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Semigroups of linear operators

Having developed the probabilistic tools needed for our study of stochastic
evolution equations, in this lecture we turn to the theory of C0-semigroups.
We review their basic properties and show how semigroups are used to solve
the (deterministic) inhomogeneous abstract Cauchy problem

u′(t) = Au(t) + f(t).

Here A generates a C0-semigroup on E and the forcing term f is a locally in-
tegrable E-valued function. As we shall see in the next lecture, the techniques
for solving this problem by means of so-called weak and strong solutions can
be extended to stochastic abstract Cauchy problems with additive noise, the
main difference being that Bochner integrals are replaced by the stochastic
integrals introduced in the previous lecture. Heuristically, the reason why this
works is that the noise can be viewed as a ‘random’ forcing term.

7.1 C0-semigroups

Linear equations of mathematical physics can often be cast in the abstract
form {

u′(t) = Au(t), t ∈ [0, T ],

u(0) = x,
(ACP)

where A is a linear, usually unbounded, operator defined on a linear subspace
D(A), the domain of A, of a Banach space E. Typically, E is a Banach space
of functions suited for the particular problem and A is a partial differential op-
erator. The abstract initial value problem (ACP) is referred to as the abstract
Cauchy problem associated with A.

Example 7.1. Let D be an open domain in Rd with topological boundary ∂D.
On D we consider the heat equation
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∂u

∂t
(t, ξ) = ∆u(t, ξ), t ∈ [0, T ], ξ ∈ D;

u(t, ξ) = 0, t ∈ [0, T ], ξ ∈ ∂D;

u(0, ξ) = u0(ξ), ξ ∈ D.

(7.1)

For initial values x = u0 ∈ Lp(D) with 1 6 p < ∞, this problem can be
rewritten in the abstract form (ACP) by taking E = Lp(D) and defining A
by

D(A) := {f ∈ W 2,p(D) : f |∂D ≡ 0} = W 2,p(D) ∩ W 1,p
0 (D),

Af := ∆f, f ∈ D(A).

Here, W k,p(D) is the Sobolev space of all f ∈ Lp(D) whose weak partial

derivatives up to order k exist and belong to Lp(D), W k,p
0 (D) is the closure

in W k,p(D) of all test functions f ∈ C∞
c (D), and ∆ =

∑d
j=1

∂2

∂ξ2

j

is the

Laplacian. Note how the boundary condition is built into the definition of A
by the specification of its domain.

The idea is now that instead of looking for a solution u : [0, T ] × D → R

of (7.1) one looks for a solution u : [0, T ] → Lp(D) of (ACP). To get an idea
how this may be done we first take a look at the much simpler case where
E = Rd and A : D(A) = E → E is represented by a (d × d)-matrix. In that
case, the unique solution of (ACP) is given by

u(t) = etAu0, t ∈ [0, T ],

where etA =
∑∞

n=0
tnAn

n! . The matrices etA may be thought of as ‘solution
operators’ mapping the initial value u0 to the solution etAu0 at time t. Clearly,
e0A = I, etAesA = e(t+s)A, and t 7→ etA is continuous. We generalise these
properties to infinite dimensions as follows.

Let E be a real or complex Banach space.

Definition 7.2. A family S = {S(t)}t>0 of bounded linear operators acting
on a Banach space E is called a C0-semigroup if the following three properties
are satisfied:

S1. S(0) = I;
S2. S(t)S(s) = S(t + s) for all t, s > 0;
S3. limt↓0 ‖S(t)x − x‖ = 0 for all x ∈ E.

The infinitesimal generator, or briefly the generator, of S is the linear operator
A with domain D(A) defined by

D(A) = {x ∈ E : lim
t↓0

1

t
(S(t)x − x) exists},

Ax = lim
t↓0

1

t
(S(t)x − x), x ∈ D(A).
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We shall frequently use the trivial observation that if A generates the C0-
semigroup (S(t))t>0, then A − µ generates the C0-semigroup (e−µtS(t))t>0.

The next two propositions collect some elementary properties of C0-
semigroups and their generators.

Proposition 7.3. Let S be a C0-semigroup on E. There exist constants M >

1 and µ ∈ R such that ‖S(t)‖ 6 Meµt for all t > 0.

