariance operators in terms
of γ-radonifying operators.

Theorem 5.16. Suppose Q ∈ L (E∗, E) and R ∈ L (H, E) satisfy Q = RR∗.
The following assertions are equivalent:

(1) Q is a Gaussian covariance operator;
(2) R ∈ γ(H, E).

If X is an E-valued random variable with covariance operator Q, then

E‖X‖p = ‖R‖p
γp(H,E), 1 6 p < ∞.



5.2 γ-Radonifying operators 65

Proof. (1)⇒(2): Let X be E-valued Gaussian with covariance Q. By Theorem
4.12 the Hilbert space HX is separable, and from the identities E〈X, x∗〉2 =
〈Qx∗, x∗〉 = ‖R∗x∗‖2 it follows that the mapping jX : 〈X, x∗〉 7→ R∗x∗ extends

uniquely to an isometry from HX onto H̃ := ran(R∗).
Let (γn)∞n=1 be an orthonormal basis of HX and put hn := jXγn. Then

(hn)∞n=1 is an orthonormal basis of H̃. By the Karhunen-Loève theorem (The-
orem 4.12) we have X =

∑∞

n=1 γniXγn, where iX : HX → E is given by

iX〈X, x∗〉 = Qx∗ = RR∗x∗ = RjX〈X, x∗〉.
It follows that iX = RjX , and therefore

∞∑

n=1

γnRhn =

∞∑

n=1

γnRjXγn =

∞∑

n=1

γniXγn = X. (5.1)

Let R̃ denote the restriction of R to H̃ . By the implication (3)⇒(1) of Theorem

5.15, we have proved that R̃ ∈ γ(H̃, E). Since R = 0 on H̃⊥ = ker(R), we

have R = R̃P where P is the orthogonal projection from H onto H̃ . From
Proposition 5.11 we infer that R ∈ γ(H, E).

(2)⇒(1): Using Proposition 5.10, let (hn)∞n=1 be an orthonormal basis of

the separable Hilbert space H̃ = (ker(R))⊥. The E-valued random variable
X :=

∑
∞

n=1 γnRhn is Gaussian and has covariance operator RR∗ = Q.
The final identity follows from (5.1) and Theorem 5.15. ⊓⊔
We continue with a domination result for γ-radonifying operators.

Theorem 5.17 (Domination). Let H1 and H2 be Hilbert spaces and let
R1 ∈ L (H1, E) and R2 ∈ L (H2, E). If

‖R∗

1x
∗‖ 6 ‖R∗

2x
∗‖ ∀x∗ ∈ E∗,

then R2 ∈ γ(H2, E) implies R1 ∈ γ(H1, E) and for all 1 6 p < ∞ we have

‖R1‖γp(H1,E) 6 ‖R2‖γp(H2,E).

Proof. Put H̃1 = ran(R∗
1) and H̃2 = ran(R∗

2). By assumption, the mapping

j : R∗
2x

∗ 7→ R∗
1x

∗ extends to a contraction from H̃2 to H̃1. For all h1 ∈ H̃1

and x∗ ∈ E∗ we have 〈R2j
∗h1, x

∗〉 = [h1, jR
∗
2x

∗] = [h1, R
∗
1x

∗] = 〈R1h1, x
∗〉.

Hence R2j
∗P = R1, where P is the orthogonal projection of H1 onto H̃1, and

the result follows from Proposition 5.11. ⊓⊔
Corollary 5.18 (Covariance domination). Let X1 and X2 be E-valued
Gaussian random variables satisfying

E〈X1, x
∗〉2 6 E〈X2, x

∗〉2 ∀x∗ ∈ E∗.

Then, for all 1 6 p < ∞,

E‖X1‖p 6 E‖X2‖p.

Proof. Combine Theorems 5.16 and 5.17. ⊓⊔
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5.3 Examples of γ-radonifying operators

For certain range spaces, a complete characterisation of γ-radonifying oper-
ators can be given in non-probabilistic terms. The simplest example occurs
when the range space is a Hilbert space.

Theorem 5.19 (Operators into Hilbert spaces). If E is a Hilbert space,
then R ∈ γ(H, E) if and only if R ∈ L2(H, E), and in this case we have

‖R‖γ(H,E) = ‖R‖L2(H,E).

