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γ-Boundedness

In this lecture we address the second topic in the paradigm sketched in the
introduction of Lecture 5: a ‘Gaussian’ generalisation to a Banach space set-
ting of the notion of uniform boundedness of families of operators in Hilbert
spaces. Roughly speaking, a family of operators T is said to be ‘γ-bounded’ if
a Kahane contraction principle holds with scalars replaced by operators from
T . This makes γ-boundedness into a powerful tool for estimating Gaussian
sums. Perhaps more important is the fact that there are numerous abstract
methods to create γ-bounded families, which can be used to show that fam-
ilies of operators arising naturally in the context of parabolic PDEs (such as
resolvents) and stochastic analysis (such as families of conditional expectation
operators) are γ-bounded.

9.1 Randomised boundedness

Throughout this lecture ϕ = (ϕn)∞n=1 denotes a sequence of independent sym-
metric real-valued random variables satisfying Eϕ2

n = 1, n > 1. For instance,
ϕ could be a Rademacher sequence or a Gaussian sequence.

We begin with a simple observation.

Proposition 9.1. Let H1 and H2 be Hilbert spaces. For a subset T ⊆
L (H1, H2) and a constant M > 0 the following assertions are equivalent:

(1) T is uniformly bounded and supT∈T ‖T ‖ 6 M ;
(2) for all N > 1, all T1, . . . , TN ∈ T , and all x1, . . . , xN ∈ H1,

(
E

∥∥∥
N∑

n=1

ϕnTnxn

∥∥∥
2) 1

2

6 M
(
E

∥∥∥
N∑

n=1

ϕnxn

∥∥∥
2) 1

2

.

Proof. For the proof of (1)⇒(2), write ‖h‖2 = [h, h] and use that Eϕjϕk = δjk.
For the proof of (2)⇒(1), consider the case N = 1 in (2) to obtain ‖Th‖ 6
M‖h‖ for all T ∈ T and h ∈ H1. ⊓⊔
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With Hilbert spaces replaced by Banach spaces the implication (1)⇒(2)
does not hold in general. This motivates the following definition.

Definition 9.2. Let E1 and E2 be Banach spaces. An operator family T ⊆
L (E1, E2) is said to be ϕ-bounded if there exists a constant M > 0 such that

(
E

∥∥∥
N∑

n=1

ϕnTnxn

∥∥∥
2) 1

2

6 M
(
E

∥∥∥
N∑

n=1

ϕnxn

∥∥∥
2) 1

2

,

for all N > 1, all T1, . . . , TN ∈ T , and all x1, . . . , xN ∈ E1. When ϕ is a
Rademacher sequence, a ϕ-bounded family is called R-bounded; when ϕ is a
Gaussian sequence the family is called γ-bounded.

The least admissible constant M is called the ϕ-bound of T , notation:
ϕ(T ). As in the Hilbert space case, every ϕ-bounded family T is uniformly
bounded and we have

sup
T∈T

‖T ‖ 6 ϕ(T ).

When ϕ is a Rademacher sequence or a Gaussian sequence, the bound ϕ(T )
is denoted by R(T ) and γ(T ), respectively. In these two cases, the Kahane-
Khintchine inequality shows that the exponent 2 in the definition may be
replaced by any exponent 1 6 p < ∞; this only affects the numerical value of
the bounds. R-bounds and γ-bounds relative to the Lp-norm will be denoted
by Rp(T ) and γp(T ). As a rule, we will state our results relative to the
L2-norm, but frequently the results carry over to Lp-norms if we make this
modification.

Proposition 9.3 below shows that every R-bounded family is γ-bounded,
and Corollary 3.6 and Theorem 3.7 imply that the converse holds if E1 has
finite cotype.

Proposition 9.3. Any R-bounded family T is ϕ-bounded and ϕ(T ) 6 R(T ).