Proof. There exists a number δ > 0 such that supt∈[0,δ] ‖S(t)‖ =: σ < ∞.
Indeed, otherwise we could find a sequence tn ↓ 0 such that limn→∞ ‖S(tn)‖ =
∞. By the uniform boundedness theorem, this implies the existence of an
x ∈ E such that supn>1 ‖S(tn)x‖ = ∞, contradicting the strong continuity
assumption (S3). This proves the claim. By the semigroup property (S2), for
t ∈ [(k − 1)δ, kδ] it follows that ‖S(t)‖ 6 σk 6 σ(t+1)/δ, where the second

inequality uses that σ > 1 by (S1). This proves the proposition, with M = σ
1

d

and µ = 1
d lnσ. ⊓⊔

Proposition 7.4. Let S be a C0-semigroup on E with generator A.

(1) For all x ∈ E the orbit t 7→ S(t)x is continuous for t > 0.
(2) For all x ∈ D(A) and t > 0 we have S(t)x ∈ D(A) and AS(t)x = S(t)Ax.

(3) For all x ∈ E we have
∫ t

0
S(s)xds ∈ D(A) and

A

∫ t

0

S(s)xds = S(t)x − x.

If x ∈ D(A), then both sides are equal to
∫ t

0
S(s)Axds.

(4) The generator A is a closed and densely defined operator.
(5) For all x ∈ D(A) the orbit t 7→ S(t)x is continuously differentiable for

t > 0 and
d

dt
S(t)x = AS(t)x = S(t)Ax, t > 0.

Proof. (1): The right continuity of t 7→ S(t)x follows from the right continuity
at t = 0 (S3) and the semigroup property (S2). For the left continuity, observe
that

‖S(t)x − S(t − h)x‖ 6 ‖S(t − h)‖‖S(h)x − x‖ 6 sup
s∈[0,t]

‖S(s)‖‖S(h)x − x‖,

where the supremum is finite by Proposition 7.3.
(2): This follows from the semigroup property:

lim
h↓0

1

h
(S(t + h)x − S(t)x) = S(t) lim

h↓0

1

h
(S(h)x − x) = S(t)Ax.

(3): The first identity follows from
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lim
h↓0

1

h
(S(h) − I)

∫ t

0

S(s)xds = lim
h↓0

1

h

( ∫ t

0

S(s + h)xds −

∫ t

0

S(s)xds
)

= lim
h↓0

1

h

( ∫ t+h

t

S(s)xds −

∫ h

0

S(s)xds
)

= S(t)x − x,

where we used the continuity of t 7→ S(t)x. The identity for x ∈ D(A) will
follow from the second part of the proof of (4).

(4): Denseness of D(A) follows from the first part of (3), since by (1) we

have limt↓0
1
t

∫ t

0
S(s)xds = x.

To prove that A is closed we must check that the graph G (A) = {(x, Ax) :
x ∈ D(A)} is closed in E × E. Suppose that (xn)∞n=1 is a sequence in D(A)
such that limn→∞ xn = x and limn→∞ Axn = y in E. We must show that
x ∈ D(A) and Ax = y. Using that limt↓0

1
t (S(t) − I)S(s)xn = S(s)Axn

uniformly for s ∈ [0, h], we obtain

1

h
(S(h)x − x) = lim

n→∞

1

h
(S(h)xn − xn)

= lim
n→∞

1

h

(
A

∫ h

0

S(s)xn ds
)

= lim
n→∞

1

h
lim
t↓0

1

t
(S(t) − I)

∫ h

0

S(s)xn ds

= lim
n→∞

1

h
lim
t↓0

∫ h

0

1

t
(S(t) − I)S(s)xn ds

= lim
n→∞

1

h

∫ h

0

S(s)Axn ds

=
1

h

∫ h

0

S(s)y ds.

Passing to the limit for h ↓ 0 this gives x ∈ D(A) and Ax = y. The above
identities also prove the second part of (3).

(5): This follows from (1), (2), and the definition of A. ⊓⊔

In hindsight, the second part of (3) is a special case of Hille’s theorem.
However, our proof of the closedness of A already gave the result in this
particular case.

Definition 7.5. A classical solution of (ACP) is a continuous function u :
[0, T ] → E which belongs to C1((0, T ]; E) ∩ C((0, T ]; D(A)) and satisfies
u(0) = x and u′(t) = Au(t) for all t ∈ (0, T ].

Here D(A) is regarded as a Banach space endowed with the graph norm.

