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Stochastic integration I: the Wiener integral

The hard work in the previous lectures will pay off in this lecture, which is
devoted to stochastic integration. In view of future applications to stochastic
Cauchy problems we shall consider a setting where the integrands take values
in the space of operators L (H, E), where H is a Hilbert space and E a Banach
space, and the integrator is a H-cylindrical Brownian motion on a probability
space (Ω, F , P). It is advisable, however, to keep in mind the special case
H = R which concerns the stochastic integration of E-valued functions with
respect to a real-valued Brownian motion (cf. Corollary 6.18).

In this lecture we only consider stochastic integrals of functions Φ :
(0, T ) → L (H, E); such integrals are sometimes called Wiener integrals.
The more delicate problem of stochastic integration of stochastic processes
Φ : (0, T )×Ω → L (H, E) will be considered later on in this course. The theory
developed in the present lecture suffices for applications to linear stochastic
evolution equations with additive noise, which is the topic of the next couple
of lectures.

6.1 Brownian motion

An E-valued stochastic process (briefly, an E-valued process) indexed by a
set I is a family of E-valued random variables (X(i))i∈I defined on some
underlying probability space (Ω, F , P).

Definition 6.1. An E-valued process (X(i))i∈I is called Gaussian if for all
N > 1 and i1, . . . , iN ∈ I the EN -valued random variable (X(i1), . . . , X(iN))
is Gaussian.

6.1.1 Brownian motion

We start with the definition.
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Definition 6.2. A real-valued process (W (t))t∈[0,T ] is called a Brownian mo-
tion if it enjoys the following properties:

(i) W (0) = 0 almost surely;
(ii) W (t) − W (s) is Gaussian with variance t − s for all 0 6 s 6 t 6 T ;
(iii) W (t)−W (s) is independent of {W (r) : 0 6 r 6 s} for all 0 6 s 6 t 6 T .

In some texts, Brownian motions are called Wiener processes.

Proposition 6.3. Every Brownian motion is a Gaussian process.

Proof. Fix t1, . . . , tN ∈ [0, T ]. By independence, the R
N -valued random vari-

able (W (t1), W (t2)−W (t1), . . . , W (tN )−W (tN−1)) is Gaussian, and the ran-
dom variable (W (t1), . . . , W (tN )) is obtained from it under the linear trans-
formation (ρ1, . . . , ρN ) 7→ (ρ1, ρ1 + ρ2, . . . , ρ1 + · · · + ρN ). ⊓⊔

Here is a simple way to recognise Brownian motions:

Proposition 6.4. A real-valued Gaussian process (W (t))t∈[0,T ] is a Brownian
motion if and only if

E(W (s)W (t)) = min{s, t} ∀0 6 s, t 6 T.

Proof. Let us first prove the ‘if’ part. Property (i) follows from E(W (0))2 = 0.
To prove (ii) let 0 6 s 6 t 6 T . Then

E(W (t) − W (s))2 = t − 2 min{s, t} + s = t − s.

For (iii) we must prove that W (t)−W (s) is independent of (W (r1), . . . , W (rN ))
whenever 0 6 r1, . . . , rN 6 s 6 t 6 T (cf. Definition 3.4). Noting that
(W (r1), . . . , W (rN )) is the image of (W (r1), W (r2) − W (r1), . . . , W (rN ) −
W (rN−1)) under a linear transformation, it suffices to prove that W (t)−W (s)
is independent of (W (r1), W (r2) − W (r1), . . . , W (rN ) − W (rN−1)). For this,
in turn, it is enough to check that the random variables W (r1), W (r2) −
W (r1), . . . , W (rN )−W (rN−1), W (t)−W (s) are independent. By Proposition
4.10, all we have to check is their orthogonality in L2(Ω). But this follows
from a simple computation using E(W (s)W (t)) = min{s, t}.

To prove the ‘only if’ part let (W (t))t∈[0,T ] be a Brownian motion. Then
for all 0 6 s 6 t 6 T ,

2E(W (s)W (t)) = EW (s)2 + EW (t)2 − E(W (t) − W (s))2

= s + t − (t − s) = 2s = 2 min{s, t}. ⊓⊔

In order to prove the existence of Brownian motions it will be helpful to
introduce the notion of an isonormal process.

Let H be a Hilbert space with inner product [·, ·].
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Definition 6.5. An H -isonormal process on Ω is a mapping W : H →
L2(Ω) with the following two properties:

(i) For all h ∈ H the random variable W h is Gaussian;
(ii) For all h1, h2 ∈ H we have E(W h1 · W h2) = [h1, h2].

From (ii) it follows that for all scalars c1, c2 and all h1, h2 ∈ H one has

E(W (c1h1 + c2h2) − (c1W (h1) + c2W (h2)))
2 = 0.