Proof. Let (r′n)∞n=1 be a Rademacher sequence on an independent probability
space (Ω′, F ′, P′). Then for all T1, . . . , TN ∈ T and x1, . . . , xN ∈ E1, by
randomising we obtain

E

∥∥∥
N∑

n=1

ϕnTnxn

∥∥∥
2

= EE
′
∥∥∥

N∑

n=1

r′nϕnTnxn

∥∥∥
2

6 R(T )2EE
′
∥∥∥

N∑

n=1

r′nϕnxn

∥∥∥
2

= R(T )2E

∥∥∥
N∑

n=1

ϕnxn

∥∥∥
2

. ⊓⊔

The proof of the next proposition is left as an exercise to the reader.

Proposition 9.4. If T ⊆ L (E1, E2) and S ⊆ L (E1, E2) are ϕ-bounded,
then the family S + T = {S + T : S ∈ S , T ∈ T } is ϕ-bounded in
L (E1, E2) and
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ϕ(S + T ) 6 ϕ(S ) + ϕ(T ).

Likewise, if T ⊆ L (E1, E2) and S ⊆ L (E2, E3) are ϕ-bounded, then the
family S T = {ST : S ∈ S , T ∈ T } is ϕ-bounded in L (E1, E3) and

ϕ(S T ) 6 ϕ(S )ϕ(T ).

The strong operator topology of L (E1, E2) is the topology generated by
all sets of the form

V (S, x, ε) := {T ∈ L (E1, E2) : ‖Sx − Tx‖ < ε}

with given S ∈ L (E1, E2), x ∈ E, and ε > 0. Note that a set O ⊆ L (E1, E2)
is open in this topology if and only if for all S ∈ O there exist x1, . . . , xk ∈ E1

and a number ε > 0 such that

k⋂

j=1

{T ∈ L (E1, E2) : ‖Sxj − Txj‖ < ε} ⊆ O.

It is an easy exercise to check that limn→∞ Tn = T in the strong operator
topology if and only if limn→∞ Tnx = Tx for all x ∈ E1.

Proposition 9.5 (Strong closure). If T ⊆ L (E1, E2) is ϕ-bounded, then
its closure T in the strong operator topology is ϕ-bounded and ϕ(T ) = ϕ(T ).

Proof. Let T 1, . . . , TN ∈ T and x1, . . . , xN ∈ E1 be arbitrary. Given an
ε > 0, choose operators T1, . . . , TN ∈ T such that ‖Tnxn − Tnxn‖ < 2−nε,
n = 1, . . . , N . Then, by the triangle inequality in L2(Ω; E2) applied twice,

(
E

∥∥∥
N∑

n=1

ϕnTnxn

∥∥∥
2) 1

2

6
(

E

∥∥∥
N∑

n=1

ϕnTnxn

∥∥∥
2) 1

2

+
(
E

∥∥∥
N∑

n=1

ϕn(Tnxn−Tnxn)
∥∥∥

2) 1

2

6 ϕ(T )
(

E

∥∥∥
N∑

n=1

ϕnxn

∥∥∥
2) 1

2

+

N∑

n=1

‖Tnxn − Tnxn‖

6 ϕ(T )
(

E

∥∥∥
N∑

n=1

ϕnxn

∥∥∥
2) 1

2

+ ε.

This proves that T is ϕ-bounded with ϕ(T ) 6 ϕ(T ). The converse inequality
is trivial. ⊓⊔

The absolute convex hull of a set V , notation abs conv(V ), is the set of all

vectors of the form
∑k

j=1 λjxj with
∑k

j=1 |λj | 6 1 and xj ∈ V for j = 1, . . . , k.
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Proposition 9.6 (Convex hull). If T is ϕ-bounded in L (E1, E2), then the
convex hull and the absolute convex hull of T are ϕ-bounded in L (E1, E2)
and ϕ(T ) = ϕ(conv(T )) = ϕ(abs conv(T )).