Corollary 7.6. For initial values x ∈ D(A) the problem (ACP) has a unique
classical solution, which is given by u(t) = S(t)x.
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Proof. Part (5) of the proposition proves that t 7→ u(t) = S(t)x is a classical
solution. Suppose that t 7→ v(t) is another classical solution. It is easy to check
that the function s 7→ S(t − s)v(s) is continuous on [0, t] and continuously
differentiable on (0, t) with derivative

d

ds
S(t − s)v(s) = −AS(t − s)v(s) + S(t − s)v′(s) = 0

where we used that v is a classical solution. Thus, s 7→ S(t−s)v(s) is constant
on every interval [0, t]. Since v(0) = x it follows that v(t) = S(t − t)v(t) =
S(t − 0)v(0) = S(t)x = u(t). ⊓⊔

Note that for x ∈ D(A) the orbit t 7→ S(t)x even belongs to C1([0, T ]; E)∩
C([0, T ]; D(A)). The reason for defining classical solutions as we did above is
that there exist important classes of C0-semigroups which have the property
that t 7→ S(t)x is a classical solution not only for x ∈ D(A), but for all x ∈ E.
An example is the class of analytic C0-semigroups which will be studied later
on in this course.

Definition 7.7. Let T be a linear operator with domain D(T ) on a complex
Banach space E. The resolvent set of T is the set ̺(T ) consisting of all λ ∈ C

for which there exists a (necessarily unique) bounded linear operator R(λ, T )
on E such that

(i) R(λ, T )(λ − T )x = x for all x ∈ D(T );
(ii) R(λ, T )x ∈ D(T ) and (λ − T )R(λ, T )x = x for all x ∈ E.

The spectrum of T is the complement σ(T ) := C \ ̺(T ).

We call R(λ, T ) = (λ−T )−1 the resolvent of T at λ. It is routine to check
the resolvent identity: for all λ1, λ2 ∈ ̺(T ) we have

R(λ1, T ) − R(λ2, T ) = (λ2 − λ1)R(λ1, T )R(λ2, T ).

When T is an operator on a real Banach space we put ̺(T ) := ̺(TC) and
σ(T ) := σ(TC), where TC is the complexification of T (see Exercise 1).

In the next two lemmas, A is the generator of a C0-semigroup S on a
Banach space E (in the case of a real Banach space, all formulas involving
complex numbers should be interpreted in terms of complexifications). We fix
constants M > 1 and µ ∈ R such that ‖S(t)‖ 6 Meµt for all t > 0.

Proposition 7.8. We have {λ ∈ C : Reλ > µ} ⊆ ̺(A) and on this set the
resolvent of A is given by

R(λ, A)x =

∫ ∞

0

e−λtS(t)xdt, x ∈ E.

As a consequence, for Reλ > µ we have

‖R(λ, A)‖ 6
M

Reλ − µ
.
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Proof. Fix x ∈ E and define Rλx :=
∫ ∞

0
e−λtS(t)xdt. From a straightforward

computation using the semigroup property we obtain the identity

lim
h↓0

1

h
(S(h) − I)Rλx = λRλx − x

from which it follows that Rλx ∈ D(A) and ARλx = λRλx − x. This shows
that the bounded operator Rλ is a right inverse for λ − A.

Integrating by parts and using that d
dtS(t)x = S(t)Ax for x ∈ D(A) we

obtain

λ

∫ T

0

e−λtS(t)xdt = −e−λT S(T )x + x +

∫ T

0

e−λtS(t)Axdt.

Since Reλ > µ, sending T → ∞ gives λRλx = x+RλAx. This shows that Rλ

is also a left inverse. ⊓⊔

Lemma 7.9. For all x ∈ E we have limλ→∞ λR(λ, A)x = x.

Proof. First we prove this for x ∈ D(A) by using the resolvent identity. Pick
λ′ > µ. Writing (λ′ − A)x =: y we have

λR(λ, A)x − x =
λ

λ − λ′
(R(λ′, A)y − R(λ, A)y) − R(λ′, A)y

Passing to the limit λ → ∞ the right hand side tends to 0. This gives the result
for x ∈ D(A). By the estimate of Proposition 7.8, the operators λR(λ, A) are
uniformly bounded for λ > µ0 > µ. Therefore the result for x ∈ E follows by
density. ⊓⊔

This lemma self-improves to limλ→∞ λnR(λ, A)nx = x, which shows that
D(An) is dense in E for all n > 1.

7.2 Duality

For the discussion of the inhomogeneous Cauchy problem in the next sec-
tion we need some preliminary material on duality of densely defined linear
operators.