As a consequence, H -isonormal processes are linear. By linearity we have∑N
n=1 cnW hn = W (

∑N
n=1 cnhn), which shows that for all h1, . . . , hN ∈ H the

R
N -valued random variable (W h1, . . . , W hN ) is Gaussian. Stated differently,

(W h)h∈H is a Gaussian process.

Example 6.6. If H is a separable Hilbert space with orthonormal basis
(hn)∞n=1 and (γn)∞n=1 is a Gaussian sequence, then W h :=

∑∞
n=1 γn[h, hn]

defines an H -isonormal process W . The verification is an easy exercise.

The next theorem provides the existence of Brownian motions:

Theorem 6.7. If W is an L2(0, T )-isonormal process, then W (t) := W 1[0,t]

defines a Brownian motion on [0, T ].

Proof. By the observation preceding Example 6.6, (W (t))t∈[0,T ] is a Gaussian
process. Since it satisfies E(W (s)W (t)) = [1[0,s], 1[0,t]]L2(0,T ) = min{s, t}, it is
a Brownian motion by Proposition 6.4. ⊓⊔

The Brownian motion constructed in Theorem 6.7 is given explicitly by

W (t) =

∞∑

n=1

γn[hn, 1[0,t]] =

∞∑

n=1

γn

∫ t

0

hn(s) ds, (6.1)

where (γn)∞n=1 is a Gaussian sequence and (hn)∞n=1 is an orthonormal basis
for L2(0, T ). This formula gives a profound connection between Brownian
motions and the integration operator IT : L2(0, T ) → C[0, T ] of Theorem
5.23. We return to this point in Exercise 2.

So far, we have never worried about the distinction between a pointwise
defined random variable X : Ω → E and its equivalence class modulo null
sets. When considering stochastic processes (X(i))i∈I , however, one is often
interested in properties of the trajectories i 7→ X(i, ω) := (X(i))(ω), where
ω ∈ Ω. Of course these are well-defined only if the X(i) are defined pointwise.
Since random variables are often given only as equivalence classes (for in-
stance, when they are constructed as elements of Lp(Ω; E)), one is confronted
with the problem of selecting, for each i ∈ I, a pointwise defined representa-
tive of X(i). The question then arises whether these representatives can be
chosen in a way that the trajectories have ‘good’ properties.

This discussion leads naturally to the following definition.
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Definition 6.8. Two (pointwise defined) processes X = (X(i))i∈I and X̃ =

(X̃(i))i∈I are versions of each other if for all i ∈ I we have X(i) = X̃(i)
almost surely.

Stated differently, X and X̃ are versions of each other if and only if X(i)

and X̃(i) define the same equivalence class for each i ∈ I. From now we shall
tacitly assume that processes are always pointwise defined.

The next result, due to Kolmogorov, gives a sufficient condition for the
existence of a (Hölder) continuous version of an E-valued process (X(t))t∈[0,T ].

Theorem 6.9 (Kolmogorov). Let (X(t))t∈[0,T ] be an E-valued process on
Ω with the property that there exist real constants C > 0, α > 0, β > 0, such
that

E‖X(t) − X(s)‖α
6 C(t − s)1+β ∀0 6 s 6 t 6 T.

Then for all 0 6 γ < β
α
, X has a version X̃ with Hölder continuous trajectories

of exponent γ, that is, for all ω ∈ Ω there is a constant C̃(ω) > 0 such that

‖X̃(t, ω) − X̃(s, ω)‖ 6 C̃(ω)|t − s|γ ∀0 6 s, t 6 T.

Proof. We may assume that T = 1 for notational simplicity. For j = 0, 1, . . .
put

Yj := sup
06k62j−1

‖X(k+1)2−j − Xk2−j‖.

Clearly,

EY α
j 6

2j−1∑

k=0

E‖X(k+1)2−j − Xk2−j‖α
6 2j · C2−(1+β)j = C2−βj.

Set Dj := {k2−j : k = 0, . . . , 2j−1} and D :=
⋃∞

j=0 Dj . Fix j > 0 and s, t ∈ D

satisfying |t − s| 6 2−j. For each n > 0 let sn and tn be the largest elements
in Dn such that sn 6 s and tn 6 t. Then either sn = tn or |tn − sn| = 2−n.
Similarly, sn+1 − sn and tn+1 − tn can only take the values 0 or 2−(n+1).
Moreover, eventually sn = s and tn = t. Hence,