Proof. First we prove the statement for the convex hull. Choose S1, . . . Sn ∈
conv(T ) arbitrarily. Noting that

conv(T ) × · · · × conv(T ) = conv(T × · · · × T )

we can find λ1, . . . , λk ∈ [0, 1] with
∑k

j=1 λj = 1 such that Sn =
∑k

j=1 λjTjn

with Tjn ∈ T for all j = 1, . . . , k and n = 1, . . . , N . Then, for all x1, . . . , xN ∈
E1,

(
E

∥∥∥
N∑

n=1

ϕnSnxn

∥∥∥
2) 1

2

6

k∑

j=1

λj

(
E

∥∥∥
N∑

n=1

ϕnTjnxn

∥∥∥
2) 1

2

6 ϕ(T )

k∑

j=1

λj

(
E

∥∥∥
N∑

n=1

ϕnxn

∥∥∥
2) 1

2

= ϕ(T )
(

E

∥∥∥
N∑

n=1

ϕnxn

∥∥∥
2) 1

2

.

This proves the ϕ-boundedness of conv(T ) with the estimate ϕ(conv(T )) 6
ϕ(T ). The opposite inequality ϕ(T ) 6 ϕ(conv(T )) is trivial.

The result for the absolute convex hull follows by noting that this hull
is contained in the convex hull of T ∪ {0} ∪ −T ; the set T ∪ {0} ∪ −T is
ϕ-bounded with the same ϕ-bound as T (use Proposition 2.16 to add the
zero operator and replace some of the ϕn by −ϕn in the random sums). ⊓⊔

By combining Propositions 9.5 and 9.6 we obtain that the strongly closed
absolutely convex hull of every ϕ-bounded set is ϕ-bounded. This may be used
to show that ϕ-boundedness is preserved by taking integral means.

Theorem 9.7 (Integral means I). Let (A, A , µ) be a σ-finite measure space
and let T be a ϕ-bounded subset of L (E1, E2). Suppose f : A → L (E1, E2)
is a function with the following properties:

(i) the function ξ 7→ f(ξ)x is strongly µ-measurable for all x ∈ E1;
(ii) we have f(ξ) ∈ T for µ-almost all ξ ∈ A.

For φ ∈ L1(A) define T φ
f ∈ L (E1, E2) by

T φ
f x :=

∫

A

φ(ξ)f(ξ)xdµ(ξ), x ∈ E1,

The family T
φ

f := {T φ
f : ‖φ‖1 6 1} is ϕ-bounded and ϕ(T φ

f ) 6 ϕ(T ).

Proof. Since T is ϕ-bounded and therefore uniformly bounded, the integral
defining T φ

f x is well-defined as a Bochner integral in E2 for every x ∈ E1 and

defines a bounded operator T φ
f of norm ‖T φ

f ‖ 6 ‖φ‖1 supT∈T ‖T ‖.
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To prove the ϕ-boundedness of the family T
φ

f along with the estimate for

its ϕ-bound it suffices to check that the family {T φ
f : ‖φ‖1 = 1} is contained

in abs conv(T ), where the bar denotes the closure in the strong operator
topology of L (E1, E2).

Fix φ with ‖φ‖1 = 1 and for k = 1, 2, . . . define T (k) ∈ L (Ek
1 , Ek

2 ) by

T (k)(x1, . . . , xk) := (T φ
f x1, . . . , T

φ
f xk)

and note that this operator is given by the Bochner integral

T (k)(x1, . . . , xk) =

∫

A

φ(ξ)f (k)(ξ)(x1, . . . , xk) dµ(ξ),

where f (k)(ξ)(x1, . . . , xk) := (f(ξ)x1, . . . , f(ξ)xk) is strongly µ-measurable as
an Ek

2 -valued function of the variable ξ.
Let us fix x1, . . . , xk ∈ E1. Let N ∈ A be a µ-null set such that (ii) holds

in A \ N . Noting that

(|φ|µ)(B) :=

∫

B

|φ| dµ =

∫

B

1A\N |φ| dµ, B ∈ A ,

defines a probability measure on (A, A ) and writing

φ(ξ)f(ξ) = sgn(φ(ξ))f(ξ) · |φ(ξ)|,

from Proposition 1.17 we deduce that

(T φ
f x1, . . . , T

φ
f xk) ∈ abs conv{(f(ξ)x1, . . . , f(ξ)xk) : ξ ∈ A \ N}.

In particular,

(T φ
f x1, . . . , T

φ
f xk) ∈ abs conv{(Tx1, . . . , Txk) : T ∈ T }.