Here, L2(H, E) denotes the space of all Hilbert-Schmidt operators from H
to E, that is, completion of the space of all finite rank operators R ∈ L (H, E)
with respect to the norm

‖R‖2
L2(H,E) :=

N∑

n=1

‖xn‖2,

where R =
∑N

n=1 hn ⊗ x with the h1, . . . , hN orthonomal in H .

Proof. This is trivial, since for R =
∑N

n=1 hn ⊗x with h1, . . . , hN orthonomal
in H we have

‖R‖2
γ(H,E) = E

∥∥∥
N∑

n=1

γnxn

∥∥∥
2

=

N∑

n=1

‖xn‖2 = ‖R‖2
L2(H,E).

⊓⊔

In what follows we shall use the notation A hp B to express the fact
that there exist constants 0 < c 6 C < ∞, depending only on p, such that
cA 6 B 6 CA. The notation A .p B has a similar meaning.

The next result shows that an operator from a separable Hilbert space
into an Lp-space is γ-radonifying if and only if it satisfies a square function
estimate.

Theorem 5.20 (Operators into Lp-spaces). Let (A, A , µ) be a σ-finite
measure space, let H be a separable Hilbert space, and let 1 6 p < ∞. For an
operator R ∈ L (H, Lp(A)) the following assertions are equivalent:

(1) R ∈ γ(H, Lp(A));

(2) For all orthonormal bases (hn)∞n=1 of H the function
(∑∞

n=1 |Rhn|2
) 1

2

belongs to Lp(A);

(3) For some orthonormal basis (hn)∞n=1 of H the function
(∑

∞

n=1 |Rhn|2
) 1

2

belongs to Lp(A).

In this case we have ‖R‖γ(H,Lp(A)) hp

∥∥( ∑∞

n=1 |Rhn|2
) 1

2

∥∥.
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Proof. Applying the identity
∑N

n=M |cn|2 = E|∑N
n=M cnγn|2 with cn = fn(ξ),

ξ ∈ A, then applying the scalar Kahane-Khintchine inequality, then Fubini’s
theorem, and finally the Kahane-Khintchine inequality in Lp(A), for all M 6
N and fM , . . . , fN ∈ Lp(A) we obtain

∥∥∥
( N∑

n=M

|fn|2
) 1

2

∥∥∥
p

=
∥∥∥
(
E

∣∣∣
N∑

n=M

γnfn

∣∣∣
2) 1

2

∥∥∥
p

hp

∥∥∥
(

E

∣∣∣
N∑

n=M

γnfn

∣∣∣
p) 1

p
∥∥∥

p

=
(
E

∥∥∥
N∑

n=M

γnfn

∥∥∥
p

p

) 1

p

hp

(
E

∥∥∥
N∑

n=M

γnfn

∥∥∥
2

p

) 1

2

.

The equivalences (1)⇔(2), (1)⇔(3), and the final two-sided estimate now
follow by taking fn := Rhn, where (hn)∞n=1 is an orthonormal basis of H . ⊓⊔

Here is a neat application:

Corollary 5.21. Let (A, A , µ) be a finite measure space and H a separable
Hilbert space. For all T ∈ L (H, L∞(A)) and 1 6 p < ∞ we have T ∈
γ(H, Lp(A)) and

‖T ‖γ(H,Lp(A)) .p ‖T ‖L (H,L∞(A)).

Proof. Let (hn)∞n=1 be an orthonormal basis of H . Fixing N > 1 and c ∈ R
N ,

for µ-almost all ξ ∈ A we have

∣∣∣
N∑

n=1

cn(Thn)(ξ)
∣∣∣ 6

∥∥∥
N∑

n=1

cnThn

∥∥∥
∞

6 ‖T ‖L (H,L∞(A))

∥∥∥
N∑

n=1

cnhn

∥∥∥
H

= ‖T ‖L (H,L∞(A))‖c‖.

Taking the supremum over a countable dense set in the unit ball of R
N we

obtain the following estimate, valid for µ-almost all ξ ∈ A:

( N∑

n=1

|(Thn)(ξ)|2
) 1

2

6 ‖T ‖L (H,L∞(A)).