‖Xt − Xs‖ 6 ‖Xsj
− Xtj

‖ +
∞∑

n=j

‖Xtn+1 − Xtn
‖ +

∞∑

n=j

‖Xsn+1 − Xsn
‖

6 Yj + 2

∞∑

n=j+1

Yn 6 2

∞∑

n=j

Yn,

where all sums are actually finite. Fixing 0 6 γ < β
α

we obtain

Z := sup{‖Xt − Xs‖/|t − s|γ : s, t ∈ D, s 6= t}

6 sup
j>0

{
2(j+1)γ sup

2−(j+1)<|t−s|62−j

‖Xt − Xs‖ : s, t ∈ D, s 6= t
}

6 sup
j>0

(
2(j+1)γ · 2

∞∑

n=j

Yn

)
6 2γ+1

∞∑

n=0

2γnYn.
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In case α > 1, the triangle inequality in Lα(Ω) gives

(EZα)
1
α 6 2γ+1

∞∑

n=0

2γn(EY α
n )

1
α 6 2γ+1

∞∑

n=0

2γn(C2−βn)
1
α ,

which is finite since we assumed that γ < β/α. For 0 < α < 1 we reason
similarly, replacing the triangle inequality by the inequality (

∑∞
n=0 |cn|)α 6∑∞

n=0 |cn|α. In either case, it follows that Z < ∞ almost surely.
In particular, almost surely X is uniformly continuous on D. On the set

{Z < ∞} we define X̃t = lims→t
s∈D

Xs and on the remaining null set we set

X̃t := 0. The process X̃ thus obtained has Hölder continuous trajectories of
exponent γ. By Fatou’s lemma and the assumption of the theorem, for all
t ∈ [0, 1] we have X̃t = Xt almost surely. Therefore X̃ is a version of X . ⊓⊔
Corollary 6.10. Every Brownian motion has a version with Hölder continu-
ous trajectories for any exponent γ < 1

2 .

Proof. From E|W (t) − W (s)|2 = |t − s| and Exercise 1 (or the Kahane-
Khintchine inequality), for k = 1, 2, . . . we obtain

E|W (t) − W (s)|2k = Ck|t − s|k,

and the result follows from Kolmogorov’s theorem upon letting k → ∞. ⊓⊔

6.1.2 Cylindrical Brownian motion

Definition 6.11. An L2(0, T ; H)-isonormal process is called an H-cylindrical
Brownian motion on [0, T ].

H-Cylindrical Brownian motions will be denoted by WH . For t ∈ [0, T ]
and h ∈ H we put

WH(t)h := WH(1(0,t) ⊗ h).

For each fixed h ∈ H the process (WH(t)h)h∈H is a Brownian motion, which
is standard if and only if ‖h‖H = 1.

Example 6.12. If (W (n))∞n=1 is a sequence of independent Brownian motions
and H is a separable Hilbert space with orthonormal basis (hn)∞n=1, then

WH(t)h :=

∞∑

n=1

W (n)(t)[h, hn]

defines an H-cylindrical Brownian motion (WH(t))t∈[0,T ]. The easy proof is
left as an exercise.

Remark 6.13. Let H = L2(D), where D is an open subset of R
d. An L2(D)-

cylindrical Brownian motion provides the mathematical model for ‘space-time
white noise’ on [0, T ]×D. This explains why H-cylindrical Brownian motions
appear naturally in the context of stochastic partial differential equations. We
will return to this in later lectures.
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6.2 The stochastic Wiener integral

After these preliminaries we turn to the problem of defining a stochastic in-
tegral of suitable functions Φ : (0, T ) → L (H, E) with respect to an H-
cylindrical Brownian motion WH .

For an L (H, E)-valued step function of the form Φ = 1(a,b) ⊗ (h ⊗ x)
with 0 6 a < b 6 T and h ∈ H , x ∈ E, we define the random variable∫ T

0 ΦdWH ∈ L2(Ω; E) by

∫ T

0

ΦdWH := WH(1(a,b) ⊗ h) ⊗ x = (WH(b)h − WH(a)h) ⊗ x

and extend this definition by linearity to step functions with values in the
finite rank operators in L (H, E); such functions will be called finite rank
step functions. In order to extend the stochastic integral to a broader class
of L (H, E)-valued functions, just as in the classical scalar-valued theory we
shall compute its square expectation.

We make the preliminary observation that any step function Φ : (0, T ) →
L (H, E) uniquely defines a bounded operator RΦ ∈ L (L2(0, T ; H), E) by
the formula

RΦf :=

∫ T

0

Φ(t)f(t) dt, f ∈ L2(0, T ; H).

Theorem 6.14 (Itô isometry). For all finite rank step functions Φ :
(0, T ) → L (H, E) we have RΦ ∈ γ(L2(0, T ; H), E), the stochastic integral∫ T

0 ΦdWH is a Gaussian random variable, and

E

∥∥∥
∫ T

0

ΦdWH

∥∥∥
2

= ‖RΦ‖2
γ(L2(0,T ;H),E).