This means that for every ε > 0 we can find T ∈ abs conv(T ) such that

‖T φ
f xj − Txj‖ < ε, j = 1, . . . , k.

Since the choice of x1, . . . , xk ∈ E1 and ε > 0 were arbitrary, we have
shown that every open set (in the strong operator topology) in L (E1, E2)

containing T φ
f intersects abs conv(T ). This is synonymous to saying that T φ

f ∈

abs conv(T ). ⊓⊔

So far we have been concerned with producing new ϕ-bounded families
from old. We continue with two results which produce ϕ-bounded families
‘from scratch’. In view of Proposition 9.3 it suffices to prove that such families
are R-bounded. In both cases, however, the same argument already gives the
ϕ-boundedness, and we prefer this route for the unity of presentation.
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Theorem 9.8 (Integral means II). Let (A, A , µ) be a σ-finite measure
space, E1 and E2 Banach spaces and let f : A → L (E1, E2) be a function
with the property that ξ 7→ f(ξ)x is strongly µ-measurable for all x ∈ E1.
Suppose that g : A → R is a µ-integrable function such that for all x ∈ E1 we
have

‖f(ξ)x‖ 6 |g(ξ)|‖x‖ µ-almost everywhere.

For φ ∈ L∞(A) define T φ
f ∈ L (E1, E2) by

T φ
f x :=

∫

A

φ(ξ)f(ξ)xdµ(ξ), x ∈ E1.

The family T
φ

f = {T φ
f : ‖φ‖∞ 6 1} is ϕ-bounded and ϕ(T φ

f ) 6 ‖g‖1.

Proof. For φ ∈ L∞(A), note that ξ 7→ φ(ξ)f(ξ)x is µ-Bochner integrable in

E2 for all x ∈ E1, so the operators T φ
f are well-defined and bounded with

‖T φ
f ‖ 6 ‖φ‖∞‖g‖1.
Fix φ1, . . . , φN ∈ L∞(A) and x1, . . . , xN ∈ E1. Using the Kahane contrac-

tion principle we estimate

∥∥∥
N∑

n=1

ϕnT φn

f xn

∥∥∥
L2(Ω;E2)

=
∥∥∥

∫

A

N∑

n=1

ϕnφn(ξ)f(ξ)xn dµ(ξ)
∥∥∥

L2(Ω;E2)

6

∫

A

∥∥∥
N∑

n=1

ϕnφn(ξ)f(ξ)xn

∥∥∥
L2(Ω;E2)

dµ(ξ)

6

∫

A

∥∥∥
N∑

n=1

ϕnf(ξ)xn

∥∥∥
L2(Ω;E2)

dµ(ξ)

6

∫

A

|g(ξ)|
∥∥∥

N∑

n=1

ϕnxn

∥∥∥
L2(Ω;E1)

dµ(ξ)

= ‖g‖1

∥∥∥
N∑

n=1

ϕnxn

∥∥∥
L2(Ω;E1)

. ⊓⊔

Note that if E1 is separable, we may apply the theorem to the function
g(ξ) := ‖f(ξ)‖, which is then µ-measurable (choose a dense sequence (xn)∞n=1

in E1 and note that ‖f(ξ)‖ = supn>1 ‖f(ξ)xn‖). A similar remark applies to
the next theorem.

Theorem 9.9 (Functions with integrable derivative). Let f : (a, b) →
L (E1, E2) and g : (a, b) → R be such that the functions t 7→ f(t)x are
continuously differentiable, g is integrable, and for all x ∈ E1 we have

‖f ′(t)x‖ 6 |g(t)|‖x‖ µ-almost everywhere.

Then T := {f(t) : t ∈ (a, b)} is ϕ-bounded and ϕ(T ) 6 ‖f(a+)‖ + ‖g‖1.



9.2 Examples 127

Proof. Let us first prove that f(a+) := limt↓a f(t) exists in the strong op-
erator topology. For fixed x ∈ E1, given ε > 0 choose δ > 0 so small that∫ a+δ

a
|g(t)| dt < ε; then for all a < a1 < a2 < a + δ we have

‖f(a2)x − f(a1)x‖ =
∥∥∥

∫ a2

a1

f ′(t)xdt
∥∥∥ 6

∫ a2

a1

‖f ′(t)x‖ dt < ε‖x‖.