Now apply Theorem 5.20. ⊓⊔

Every f ∈ Lp(A; H) defines a bounded operator Rf ∈ L (H, Lp(A)) by
putting

(Rfh)(ξ) := [f(ξ), h], ξ ∈ A, h ∈ H.

The next result shows that Rf ∈ γ(H, Lp(A)), and that every R ∈ γ(H, Lp(A))
is of this form; this gives an alternative description of γ(H, Lp(A)). For later
use it will be useful to formulate this result in a more slightly more general
form. The isomorphism γ(H, Lp(A)) ≃ Lp(A; H) is obtained in the special
case E = R in the next theorem.
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Theorem 5.22 (γ-Fubini isomorphism). Let (A, A , µ) be a σ-finite mea-
sure space, let H be a Hilbert space, and let 1 6 p < ∞. The mapping
U : Lp(A; γ(H, E)) → L (H, Lp(A; E)) defined by

((Uf)h)(ξ) := f(ξ)h, ξ ∈ A, h ∈ H,

defines an isometry U from Lp(A; γp(H, E)) onto γp(H, Lp(A; E)).

Proof. Let f ∈ Lp(A; γp(H, E)) be a simple function of the form f =∑M
m=1 1Am

⊗ Um, where the operators Um are of the form
∑N

n=1 hn ⊗ xmn

for some orthonormal system {h1, . . . , hN} in H . Let H̃ be the span of
{h1, . . . , hN}. Using Corollary 5.5, Lemma 5.7, and Fubini’s theorem we ob-
tain

‖Uf‖γp(H,Lp(A;E)) = ‖Uf‖γp( eH,Lp(A;E))

=
(
E

∥∥∥
N∑

n=1

γn (Uf)hn

∥∥∥
p

Lp(A;E)

) 1

p

=
(∫

A

E

∥∥∥
N∑

n=1

γn fhn

∥∥∥
p

dµ
) 1

p

=
(∫

A

‖f‖p

γp( eH,E)
dµ

) 1

p

=
(∫

A

‖f‖p
γp(H,E) dµ

) 1

p

= ‖f‖Lp(A;γp(H,E)).

Since the simple functions f of the above form are dense, these estimates imply
that U extends to an isomorphism of Lp(A; γp(H, E)) onto a closed subspace
of γp(H, Lp(A; E)). To show that this operator is surjective it is enough to
show that its range is dense. But

U
( N∑

n=1

1An
⊗

( K∑

k=1

hk ⊗ xkn

))
=

K∑

k=1

hk ⊗
( N∑

n=1

1An
⊗ xkn

)
,

for all An ∈ A with µ(An) < ∞, orthonormal h1, . . . , hK ∈ H , and arbitrary
xkn ∈ E. The elements on the right hand side are dense in γp(H, Lp(A; E)).

⊓⊔

The final example is important in the theory of Brownian motion.

Theorem 5.23 (Indefinite integration). The operator IT : L2(0, T ) →
C[0, T ] defined by

(IT f)(t) :=

∫ t

0

f(s) ds, f ∈ L2(0, T ), t ∈ [0, T ],

is γ-radonifying.

A proof is outlined in Exercise 5.



5.4 Exercises 69

5.4 Exercises

1. Let 1 6 p < ∞. Determine for which scalar sequences a = (an)∞n=1 the
diagonal operator un 7→ anun defines a γ-radonifying operator from ℓ2 to
ℓp. Here un = (0, . . . , 0, 1, 0, . . . ), with the ‘1’ in the n-th entry, is the n-th
unit vector of ℓp.

Hint: Apply Theorem 5.20.

2. Let (hn)∞n=1 be a Hilbert sequence in a Hilbert space H , that is, there
exists a constant C > 0 such that for all scalars α1, . . . , αN ,

∥∥∥
N∑

n=1

αnhn

∥∥∥ 6 C
( N∑

n=1

|αn|2
) 1

2

.