Proof. Let Φ :=
∑N

n=1 1(tn−1,tn) ⊗ Un with 0 6 t0 < · · · < tN 6 T and
the operators Un ∈ L (H, E) of finite rank. It is an easy exercise in linear
algebra to check that there is no loss of generality in assuming that Un =∑k

j=1 hj ⊗ xjn, where the vectors h1, . . . , hk ∈ H are orthonormal (and do

not depend on n). Since RΦ is of finite rank, it belongs to γ(L2(0, T ; H), E).
Put φn := cn1(tn−1,tn), where the normalising constant cn := 1/

√
tn − tn−1

assures that the functions φ1, . . . , φN are orthonormal in L2(0, T ). The se-
quence (φn ⊗ hj) 16j6k

16n6N

is orthonormal in L2(0, T ; H), and from Lemma 5.7

we obtain that
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‖RΦ‖2
γ(L2(0,T ;H);E) = E

∥∥∥
k∑

j=1

N∑

n=1

γjnRΦ(φn ⊗ hj)
∥∥∥

2

= E

∥∥∥
k∑

j=1

N∑

n=1

γjn

∫ T

0

cn1(tn−1,tn)(t)Unhj dt
∥∥∥

2

= E

∥∥∥
k∑

j=1

N∑

n=1

γjn

√
tn − tn−1xjn

∥∥∥
2

,

where (γjn) 16j6k
16n6N

is a Gaussian sequence. On the other hand,

E

∥∥∥
∫ T

0

ΦdWH

∥∥∥
2

= E

∥∥∥
k∑

j=1

N∑

n=1

(WH(tn)hj − WH(tn−1)hj) ⊗ xjn

∥∥∥
2

= E

∥∥∥
k∑

j=1

N∑

n=1

WH(tn)hj − WH(tn−1)hj√
tn − tn−1

⊗
√

tn − tn−1xjn

∥∥∥
2

.

Putting γ′
jn := (WH(tn)hj − WH(tn−1)hj)/

√
tn − tn−1, the desired identity

now follows since (γ′
jn) 16j6k

16n6N

is a Gaussian sequence. ⊓⊔

As a consequence, the linear mapping JWH

T : RΦ 7→
∫ T

0 ΦdWH uniquely
extends to an isometric embedding

JWH

T : γ(L2(0, T ; H), E) → L2(Ω; E).

Accordingly, the stochastic integral of an operator R ∈ γ(L2(0, T ; H), E)
can be defined as JWH

T (R). In order for this to be useful we need a way
to recognise those L (H, E)-valued functions which ‘represent’ an operator in
γ(L2(0, T ; H), E). To this problem we turn next.

For a function Φ : (0, T ) → L (H, E) and elements h ∈ H and x∗ ∈ E∗

we define Φh : (0, T ) → E and Φ∗x∗ : (0, T ) → H by (Φh)(t) := Φ(t)h and
(Φ∗x∗)(t) := Φ∗(t)x∗ (where of course Φ∗(t) := (Φ(t))∗).

Definition 6.15. A function Φ : (0, T ) → L (H, E) is said to be stochas-
tically integrable with respect to the H-cylindrical Brownian motion WH if
there exists a sequence of finite rank step functions Φn : (0, T ) → L (H, E)
such that:

(i) for all h ∈ H we have limn→∞ Φnh = Φh in measure;

(ii) there exists an E-valued random variable X such that lim
n→∞

∫ T

0

Φn dWH =

X in probability.

The stochastic integral of a stochastically integrable function Φ : (0, T ) →
L (H, E) is then defined as the limit in probability
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∫ T

0

ΦdWH := lim
n→∞

∫ T

0

Φn dWH .

Three remarks are in order.

(a) Condition (i) means limn→∞ |{t ∈ (0, T ) : ‖Φn(t)h−Φ(t)h‖ > r}| = 0 for
all h ∈ H and r > 0, where |B| denotes the Lebesgue measure of B.

(b) The stochastic integral is well defined in the sense that it is independent
of the approximating sequence.

(c) From Theorem 4.15 it follows that the convergence in probability in condi-
tion (ii) is equivalent to convergence in Lp(Ω; E) for some (all) 1 6 p < ∞.

In the special case E = R we may identify L (H, R) = H∗ with H by the
Riesz representation theorem. Under this identification, Theorem 6.14 reduces
to the statement that the stochastic integral of a step function φ : (0, T ) → H
satisfies

E

∥∥∥
∫ T

0

φdWH

∥∥∥
2

= ‖φ‖2
L2(0,T ;H). (6.2)

From this it is immediate that a strongly measurable function φ : (0, T ) → H
is stochastically integrable with respect to WH if and only if φ ∈ L2(0, T ; H),
and the isometry (6.2) extends to functions φ ∈ L2(0, T ; H).

Definition 6.16. A function Φ : (0, T ) → L (H, E) is called H-strongly mea-
surable if for each h ∈ H the function Φh : (0, T ) → E is strongly measurable.