This gives the claim.
For all a < t1 6 · · · 6 tN < b and x1, . . . , xN ∈ E we obtain, using

Theorem 9.8,

(
E

∥∥∥
N∑

n=1

ϕnf(tn)xn

∥∥∥
2) 1

2

=
(

E

∥∥∥
N∑

n=1

ϕn

[
f(a+)xn +

∫ tn

a

f ′(t)xn dt
]∥∥∥

2) 1

2

6 ‖f(a+)‖
(
E

∥∥∥
N∑

n=1

ϕnxn

∥∥∥
2) 1

2

+
(
E

∥∥∥
N∑

n=1

ϕn

∫ b

a

1(a,tn)(t)f
′(t)xn dt

∥∥∥
2) 1

2

6 (‖f(a+)‖ + ‖g‖1)
(
E

∥∥∥
N∑

n=1

ϕnxn

∥∥∥
2) 1

2

. ⊓⊔

9.2 Examples

We proceed with some important examples of ϕ-bounded families, where as
before (ϕn)∞n=1 is a sequence of independent symmetric real-valued random
variables satisfying Eϕ2

n = 1, n > 1. One example has already been recorded:
a family of Hilbert space operators is ϕ-bounded if and only if it is uniformly
bounded.

Example 9.10 (The contraction principle and ϕ-boundedness). Let E be a Ba-
nach space. Every real number a defines a bounded operator Ta on E by scalar
multiplication: Tax = ax. The Kahane contraction principle can be reformu-
lated as saying that for every bounded set A ⊆ R, the set TA := {Ta : a ∈ A}
is ϕ-bounded in L (E), with ϕ(TA) = sup{|a| : a ∈ A}.

Example 9.11 (ϕ-Boundedness in Lp). Let (A, A , µ) be a σ-finite measure
space and let 1 6 p < ∞ be fixed. If S is a positive bounded operator on
E := Lp(A), i.e., Sf > 0 whenever f > 0 (we write f1 > f2 to mean that
f1(ξ) > f2(ξ) for µ-almost all ξ ∈ A), the set

T := {T ∈ L (E) : |Tf | 6 S|f | for all f ∈ E}
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is ϕ-bounded and we have ϕ(T ) 6 Kp‖S‖, where Kp is a universal constant
depending only on p.

By Proposition 9.3 it suffices to prove this for Rademacher variables
(rn)∞n=1. Using Fubini’s theorem and the scalar Kahane-Khintchine inequality,
we see that for all T1, . . . , TN ∈ T and f1, . . . , fN ∈ E,

E

∥∥∥
N∑

n=1

rnTnfn

∥∥∥
p

E
=

∫

A

E

∣∣∣
N∑

n=1

rnTnfn

∣∣∣
p

dµ .p

∫

A

(
E

∣∣∣
N∑

n=1

rnTnfn

∣∣∣
2) p

2

dµ

=

∫

A

( N∑

n=1

|Tnfn|
2
) p

2

dµ 6

∫

A

( N∑

n=1

(S|fn|)
2
) p

2

dµ

=

∫

A

(
E

∣∣∣
N∑

n=1

rnS|fn|
∣∣∣
2) p

2

dµ .p

∫

A

E

∣∣∣
N∑

n=1

rnS|fn|
∣∣∣
p

dµ

= E

∥∥∥
N∑

n=1

rnS|fn|
∥∥∥

p

E
6 ‖S‖p

E

∥∥∥
N∑

n=1

rn|fn|
∥∥∥

p

E

= ‖S‖p

∫

A

E

∣∣∣
N∑

n=1

rn|fn|
∣∣∣
p

dµ = ‖S‖p

∫

A

E

∣∣∣
N∑

n=1

rnfn

∣∣∣
p

dµ

= ‖S‖p
E

∥∥∥
N∑

n=1

rnfn

∥∥∥
p

E
.