Let E1 and E2 be Banach spaces. To keep track of domains it will be
useful to define a linear operator A with domain D(A) from E1 to E2 as a
pair (A, D(A)), where D(A) is a linear subspace of E1 and A : D(A) → E2

is a linear mapping. If (A, D(A)) is densely defined, that is, if D(A) is dense
in E1, we may define a linear operator (A∗, D(A∗)) from E∗

2 to E∗
1 in the

following way. Define D(A∗) to be the set of all x∗
2 ∈ E∗

2 with the property
that there exists an element x∗

1 ∈ E∗
1 such that

〈x, x∗
1〉 = 〈Ax, x∗

2〉, ∀x ∈ D(A).
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Since D(A) is dense in E1, the element x∗
1 ∈ E∗

1 (if it exists) is unique and we
set

A∗x∗
2 := x∗

1, x∗
2 ∈ D(A∗).

Definition 7.10. Let (A, D(A)) be a densely defined linear operator. The op-
erator (A∗, D(A∗)) is called the adjoint of (A, D(A)).

In order to discuss the properties of A∗ in a systematic way it is helpful
to consider the topology on the dual space E∗ induced by the elements of a
Banach space E, the so-called weak∗-topology.

Definition 7.11. The weak∗-topology on E∗ is the topology generated by all
sets of the form

{x∗ ∈ E∗ : |〈x, y∗ − x∗〉| < ε}

where x ∈ E, y∗ ∈ E∗, and ε > 0.

It is easily checked that the mappings x∗ 7→ 〈x, y∗−x∗〉 are continuous with
respect to the weak∗-topology, and that the weak∗-topology is the coarsest
topology on E∗ with this property.

Lemma 7.12. Let V be a non-empty subset of E. The annihilator

V ⊥ := {x∗ ∈ E∗ : 〈v, x∗〉 = 0 for all v ∈ V }

is weak∗-closed.

Proof. Let y∗ 6∈ V ⊥ be arbitrary. By assumption there exists v ∈ V such that
〈v, y∗〉 6= 0. The set

U :=
{
x∗ ∈ E∗ : |〈v, y∗ − x∗〉| <

1

2
|〈v, y∗〉|

}

is weak∗-open, contains y∗, and is disjoint from V ⊥. It follows that the com-
plement of V ⊥ is weak∗-open. ⊓⊔

It is an exercise in linear algebra to check that a linear subspace F of E∗

is weak∗-dense if and only if it separates the points of E, that is, whenever
x 6= y in E there is an x∗ ∈ F such that 〈x, x∗〉 6= 〈y, x∗〉. This fact is not
really needed however. Whenever we say that a subspace F of E∗ is weak∗-
dense, what we shall actually use is that F separates the points of E and all
formulations could be adapted accordingly.

Proposition 7.13. Let E1 and E2 be Banach spaces and let (A, D(A)) be a
densely defined linear operator from E1 to E2.

(1) The adjoint (A∗, D(A∗)) is weak∗-closed from E∗
2 to E∗

1 , that is, the graph
of A∗ is weak∗-closed in E∗

2 × E∗
1 .

(2) If (A, D(A)) is also closed, then (A∗, D(A∗)) is weak∗-densely defined,
that is, the domain of A∗ is weak∗-dense in E∗

2 .
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Proof. We start with the preliminary remark that if E and F are Banach
spaces, then the pairing

〈(x, y), (x∗, y∗)〉 := 〈x, x∗〉 + 〈y, y∗〉

allows us to identify E∗ × F ∗ with the dual of E × F .
(1): Let G (A∗) = {(x∗

1, A
∗x∗

1) : x∗
1 ∈ D(A∗)} be the graph of A∗ in

E∗
2 × E∗

1 . By definition of D(A∗) we have (x∗
2, x

∗
1) ∈ G (A∗) if and only if

〈(−Ax1, x1), (x
∗
2, x

∗
1)〉 = 0, ∀x1 ∈ D(A).

In other words, G (A∗) is the annihilator of ρ(G (A)), where ρ : E1 × E2 →
E2 ×E1 is defined by ρ(x1, x2) = (−x2, x1). By Lemma 7.12, G (A∗) is weak∗-
closed. This proves that A∗ is weak∗-closed.

(2): Now assume that (A, D(A)) is also closed. We will show that D(A∗)
separates the points of E2. Suppose x2 6= y2 in E2. Then (0, x2 − y2) is a non-
zero element of E1 ×E2 which does not belong to G (A). Since G (A) is closed,
by the Hahn-Banach theorem there exists an element (x∗

1, x
∗
2) ∈ (G (A))⊥ such

that
〈(0, x2 − y2), (x

∗
1, x

∗
2)〉 = 〈x2 − y2, x

∗
2〉 6= 0.