By Theorem 6.14 and a limiting argument, we see that if a function Φ is
stochastically integrable with respect to WH , then the integral operator RΦ

associated with Φ is well-defined and γ-radonifying. Interestingly, the converse
is true as well. These two statements are contained in the next theorem, which
is the main result of this lecture.

Theorem 6.17. Let WH be an H-cylindrical Brownian motion. For an H-
strongly measurable function Φ : (0, T ) → L (H, E) the following assertions
are equivalent:

(1) Φ is stochastically integrable with respect to WH ;
(2) Φ∗x∗ ∈ L2(0, T ; H) for all x∗ ∈ E∗, and there exists an E-valued random

variable X such that for all x∗ ∈ E∗, almost surely we have

〈X, x∗〉 =

∫ T

0

Φ∗x∗ dWH ;

(3) Φ∗x∗ ∈ L2(0, T ; H) for all x∗ ∈ E∗, and there exists an operator R ∈
γ(L2(0, T ; H), E) such that for all f ∈ L2(0, T ; H) and x∗ ∈ E∗ we have

〈Rf, x∗〉 =

∫ T

0

〈Φ(t)f(t), x∗〉 dt.
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If these equivalent conditions are satisfied, the random variable X and the

operator R are uniquely determined, we have X =
∫ T

0 ΦdWH almost surely,
and

E

∥∥∥
∫ T

0

ΦdWH

∥∥∥
2

= ‖R‖2
γ(L2(0,T ;H),E).

In the situation of (3) we say that Φ represents the operator R. Note that
condition (3) does not depend on the particular choice of WH .

Proof. We shall prove the implications (1)⇒(2)⇒(4)⇒(3)⇒(1), where

(4) Φ∗x∗ ∈ L2(0, T ; H) for all x∗ ∈ E∗, and there exists a γ-radonifying

operator R̃ from a Hilbert space H̃ to E such that for all x∗ ∈ E∗ we have

‖Φ∗x∗‖L2(0,T ;H) 6 ‖R̃∗x∗‖ eH
.

(1)⇒(2): Let (Φn)∞n=1 be an approximating sequence of finite rank step

functions for Φ and take X :=
∫ T

0
ΦdWH . As we have already observed,

limn→∞

∫ T

0 Φn dWH = X in L2(Ω; E). Hence,

lim
n→∞

∫ T

0

Φ∗
nx∗ dWH = lim

n→∞

〈 ∫ T

0

Φn dWH , x∗
〉

= 〈X, x∗〉

in L2(Ω), where the first identity is verified by writing out the definitions. By
the special case of the Itô isometry contained in (6.2), the sequence (Φ∗

nx∗)∞n=1

is Cauchy in L2(0, T ; H). Let f be its limit. Since limn→∞〈Φnh, x∗〉 = 〈Φh, x∗〉
in measure, it follows that f = Φ∗x∗ in L2(0, T ; H). Once more by (6.2),

lim
n→∞

∫ T

0

Φ∗
nx∗ dWH =

∫ T

0

Φ∗x∗ dWH .

(2)⇒(4): Let iX ∈ γ(HX , E) be defined by (4.3). Then, by (6.2),

∫ T

0

‖Φ∗(t)x∗‖2 dt = E

∥∥∥
∫ T

0

Φ∗x∗ dWH

∥∥∥
2

= E〈X, x∗〉2 = ‖i∗Xx∗‖2.

(4)⇒(3): The formula

(RΦf)(x∗) :=

∫ T

0

[f(t), Φ∗(t)x∗] dt, f ∈ L2(0, T ; H), x∗ ∈ E∗,

defines a bounded operator RΦ from L2(0, T ; H) to E∗∗. Once we know that
RΦ maps L2(0, T ; H) into E, Theorem 5.17 shows that RΦ ∈ γ(L2(0, T ; H), E).

For the proof that RΦ takes values in E we invoke Theorem 1.20. By
assumption, for all h ∈ H the function Φh is strongly measurable and the
functions 〈Φh, x∗〉 = [h, Φ∗x∗] are square integrable. It follows that Φh is
Pettis integrable. Therefore, for step functions f , the element RΦf ∈ E∗∗ is
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given by the Pettis integral
∫ T

0
Φ(t)f dt in E. Thus, RΦf ∈ E for all step

functions f : (0, T ) → H . Since these functions are dense in L2(0, T ; H), a
limiting argument implies that RΦf ∈ E for all f ∈ L2(0, T ; H).

(3)⇒(1): We split the proof into three steps.
Step 1 - We begin by constructing an E-valued random variable X , which

will turn out later to be the stochastic integral
∫ T

0
ΦdWH .