Show that if R ∈ γ(H, E), then
∑

∞

n=1 γnRhn converges in L2(Ω; E) and

E

∥∥∥
∞∑

n=1

γnRhn

∥∥∥
2

6 C2‖R‖2
γ(H,E).

3. (!) Let (A, A , µ) be a σ-finite measure space and define Φ : A → γ(H, E)
by Φ := φ⊗U, where φ ∈ L2(A) and U ∈ γ(H, E). Prove that the operator
RΦ : L2(A; H) → E,

RΦf :=

∫

A

Φ(ξ)f(ξ) dµ(ξ) =

∫

A

φ(ξ)Uf(ξ) dµ(ξ)

belongs to γ(L2(A; H), E) with norm

‖RΦ‖γ(L2(A;H),E) = ‖φ‖L2(A)‖U‖γ(H,E).

4. (!) Let again (A, A , µ) be a σ-finite measure space. For µ-simple functions
φ : A → γ(H, E) we define Rφ : L2(A; H) → E by

Rφf :=

∫

A

φ(ξ)f(ξ) dµ(ξ).

By the previous exercise, Rφ ∈ γ(L2(A; H), E).
a) Prove that if E has type 2, then the mapping φ 7→ Rφ has a unique ex-

tension to a continuous embedding L2(A; γ(H, E)) →֒ γ(L2(A; H), E).
Hint: Consider simple functions whose values are finite rank opera-
tors.

b) Prove the following converse for H = R and A = (0, 1): if the mapping
φ 7→ Rφ, defined for simple functions φ : (0, 1) → E, extends to a
bounded operator R from L2(0, 1; E) to γ(L2(0, 1), E), then E has
type 2.
Hint: Consider step functions.
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Examples of Banach space with type 2 are Hilbert spaces and Lp-spaces
for 2 6 p < ∞ (see Exercise 3.4).

Remark: The following ‘dual’ result also holds, with a similar proof: if E
has cotype 2, then the mapping RΦ 7→ Φ is well defined and has a unique
extension to a continuous embedding γ(L2(A; H), E) →֒ L2(A; γ(H, E)).
Conversely, if the mapping Rφ 7→ φ extends to a continuous embedding
γ(L2(0, 1), E) →֒ L2(0, 1; E), then E has cotype 2.

5. We present a proof of Theorem 5.23 due to Ciesielski. Another proof
will be outlined in the next lecture.
Without loss of generality we take T = 1 and set IT = I1 =: I.

a) Let γ be a standard Gaussian variable. Prove that

P{|γ| > t} 6
2

t
√

2π
e−

1

2
t2 .

b) Let (γn)∞n=1 be a Gaussian sequence. Use a) and the Borel-Cantelli
lemma to prove that for any α > 1, almost surely we have

|γn| 6
√

2α log(n + 1)

for all but at most finitely many n > 1.

The Haar basis of L2(0, 1) is defined by h1 ≡ 1 and hn := φjk for n > 2,
where n = 2j + k with j = 0, 1, 2, . . . and k = 1, . . . , 2j, and

φjk = 2j/21(
k−1
2j ,

k−1/2
2j

) − 2j/21(k−1/2
2j ,

k
2j

).

c) Prove that (hn)∞n=1 is an orthonormal basis for L2(0, 1).
d) Prove that, almost surely, the sum

∑
∞

n=1 γn(Ihn)(t) converges abso-
lutely and uniformly with respect to t ∈ [0, 1].
Hint: Use b) together with the observation that for all j > 0 and
t ∈ [0, 1], we have Iφjk(t) = 0 for all but at most one k ∈ {1, . . . , 2j}
and that for this k we have 0 6 Iφjk(t) 6 2−j/2−1.

e) Combine d) with Theorem 5.15 and the final assertion of the Itô-Nisio
theorem to deduce that I is γ-radonifying from L2(0, 1) to C[0, 1].

Notes. The class of γ-summing operators was introduced by Linde and
Pietsch [70]. A detailed study of γ-summing operators is presented in Di-

estel, Jarchow, Tonge [35, Chapter 12]. The notion of a γ-radonifying
operator is older and has its origins in the work of Gross [43]. Frequently
H is assumed to be separable and the equivalent conditions (2) and (3) of
Theorem 5.15 are taken as the definition of a γ-radonifying operator.