In this computation we used that E
∣∣ ∑N

n=1 rnan

∣∣p = E
∣∣ ∑N

n=1 rn|an|
∣∣p for

a1, . . . , aN ∈ R; to see this, just replace rn by −rn if an < 0. The result now
follows from the Kahane-Khintchine inequality which permits us to replace
the Lp-moments by L2-moments.

9.3 A multiplier result

Let (A, A , µ) be a σ-finite measure space and let Φ : A → γ(H, E) be uni-
formly bounded and strongly µ-measurable. For f ∈ L2(A; H) the integrals

RΦf =

∫

A

Φ(ξ)f(ξ) dµ(ξ)

exist as Bochner integrals in E, and the resulting linear operator RΦ :
L2(A; H) → E is bounded. In the next lemma we consider the special case
where Φ is a finite rank simple function.

Lemma 9.12. Let Φ =
∑k

j=1 1Bj
⊗Uj be a finite rank simple function, where

Uj =
∑N

n=1 hn ⊗ xjn with h1, . . . , hN orthonormal in H and B1, . . . Bk ∈ A

disjoint and of finite µ-measure. Then RΦ belongs to γ(L2(A; H), E) and
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‖RΦ‖
2
γ(L2(A;H),E) = E

∥∥∥
k∑

j=1

N∑

n=1

γjn

√
µ(Bj)Ujhn

∥∥∥
2

.

Proof. First we prove that RΦ ∈ γ(L2(A; H), E). By linearity it suffices to
prove this for simple functions of the form Φ(t) = 1B(t)U , where B ⊆ A
satisfies 0 < µ(B) < ∞ and U of finite rank. But then we have RΦ = U ◦ iB,
where iB : L2(A; H) → H is defined by iBf :=

∫
A

1B(ξ)f(ξ) dµ(ξ). Hence RΦ

is γ-radonifying by the right ideal property.
Let H̃ denote the linear span of {h1, . . . , hN} in H . The expression for

the γ-norm of RΦ is obtained from Corollary 5.5 and Theorem 5.15, taking
any orthonormal basis of L2(A; H̃) containing the functions fj ⊗ hn, where

fj = 1Bj
/
√

µ(Bj). ⊓⊔

Turning to the situation where Φ : A → γ(H, E1) is uniformly bounded
and strongly µ-measurable, suppose next that E2 is another Banach space
and M : A → L (E1, E2) is a uniformly bounded function with the property
that ξ 7→ M(ξ)x is strongly µ-measurable for all x ∈ E1 (in this situation,
with a slight abuse of terminology we call M strongly µ-measurable). We put

(MΦ)(ξ) := M(ξ)Φ(ξ).

Let us check that the function MΦ is strongly µ-measurable. By strong µ-
measurability, the range of Φ is µ-separably-valued in γ(H, E1). Therefore by
Proposition 5.10 we may assume H is separable. Choose an orthonormal basis
(hn)∞n=1 for H and let Pn denote the orthogonal projection onto the span of
{h1, . . . , hn}. Then ξ 7→ (MΦPn)(ξ) := M(ξ)Φ(ξ)Pn is strongly µ-measurable,
and the claim follows by noting that limn→∞ MΦPn = MΦ pointwise in the
norm of γ(H, E1) by Proposition 5.12.

As a result, the integral operator RMΦ is well-defined as a bounded oper-
ator from L2(A; H) to E2. Thus M induces a mapping

M̃ : RΦ 7→ RMΦ.

We shall be interested in finding conditions that guarantee the boundedness
of this mapping as an operator from γ(L2(A; H), E1) to γ(L2(A; H), E2).

First we check that the operators RΦ, with Φ a finite rank step function,
are dense in γ(L2(A; H), E1). For simplicity we state the next lemma and the
theorem following it for the Lebesgue interval (0, T ), and leave the simple
extensions to general measure spaces to the interested reader.

Lemma 9.13. The operators RΦ, with Φ : (0, T ) → γ(H, E) a finite rank step
function, are dense in γ(L2(0, T ; H), E).