By Proposition 5.10 there is a separable closed subspace H0 of L2(0, T ; H)
such that Rf = 0 for all f ∈ H ⊥

0 . Choose a separable closed subspace H0

of H such that H0 ⊆ L2(0, T ; H0). Note that the range of R∗ is contained in
H0, hence in L2(0, T ; H0).

Let (fm)∞m=1 and (hn)∞n=1 be orthonormal bases for L2(0, T ) and H0,
respectively. The functions φmn := fm ⊗ hn define an orthonormal ba-
sis (φmn)∞m,n=1 for L2(0, T ; H0). By (6.2) the random variables γmn :=∫ T

0
φmn dWH are standard Gaussian, and the linearity of the stochastic in-

tegral implies that they are jointly Gaussian. The orthonormality of the φmn

implies that the γmn are orthonormal in L2(Ω), and therefore independent
by Proposition 4.10. Thus we have shown that (γmn)∞m,n=1 is a Gaussian se-
quence.

Put

X :=

∞∑

m,n=1

γmnRφmn.

This sum converges in L2(Ω; E) by Theorem 5.15. Moreover, the identity
〈Rφmn, x∗〉 = [Φ∗x∗, φmn]L2(0,T ;H0) implies Φ∗x∗ = R∗x∗ ∈ L2(0, T ; H0) and

〈X, x∗〉 =

∞∑

m,n=1

∫ T

0

〈Rφmn, x∗〉φmn dWH

=

∫ T

0

∞∑

m,n=1

〈Rφmn, x∗〉φmn dWH =

∫ T

0

Φ∗x∗ dWH ,

(6.3)

where the second identity follows from L2(0, T ; H)-convergence and (6.2).
Step 2 - Define the operators Φk(t) ∈ L (H, E) by

Φk(t)h :=
2k∑

j=1

1
( (j−1)T

2k
,

jT

2k
)
(t)RUjkh,

where Ujk ∈ L (H, L2(0, T ; H)) is given by Ujkh := 2k

T
1
( (j−1)T

2k
,

jT

2k
)
⊗ h. Note

that RUjk ∈ γ(H, E) by the ideal property. Hence, each Φk is an γ(H, E)-
valued step function. The identity

〈Φk(t)h, x∗〉 =

2k∑

j=1

1
( (j−1)T

2k
,

jT

2k
)

2k

T

∫ jT

2k

(j−1)T

2k

〈Φ(t)h, x∗〉 dt

shows that Φk is obtained from Φ by averaging. We will show that
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(i) limk→∞ Φkh = Φh in measure for all h ∈ H ,

(ii) limk→∞

∫ T

0
Φk dWH = X in probability, where X is as in Step 1.

To prove (i) fix h ∈ H and assume that ‖h‖ = 1. To get around the difficulty
that we cannot be sure that Φh ∈ L2(0, T ; E) we do a trunction argument.

Fix an arbitrary ε > 0. For r > 0 define S(r) ∈ L (L2(0, T ; H)) by S(r)f :=
1{‖Φ(t)h‖6r}f. Using Proposition 5.12 choose r0 > 0 so large that

‖R − RS(r0)‖γ(L2(0,T ;H),E) < ε, |{t ∈ (0, T ) : ‖Φ(t)h − f (r0)(t)‖ > ε}| < ε,

where f (r0)(t) := 1{‖Φ(t)h‖6r0}Φ(t)h. Since f (r0) ∈ L2(0, T ; E), by the proper-
ties of averaging operators (see Exercise 3) we have

f (r0) = lim
k→∞

2k∑

j=1

1
( (j−1)T

2k
,

jT

2k
)

2k

T

∫ jT

2k

(j−1)T

2k

f (r0)(t) dt = lim
k→∞

f
(r0)
k (6.4)

in L2(0, T ; E), where f
(r0)
k :=

∑2k

j=1 1
( (j−1)T

2k
, jT

2k
)
RS(r0)Ujkh.

If s ∈ ( (j−1)T
2k , jT

2k ), then

‖f (r0)
k (s)−Φk(s)h‖ = ‖RS(r0)Ujkh−RUjkh‖ 6 ‖R−RS(r0)‖γ(L2(0,T ;H),E) < ε.

Hence,
|{t ∈ (0, T ) : ‖Φ(t)h − Φk(t)h‖ > 3ε}|

6 ε + |{t ∈ (0, T ) : ‖f (r0)(t) − f
(r0)
k (t)‖ > ε}|

+ |{t ∈ (0, T ) : ‖f (r0)
k (t) − Φk(t)h‖ > ε}|

= ε + |{t ∈ (0, T ) : ‖f (r0)(t) − f
(r0)
k ‖ > ε}|.

Since ε > 0 was arbitrary, (i) follows from (6.4) by letting k → ∞.
We continue with the proof of (ii). Put

X1 =

∫ T

0

Φ1 dWH , Xn =

∫ T

0

(Φn − Φn−1) dWH for n > 2.