To finish the proof we check that x∗
2 ∈ D(A∗). For all x1 ∈ D(A) we have

(x1, Ax1) ∈ G (A) and therefore

0 = 〈(x1, Ax1), (x
∗
1, x

∗
2)〉 = 〈x1, x

∗
1〉 + 〈Ax1, x

∗
2〉.

But this means that x∗
2 ∈ D(A∗) and A∗x∗

2 = −x∗
1. ⊓⊔

The following simple result ‘dualises’ the definition of D(A∗).

Proposition 7.14. Let (A, D(A)) be a closed and densely defined linear oper-
ator from E1 to E2. If x1 ∈ E1 and x2 ∈ E2 are such that 〈x2, x

∗
2〉 = 〈x1, A

∗x∗
2〉

for all x∗
2 ∈ D(A∗), then x1 ∈ D(A) and Ax1 = x2.

Proof. We must prove that (x1, x2) ∈ G (A). Since G (A) is closed in E1 × E2,
by the Hahn-Banach theorem it suffices to check that 〈(x1, x2), (x

∗
1, x

∗
2)〉 = 0

for all (x∗
1, x

∗
2) ∈ (G (A))⊥.

Fix an arbitrary (x∗
1, x

∗
2) ∈ (G (A))⊥. As in the second part of the previous

proof we have x∗
2 ∈ D(A∗) and A∗x∗

2 = −x∗
1. Hence,

〈(x1, x2), (x
∗
1, x

∗
2)〉 = 〈x1,−A∗x∗

2〉 + 〈x2, x
∗
2〉 = 0. ⊓⊔

7.3 The abstract Cauchy problem

We now take a look at the inhomogeneous abstract Cauchy problem
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{
u′(t) = Au(t) + f(t), t ∈ [0, T ],

u(0) = x
(IACP)

with initial value x ∈ E. We assume that A generates a C0-semigroup S on
E and take f ∈ L1(0, T ; E).

Adapting the notion of a classical solution to the problem (IACP) leads
to the so-called problem of maximal regularity. Instead of going into this, we
refer to the Notes for more information and introduce here two alternative
notions of solutions in terms of the integrated equation.

Definition 7.15. A strong solution of (IACP) is a function u ∈ L1(0, T ; E)

such that for all t ∈ [0, T ] we have
∫ t

0 u(s) ds ∈ D(A) and

u(t) = x + A

∫ t

0

u(s) ds +

∫ t

0

f(s) ds.

A weak solution of (IACP) is a function u ∈ L1(0, T ; E) such that for all
t ∈ [0, T ] and x∗ ∈ D(A∗) we have

〈u(t), x∗〉 = 〈x, x∗〉 +

∫ t

0

〈u(s), A∗x∗〉 ds +

∫ t

0

〈f(s), x∗〉 ds.

As an immediate consequence of Proposition 7.14 we make the following
observation:

Proposition 7.16. Every weak solution of (IACP) is a strong solution.

Of course the converse holds trivially. We proceed with an existence and
uniqueness result for strong solutions of (IACP).

Theorem 7.17. For all x ∈ E and f ∈ L1(0, T ; E) the problem (IACP)
admits a unique strong solution u, which is given by the convolution formula

u(t) = S(t)x +

∫ t

0

S(t − s)f(s) ds. (7.2)

If f ∈ Lp(0, T ; E) with 1 6 p < ∞, then u ∈ Lp(0, T ; E).

Proof. For the existence part, by Proposition 7.16 it suffices to show that
(IACP) admits a weak solution. It is an easy consequence of Proposition 7.4
(3) that u is a weak solution corresponding to the initial value x if and only
if t 7→ u(t) − S(t)x is a weak solution corresponding to the initial value 0.
Therefore, without loss of generality we may assume that x = 0.

Let u be given by (7.2). Then u ∈ L1(0, T ; E); if f ∈ Lp(0, T ; E), then
u ∈ Lp(0, T ; E). By Fubini’s theorem and Proposition 7.4 (3), for all t ∈ [0, T ]
and x∗ ∈ D(A∗) we have
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∫ t

0

〈u(s), A∗x∗〉 ds =

∫ t

0

∫ s

0

〈f(r), S∗(s − r)A∗x∗〉 dr ds

=

∫ t

0

∫ t

r

〈f(r), S∗(s − r)A∗x∗〉 ds dr

=

∫ t

0

〈f(r), S∗(t − r)x∗ − x∗〉 dr

= 〈u(t), x∗〉 −

∫ t

0

〈f(r), x∗〉 dr.

To prove uniqueness, suppose that u and ũ are strong solutions of (IACP).