To explain the name ‘γ-radonifying’, let us first introduce some termi-
nology. A probability measure µ on a topological space E is called a Radon
measure if for all Borel sets B ⊆ E and ε > 0 there exists a compact subset
K ⊆ B such that µ(B \ K) < ε. If µ is the distribution of a random variable



5.4 Exercises 71

with values in a Banach space E, then µ is a Radon measure on E; this can
be deduced from Proposition 2.3 and some additional thought. Now Theorem
5.16 can be interpreted as saying that a bounded operator T : H → E is
γ-radonifying if and only if it maps the finitely additive standard Gaussian
measure γH (see the discussion in the Notes of Lecture 4) to a Radon measure
µ on E (viz., the Gaussian measure µ with covariance operator TT ∗).

In some sense, the class of γ-radonifying operators is the Gaussian ana-
logue of the class of p-absolutely summing operators, a fact with indicates
its importance from the point of view of Banach space theory. The interme-
diate notion of p-radonifying operators has been studied thoroughly by the
French school. We refer to Vakhania, Tarieladze, Chobanyan [105] for
more information and references to the literature.

The γ-Fatou lemma is essentially due to Kalton and Weis [58]. The
authors used γ-radonifying norms to extend certain results in spectral theory
involving square functions to the Banach space-valued setting. Propositions
5.12 and 5.14 are taken from [82].

Corollary 5.18 can be improved as follows: if X and Y are E-valued Gaus-
sian random variables satisfying E〈X, x∗〉2 6 E〈Y, x∗〉2 for all x∗ ∈ E∗ and
C ⊆ E is closed, convex, and symmetric, then

P{X 6∈ C} 6 P{Y 6∈ C}. (5.2)

This result is due to Anderson [2].
Without proof we mention the following result, essentially due to Neid-

hardt [85], which can be proved using Prokhorov’s theorem (Theorem 2.19)
and a Anderson’s inequality (see the Notes of Lecture 4):

Theorem 5.24 (γ-Dominated convergence). Suppose (Tn)∞n=1 is a se-
quence in L (H, E) and assume that there exist R ∈ γ(H, E) and T ∈
L (H, E) such that for all x∗ ∈ E∗ we have:

(1) ‖T ∗
nx∗‖ 6 ‖R∗x∗‖,

(2) limn→∞ T ∗
nx∗ = T ∗x∗ in H.

Then T ∈ γ(H, E) and limn→∞ Tn = T in the norm of γ(H, E).

The main idea is as follows. If X is a family E-valued Gaussian random
variables whose covariances are dominated by R in the sense of (1), then by
using Anderson’s inequality (5.2) it can be shown that X is uniformly tight,
and Prokhorov’s theorem can be applied.

The square function characterisation of γ-radonifying operators into Lp-
spaces of Theorem 5.20 is taken from [83]. For p = 2, Corollary 5.21 asserts
that if (A, A , µ) is a finite measure space, then every bounded operator from
H to L2(A) which factors through L∞(A) is Hilbert-Schmidt. In its present
form, the corollary was suggested to us by Haase. A related result is contained
in [83]; see also [106, Lemma 8.7.2]. The γ-Fubini isomorphism is taken from
[82].
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Exercise 2 is from [44]. Exercise 4 goes back to Hoffmann-Jorgensen

and Pisier [49] and Rosiński and Suchanecki [96]. In its present form it
was noted in [84]. From Kwapień’s theorem (see the notes of Lecture 3 and
Exercise 4) we deduce that the mapping φ 7→ Rφ induces an isomorphism of
Banach spaces

L2(0, 1; E) ≃ γ(L2(0, 1), E)

if and only if E is isomorphic to a Hilbert space.
The proof of Theorem 5.23 sketched in Exercise 5 is due to Ciesielski. He

used the uniform convergence of the sum
∑∞

n=1 γnIT hn to give an elementary
proof that a Brownian motion admits a version with continuous trajectories;
we return to this point in the lext lecture. According to Theorem 5.16, the
operator IT I∗T is the covariance of a Gaussian measure w on C[0, T ], the so-
called Wiener measure. A straightforward computation shows that

〈IT I∗T δs, δt〉 =

∫

C[0,T ]

f(s)f(t) dw(f) = min{s, t}, s, t ∈ [0, T ].

Here δs and δt are the Dirac measures concentrated at s and t. We refer to
the textbook of Steele [99] for a discussion of Ciesielki’s result as well as
some of its ramifications.