We claim that the random variables Xn are independent. By the linearity
of the stochastic integral, the random variables Xn are jointly Gaussian and
therefore by Proposition 4.10 it suffices to check that E〈Xm, x∗〉〈Xn, y∗〉 = 0
for m 6= n and x∗, y∗ ∈ E∗. By (6.2) and linearity, the expectation equals

∫ T

0

[Φ∗
m(t)x∗ − Φ∗

m−1(t)x
∗, Φ∗

n(t)y∗ − Φ∗
n−1(t)y

∗] dt

using the convention that Φ0 = 0. By a direct computation using the proper-
ties of the averaging operators, this expression equals 0.

Put SN :=
∑N

n=1 Xn =
∫ T

0 ΦN dWH . By (6.3), (6.2), and the properties of
averaging operators, for all x∗ ∈ E∗ we have
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lim
N→∞

E〈X − SN , x∗〉2 = lim
N→∞

‖Φ∗x∗ − Φ∗
Nx∗‖2

L2(0,T ;H) = 0

and therefore limN→∞〈SN , x∗〉 = 〈X, x∗〉 in probability. The Itô-Nisio theo-
rem implies that limN→∞ SN = X in probability.

Step 3 – So far, we have found a sequence of γ(H, E)-valued step functions
(Φn)∞n=1 with the convergence properties as required in Definition 6.15. To
conclude the proof we approximate the values of the functions Φn by finite
rank operators. ⊓⊔

Corollary 6.18. A strongly measurable function φ : (0, T ) → E is stochasti-
cally integrable with respect to a real-valued Brownian motion if and only if φ
represents an operator R ∈ γ(L2(0, T ), E).

As an application of Theorem 6.17 we have the following domination cri-
terion for stochastic integrability.

Theorem 6.19. Suppose that Φ1, Φ2 : (0, T ) → L (H, E) are H-strongly mea-
surable functions, and assume that Φ2 stochastically integrable with respect to
the H-cylindrical Brownian motion WH . If

∫ T

0

‖Φ∗
1(t)x

∗‖2 dt 6

∫ T

0

‖Φ∗
2(t)x

∗‖2 dt ∀x∗ ∈ E∗,

then Φ1 is stochastically integrable with respect to WH , and for all 1 6 p < ∞
we have

E

∥∥∥
∫ T

0

Φ1 dWH

∥∥∥
p

6 E

∥∥∥
∫ T

0

Φ2 dWH

∥∥∥
p

.

Proof. First note that by Theorem 6.17, for all x∗ ∈ E∗ the function Φ∗
2x

∗

belongs to L2(0, T ; H). By (4) in the proof of Theorem 6.17, Φ2 represents an
operator R2 ∈ γ(L2(0, T ; H), E). In view of R∗

2x
∗ = Φ∗

2x
∗ we have

∫ T

0

‖Φ∗
2(t)x

∗‖2 dt = ‖R∗
2x

∗‖2
L2(0,T ;H).

Let RΦ1 ∈ γ(L2(0, T ; H), E) denote the operator representing Φ1 whose exis-
tence is assured by Theorem 6.17 (3). The first assertion follows by applying
Theorem 6.17 to Φ1 and the Lp-inequality follows from Corollary 5.18. ⊓⊔

6.3 Exercises

1. (!) Let γ be a Gaussian random variable with variance Eγ2 = q. Compute
Eγ2k, k = 1, 2, . . .
Hint: Express Eγ2k+2 in terms of Eγ2k.
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2. In view of the identity (6.1), Theorem 5.23 provides another proof of the
existence of a continuous version for Brownian motions. In this exercise
we show that in the converse direction Theorem 5.23 can be deduced from
the path continuity of Brownian motions.
Let W be a Brownian motion and let W̃ be a version of it with continuous
trajectories.

a) Use the Pettis measurability theorem to prove that the function XT :

Ω → C[0, T ] defined by (XT (ω))(t) := W̃ (t, ω) is strongly measurable.
Hint: The Dirac measures span a norming subspace in (C[0, T ])∗.

b) Show that the random variable XT is Gaussian.
c) Show that the covariance operator QT of XT is given by QT = IT I∗T ,

where IT : L2(0, T ) → C[0, T ] is the integration operator of Theorem
5.23, and deduce from this that IT is γ-radonifying.

3. Fix 1 6 p < ∞. For n = 0, 1, 2, . . . define the linear operators An :
Lp(0, T ; E) → Lp(0, T ; E) by

Anf :=

2n∑

j=1

1
(
(j−1)T

2n ,
jT

2n )
⊗ xjn,

where

xjn :=
2n

T

∫ jT

2n

(j−1)T
2n

f(t) dt.

a) Show that each An is bounded and satisfies ‖An‖ = 1.
b) Show that limn→∞ Anf = f in Lp(0, T ; E) for all f ∈ Lp(0, T ; E).