Then v := u− ũ is integrable and satisfies v(t) = A
∫ t

0
v(s) ds for all t ∈ [0, T ].

Put

w(t) :=

∫ t

0

∫ s

0

v(r) dr ds.

By the fundamental theorem of calculus, w is continuously differentiable on
[0, T ], and using Hille’s theorem we see that w(t) ∈ D(A) and

w′(t) =

∫ t

0

v(s) ds =

∫ t

0

A

∫ s

0

v(r) dr ds = Aw(t).

Fix t ∈ [0, T ] and put g(s) := S(t − s)w(s). Then g is continuously differen-
tiable on [0, t] with derivative

g′(s) = −AS(t − s)w(s) + S(t − s)w′(s) = 0.

It follows that g is constant on [0, t]. Hence

w(t) = g(t) = g(0) = S(t)w(0) = 0.

We have shown that
∫ t

0

∫ s

0
v(r) dr ds = 0 for all t ∈ [0, T ]. It follows that v = 0

almost everywhere. ⊓⊔

7.4 Examples of C0-semigroups

In this section we collect, without proofs, a number of important examples
of C0-semigroups. We encourage the reader to formulate the corresponding
initial value problems; cf. Example 7.1. References to the literature are given
in the Notes.

Example 7.18 (Multiplication semigroup). Let (A, A , µ) be a σ-finite measure
space and let m : A → R be µ-measurable. If ess supξ∈Af(ξ) < ∞, then the
formula

S(t)f(ξ) := etm(ξ)f(ξ)

defines a C0-semigroup on Lp(A) for 1 6 p < ∞. The domain of its generator
A consists of all f ∈ Lp(A) such that mf ∈ Lp(A), and for f ∈ D(A) we have
Af = mf .
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Example 7.19 (Translation semigroup). On the space Lp(R+), 1 6 p < ∞, the
formula

(S(t)f)(ξ) := f(ξ + t)

defines a C0-semigroup S. The domain of its generator A consists of all f ∈
Lp(R) whose weak derivative f ′ exists and belongs to Lp(R), and for f ∈ D(A)
we have Af = f ′.

These two examples represent perhaps the simplest constructions of C0-
semigroups and can be extended in various ways. We continue with two ex-
amples involving the Laplace operator.

Example 7.20 (Heat semigroup). On Lp(Rd), 1 6 p < ∞, the formula

(S(t)f)(ξ) :=
1√

(4πt)n

∫

Rd

f(η) exp
(
−
|ξ − η|2

4t

)
dη

defines a C0-semigroup. Its generator A is given by D(A) = W 2,p(Rd) and
Af = ∆f .

Example 7.21 (Heat semigroup on bounded domains with Dirichlet boundary
conditions). Let D be a bounded domain in Rd with C2-boundary ∂D. On
the space Lp(D) with 1 6 p < ∞, the Dirichlet Laplacian is the operator A
defined by

D(A) := W 2,p(D) ∩ W 1,p
0 (D),

Af := ∆f for f ∈ D(A).

See Example 7.1. This operator is the generator of a C0-semigroup on Lp(D).

The previous two examples admit far-reaching generalisations to more gen-
eral second order elliptic operators, and also different kinds of boundary con-
ditions can be allowed.

We continue with two examples of operators generating a C0-group. These
are defined in the same way as C0-semigroups, except that the index set is
now the whole real line.

Example 7.22 (Wave group). On the space W 1,2(Rd) × L2(Rd) we consider
the operator A defined by

D(A) := W 2,2(Rd) × W 1,2(Rd),

A(f1, f2) := (f2, ∆f1) for (f1, f2) ∈ D(A).

This operator is the generator of a C0-group on W 1,2(Rd) × L2(Rd) which is
associated with the wave equation u′′(t) = ∆u, written as a system u′ = v,
v′ = ∆u.

Example 7.23 (Unitary C0-groups on Hilbert spaces). If A is a self-adjoint
operator on a complex Hilbert space H , then iA is the generator of a C0-group
S of unitary operators on H . This classical result of Stone is of fundamental
importance in quantum mechanics. By the spectral theorem for self-adjoint
operators, this example can be viewed as a special case of Example 7.18.
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7.5 Exercises

1. Suppose that E is a real Banach space. The product E × E can be given
the structure of a complex vector space by introducing a complex scalar
multiplication as follows:

(a + ib)(x, y) := (ax − by, bx + ay).