Proof. Let R ∈ γ(L2(0, T ; H), E) be given. By the same argument as in Step

4 of the proof of Theorem 6.17 we may assume that R ∈ γ(L2(0, T ; H̃), E),



130 9 γ-Boundedness

where H̃ is a separable closed subspace of H . Then, by Proposition 5.12, we
even may assume that H̃ is finite-dimensional.

Let Ak denote the averaging operator on L2(0, T ; H) with respect to the
k-th dyadic partition of (0, T ) into 2k subintervals of equal length. Then

limk→∞ R ◦Ak = R in γ(L2(0, T ; H̃), E) by Proposition 5.12. Every R ◦Ak is

of the form RΦk
for a step function Φk : (0, T ) → γ(H̃, E): indeed, take

Φk(t)h = R(2k1(j2−kT,(j+1)2−kT ) ⊗ h), t ∈ (j2−kT, (j + 1)2−kT ).

As function with values in γ(H, E), the Φk are finite rank step functions. ⊓⊔

The following multiplier theorem, due to Kalton and Weis in a slightly
simpler setting, connects the notions of γ-boundedness and γ-radonification.
It states that functions with γ-bounded range act as multipliers on spaces of
γ-radonifying operators.

Theorem 9.14 (γ-Bounded functions as γ-multipliers). Suppose that
M : (0, T ) → L (E1, E2) is strongly measurable and has γ-bounded range
{M(t) : t ∈ (0, T )} =: M . Then for every finite rank simple function Φ :
(0, T ) → γ(H, E1) the operator RMΦ belongs to γ(L2(0, T ; H), E2) and

‖RMΦ‖γp(L2(0,T ;H),E2) 6 γp(M ) ‖RΦ‖γp(L2(0,T ;H),E1).

As a result, the map M̃ : RΦ 7→ RMΦ has a unique extension to a bounded
operator

M̃ : γp(L
2(0, T ; H), E1) → γp(L

2(0, T ; H), E2)

of norm ‖M̃‖ 6 γ(M ).

Proof. The uniqueness part follows from Lemma 9.13. To prove existence
we let Φ be a finite rank step function which is kept fixed throughout the
proof. In order to show that RMΦ belongs to γ(L2(0, T ; H), E2) and the above
estimate holds we may assume that H is finite-dimensional. Let (hn)N

n=1 be
an orthonormal basis of H .

Step 1 – In this step we consider the special case of the theorem where
M is a simple function. By passing to a common refinement we may suppose
that

Φ(t) =
k∑

j=1

1Bj
(t)Uj , M =

k∑

j=1

1Bj
(t)Vj ,

with disjoint intervals Bj of finite positive measure; the operators Uj ∈
γ(H, E1) are of finite rank and the Vj ∈ L (E1, E2) are bounded. Then,

(MΦ)(t) =

k∑

j=1

1Bj
(t)VjUj .
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This is a finite rank simple function with values in γ(H, E2). Hence RMΦ ∈
γ(L2(0, T ; H), E2), and using Lemma 9.12 we find

‖RMΦ‖
2
γ(L2(0,T ;H),E2)

= E

∥∥∥
k∑

j=1

N∑

n=1

γjn

√
|Bj |VjUjhn

∥∥∥
2

6 (γ(M ))2E

∥∥∥
k∑

j=1

N∑

n=1

γjn

√
|Bj |Ujhn

∥∥∥
2

= (γ(M ))2‖RΦ‖
2
γ(L2(0,T ;H),E1)

.

Step 2 – For the general case define the step functions Mk : (0, T ) →
L (E1, E2) by the averaging procedure of Lemma 9.13, putting

Mk(t)x =
2k

T

∫ (j+1)2−kT

j2−kT

M(s)xds, t ∈ (j2−kT, (j + 1)2−kT )

for 0 6 j 6 2k − 1. These integrals are well-defined by the strong measura-
bility and boundedness of M . Moreover, limk→∞ Mkx = Mx in L1(0, T ; E2)
for all x ∈ E1 and by passing to a subsequence we may assume that
limk→∞ Mk(t)x = M(t)x for almost all t ∈ (0, T ) (with an exceptional
set depending on x). Since Φ is a finite rank simple function, this implies
limk→∞ RMkΦf = RMΦf in E2 for all f ∈ L2(0, T ; H). Also note that the
range of each Mk is γ-bounded with γ(Mk) 6 γ(M ) by Theorem 9.7.