Hint: What happens if f is a dyadic step function?
c) Prove the assertion involving averaging operators in Step 3 (ii) of the

proof of (3)⇒(1) of Theorem 6.17.

4. Let the function Φ : (0, T ) → L (H, E) be stochastically integrable with
respect to WH .

a) Show that for all t ∈ [0, T ] the restriction of Φ|(0,t) is stochastically
integrable on (0, t) with respect to WH , that 1(0,t)Φ is stochastically
integrable on (0, T ) with respect to WH , and that almost surely

∫ t

0

ΦdWH =

∫ T

0

1(0,t)ΦdWH .

We consider the E-valued process X , where Xt =
∫ t

0 ΦdWH for t ∈ [0, T ].

b) Show that X is a Gaussian process.
c) Show that X has trajectories in Lp(0, T ; E) almost surely for every

1 6 p < ∞.

Hint: Prove the stronger statement that E
∫ T

0 ‖X(t)‖p dt < ∞.
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Remark: Using martingale techniques it can be shown that X has a
continuous version. We return to this later on.

5. Suppose that Φ : (0, T ) → L (H, E) is stochastically integrable with re-
spect to the H-cylindrical Brownian motion WH .
a) Show that for each h ∈ H function Φh is stochastically integrable with

respect to the Brownian motions WHh.
b) Prove the following series expansion: if H is separable, then for any

orthonormal basis (hn)∞n=1 of H we have

∫ T

0

ΦdWH =

∞∑

n=1

∫ T

0

Φhn dWHhn,

with convergence almost surely and in Lp(Ω; E) for all 1 6 p < ∞.
Hint: First consider the functions ΦPn, where Pn is the orthogonal
projection in H onto the span of {h1, . . . , hn}.

Notes. The notion of Brownian motion has its origin in the observations
by the botanist Brown (1773-1858) who observed that small particles sus-
pended in a fluid display random movements. The first rigorous mathematical
treatment was given by Wiener in the 1920s.

The proof of Theorem 6.9 is taken from Revuz and Yor [94]. Its Corollary
6.10 is nearly optimal in the following sense: almost surely, one has

lim sup
δ↓0

max
|t−s|6δ

|W (t) − W (s)|√
2|t − s| ln(1/|t − s|)

= 1.

This is a classical result of Lévy. In particular it shows that almost surely the
paths of a Brownian motion are nowhere Hölder continuous of exponent 1

2 .
For proofs and further results on Brownian motion we refer to Karatzas and
Shreve [59] and Revuz and Yor [94]. A more recent result of Ciesielski

[23] asserts that almost surely, the trajectories of Brownian motions belong

to the Besov space B
1
2
p,∞ for all 1 6 p < ∞. This result was extended to

Banach space-valued Brownian motions, with a simpler proof, by Hytönen

and Veraar [51].
For accessible introductions to the classical (scalar-valued) theory of

stochastic integration we refer to the books by Chung and Williams [22],
Kuo [63], Oksendal [86], and Steele [99]. For scalar-valued functions,
the isometry of Theorem 6.14 goes back to Wiener and was generalised to
stochastic processes in the fundamental work of Itô.

By combining the observation on Kwapień’s theorem in the Notes of the
previous lecture with Corollary 6.18 we obtain that the following assertions
are equivalent for a Banach space E:

(1) the space of strongly measurable E-valued functions f : (0, T ) → E which
are stochastically integrable with respect to Brownian motion equals
L2(0, T ; E);
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(2) the space E is isomorphic to a Hilbert space.

An explicit example of a uniformly bounded function f : (0, 1) → lp for
1 6 p < 2 which fails to be stochastically integrable was constructed in an
early stage of the theory by Yor [110]. Further examples along this line were
constructed Rosiński and Suchanecki [96] who also proved (for H = R)
the equivalence (1)⇔(2) of Theorem 6.17. Step 3 of the proof of (3)⇒(1) in
Theorem 6.17 is a variation of their argument. In its present formulation,
Theorem 6.17 can be found in [84]; a preliminary version was obtained in [16]
by using different methods. The idea in Step 2 of the proof of (3)⇒(1) is taken
from [84]. The implication (3)⇒(1) can alternatively be derived from variant
of Theorem 5.24. This is the approach taken in [84], where also Theorems
6.14, 6.19, and the result of Exercise 5 were obtained.

In the Hilbert space literature, the series expansions of Example 6.12 and
Exercise 5 are often taken as the starting point for defining the stochastic
integral; see for instance the monograph of Da Prato and Zabczyk [27].

A more probabilistic approach to the theory of stochastic integration in
Banach spaces is taken by Métivier and Pellaumail [76].