The idea is, of course, to think of the pair (x, y) ∈ E × E as if it were
x + iy. The resulting complex vector space is denoted by EC.

a) Prove that the formula

‖(x, y)‖ := sup
θ∈[0,2π]

‖(cos θ)x + (sin θ)y‖

defines a norm on EC which turns EC into a complex Banach space.
b) Check that this norm on EC extends the norm of E in the sense that

for all x ∈ E,
‖(x, 0)‖ = ‖(0, x)‖ = ‖x‖.

c) Check that for all x, y ∈ E we have ‖(x, y)‖ = ‖(x,−y)‖.
d) Show that if T is a (real-)linear bounded operator on E, then T ex-

tends to a bounded (complex-)linear operator TC on EC by putting

TC(x, y) := (Tx, T y),

and check that ‖TC‖ = ‖T ‖.

A norm on EC with the properties b), c), d) is called a complexification
of the norm of E. The norm introduced in a) is by no means the unique
complexification of the norm of E, and in concrete examples there is often
a more natural choice.

e) Show that any two complex norms on EC which satisfy b) and c) are
equivalent.

By e), the spectrum of TC is independent of the particular complexification
chosen.

2. In this exercise we prove some properties of resolvents. We assume that
(T, D(T )) is a linear operator from E to E with resolvent set ̺(T ).
a) Prove that if ̺(T ) 6= ∅, then T is closed.
b) Prove the resolvent identity: for all λ1, λ2 ∈ ̺(T ) we have

R(λ1, T )− R(λ2, T ) = (λ2 − λ1)R(λ1, T )R(λ2, T ).

c) Prove that ̺(T ) is an open subset of C.
d) Prove that

lim
λ→µ

R(λ, T ) − R(µ, T )

λ − µ
= −R(µ, T )2

with convergence in the operator norm.
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e) Prove that if T is closed and densely defined, then ̺(T ∗) = ̺(T ) and

R(λ, T ∗) = R(λ, T )∗, λ ∈ ̺(T ) = ̺(T ∗).

f) Show that every closed subset of C is the spectrum of a suitable closed
operator T .

3. Let S be a C0-semigroup on E which is uniformly bounded, that is,
supt>0 ‖S(t)‖ < ∞. We show that there exists an equivalent norm ||| · |||
on E such that S is a contraction semigroup with respect to ||| · |||, that is,
|||S(t)||| 6 1 for all t > 0.

a) Show that |||x||| := supt>0 ‖S(t)x‖ defines an equivalent norm on E.
b) Show that S is a contraction semigroup with respect to ||| · |||.

4. Let S be a C0-semigroup on E with generator A, and suppose that
‖S(t)‖ 6 Meµt for all t > 0. Prove that

‖(R(λ, A))k‖ 6 M/(Reλ − µ)k, Reλ > µ, k = 1, 2, . . . .

Hint: By considering A − µ instead of A we may assume that µ = 0. In
that situation observe that |||R(λ, A)||| 6 1/Reλ.

Remark: A celebrated theorem of Hille and Yosida asserts that the
converse holds as well. We refer to the Notes for more information.

5. Let (A, A , µ) be a σ-finite measure space. Suppose f : A → E∗ is a
function such that ξ 7→ 〈x, f(ξ)〉 belongs to L1(A) for all x ∈ E.
a) Show that the map S : E → L1(A) defined by Sx := 〈x, f〉 is closed.
b) Conclude from this that the formula

〈x, x∗〉 :=

∫

A

〈x, f〉 dµ

defines a bounded linear functional x∗ ∈ E∗.
The functional x∗ is called the weak∗-integral of f with respect to µ,
notation:

x∗ =: weak∗
∫

A

f dµ.

c) Show that the weak∗-integral commutes with adjoints of bounded op-
erators on E.

d) Show that if f is an E∗-valued Bochner integrable function, then the
Bochner integral and the weak∗-integral of f agree.

Now suppose that A generates a C0-semigroup on E and put S∗(t) :=
(S(t))∗ for t > 0.

e) Prove the following dual version of the identities in Proposition 7.4 (3):

for all x∗ ∈ E∗ and t > 0 we have weak∗
∫ t

0
S∗(s)x∗ ds ∈ D(A∗) and

A∗
(
weak∗

∫ t

0

S∗(s)x∗ ds
)

= S∗(t)x∗ − x∗.

If x∗ ∈ D(A∗), then both sides are equal to weak∗
∫ t

0
S∗(s)A∗x∗ ds.
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Notes. Excellent recent introductions to the theory of C0-semigroups include
the monographs by Arendt, Batty, Hieber, Neubrander [3], Davies [29],
Engel and Nagel [38], Goldstein [41], Pazy [89]. For a discussion of the ex-
amples in Section 7.4 we refer to these sources. Their monumental 1957 treatise
of Hille and Phillips[48] is freely available on-line (http://www.ams.org/
online bks/coll31/).

Due to limitations of space and time we have chosen not to discuss the
two basic generation theorems of semigroup theorem. The first of these, the
Hille-Yosida theorem, reads as follows.

Theorem 7.24 (Hille-Yosida theorem). For a densely defined operator A
on a Banach space E and constants M > 1 and µ ∈ R, the following assertions
are equivalent:

(1) A generates a C0-semigroup on E satisfying ‖S(t)‖ 6 Meµt for all t > 0;
(2) {λ ∈ C : λ > µ} ⊆ ̺(A) and ‖(R(λ, A))k‖ 6 M/(Reλ − µ)k for all λ > µ

and k = 1, 2, . . . ;
(3) {λ ∈ C : Reλ > µ} ⊆ ̺(A) and ‖(R(λ, A))k‖ 6 M/(Reλ − µ)k for all

Reλ > µ and k = 1, 2, . . . .

For C0-contraction semigroups, Theorem 7.24 was obtained independently
and simultaneously by Hille [47] and Yosida [111]; the extension to arbitrary
C0-semigroups is due to Feller, Miyadera, Phillips. The easy implication
(1)⇒(3) has been discussed in Exercise 4 and (3)⇒(2) is trivial; the difficult
implication is (2)⇒(1).

In order to state the second generation theorem, the Lumer-Phillips theo-
rem, for x ∈ E define ∂(x) := {x∗ ∈ E∗ : ‖x∗‖ = ‖x‖, 〈x, x∗〉 = ‖x‖‖x∗‖}.
By the Hahn-Banach theorem, ∂(x) 6= ∅.

Theorem 7.25 (Lumer-Phillips theorem). For a densely defined operator
A on a Banach space E with ̺(A) ∩ (0,∞) 6= ∅ the following assertions are
equivalent:

(1) A generates a C0-contraction semigroup on E;
(2) For all x ∈ D(A) and λ > 0 we have ‖(λ − A)x‖ > λ‖x‖;
(2) For all x ∈ D(A) and all x∗ ∈ ∂(x) we have Re〈Ax, x∗〉 6 0;
(3) For all x ∈ D(A) there exists x∗ ∈ ∂(x) such that Re〈Ax, x∗〉 6 0.

This theorem, as its name suggests, is due to Lumer and Phillips [71].
We shall return to it later in the context of analytic C0-semigroups. A detailed
account of Theorems 7.24 and 7.25 and their history is given in [38].

The terminology for the various notions of solutions is not entirely stan-
dard. Ours is suggested by that of Da Prato and Zabczyk [27] for solutions
of stochastic evolution equations.

The results of Section 7.2 can be found in any introductory text on func-
tional analysis.



7.5 Exercises 103

Theorem 7.17 is due to Ball [5], who also proved the following converse:
if (IACP) admits a unique weak solution for all f ∈ L1(0, T ; E) and initial
values x ∈ E, then A is the generator of a C0-semigroup on E.

The convolution formula (7.2) is often taken as the definition of a mild
solution. Typical questions then revolve around proving regularity properties
of mild solutions in terms of properties of the forcing function f and the
semigroup S. We refer to [89, Chapter 4] for some elementary results in this
direction. For the treatment of certain classes of non-linear Cauchy problems it
is of particular importance to know whether the mild solutions have maximal
Lp-regularity, meaning that for all f ∈ Lp(0, T ; E) the solution u belongs to
W 1,p(0, T ; E) ∩ Lp(0, T ; D(A)). A necessary condition for this is that S be
analytic; it is a classical result that this condition is also sufficient in Hilbert
spaces. For analytic C0-semigroups on Banach spaces the maximal regularity
problem has recently be settled by Kalton and Lancien [57] (who gave a
counterexample in Lp-spaces E) and Weis [108] (who obtained necessary and
sufficient conditions for maximal Lp-regularity in UMD Banach spaces E).
We refer to the lectures by Kunstmann and Weis [61] for a detailed account
of this problem and its history, as well as a number of non-trivial examples.

A systematic discussion of complexifications is given in Muñoz, Saran-

topoulos, Tonge [79]. The reader is warned that not every complex Banach
space is the complexification of some underlying real Banach space. The first
(non-constructive) proof of this fact was given by Bourgain [11]. An explicit
counterexample was found subsequently by Kalton [56].