Fix an orthonormal basis (φm)∞m=1 of L2(0, T ) and fix indices m0 6 m1.
Let Hm0,m1

denote the span in L2(0, T ; H) of the functions φm ⊗ hn with
m0 6 m 6 m1 and n = 1, . . . , N . By the Fatou lemma and Step 1,

E

∥∥∥
m1∑

m=m0

N∑

n=1

γnRMΦ(φm ⊗ hn)
∥∥∥

2

6 lim inf
k→∞

E

∥∥∥
m1∑

m=m0

N∑

n=1

γnRMkΦ(φm ⊗ hn)
∥∥∥

2

= lim inf
k→∞

‖RMkΦ‖
2
γ(Hm0,m1

),E2)

6 γ(M )2‖RΦ‖
2
γ(Hm0,m1

),E1)

= γ(M )2E

∥∥∥
m1∑

m=m0

N∑

n=1

γnRΦ(φm ⊗ hn)
∥∥∥

2

.

It follows that the sum
∑∞

m=1

∑N
n=1 γnRMΦ(φm⊗hn) converges in L2(Ω; E2).

Hence RMΦ ∈ γ(L2(0, T ; H), E2) and the above estimate gives

‖RMΦ‖γ(L2(0,T ;H),E2) 6 γ(M )‖RΦ‖γ(L2(0,T ;H),E1). ⊓⊔
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9.4 Exercises

1. Let (A, A , µ) be a σ-finite measure space and let 1 6 p < ∞. For a
function φ ∈ L∞(A) define the multiplier Mφ ∈ L (Lp(A; E)) by

(Mφf)(ξ) := φ(ξ)f(ξ), ξ ∈ A.

Show that the set M = {Mφ : ‖φ‖∞ 6 1} is R-bounded and give an
estimate for R(M).

2. On lp with 1 6 p 6 ∞, consider the left shift S : (an)n>1 7→ (an+1)n>1.
For which values of p is the family {Sk : k > 1} R-bounded in L (lp)?

3. In this exercise we prove that analyticity implies γ-boundedness on com-
pact sets. Let D ⊆ C be open and let E be a Banach space. A function
f : D → E is said to be analytic if the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

exists in E for all z0 ∈ D.

a) Show that analytic functions are continuous.
b) Use the Hahn-Banach theorem to show that Cauchy’s formulas

f(z0) =
1

2πi

∫

Γ

f(z)

z − z0
dz, f ′(z0) = −

1

2πi

∫

Γ

f(z)

(z − z0)2
dz

hold for an analytic function f , where Γ is a simple contour in D
around z0 (by (a), the integrals make sense as Bochner integrals).

c) Let f : D → L (E1, E2) be a function such that z 7→ f(z)x is analytic
for all x ∈ E1. Show that for every compact set K ⊆ D the family

TK := {f(z) : z ∈ K}

is R-bounded.
Hint: Use Theorem 9.9 and (c) to see that f is γ-bounded on every
circle contained in D. Then use the first formula in (b) together with
Theorem 9.7.

4. (!) Let Φ : (0, T ) → L (H, E1) be stochastically integrable with respect to
an H-cylindrical Brownian motion WH and suppose that M : (0, T ) →
L (E1, E2) is strongly measurable and has γ-bounded range M . Prove
that MΦ : (0, T ) → L (H, E2) is stochastically integrable with respect to
WH and

E

∥∥∥
∫ T

0

MΦdWH

∥∥∥
p

6 (γp(M ))p
E

∥∥∥
∫ T

0

ΦdWH

∥∥∥
p

,

where γp(M ) is the γ-bound of M relative to the Lp-norm (see the dis-
cussion following Definition 9.2).
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Hint: Use the norm of γp(L
2(0, T ; H), E1) (see Lecture 5 for the notation

used).

5. Let E1 and E2 be Banach spaces. Prove that the following assertions are
equivalent:
(1) E1 has cotype 2 and E2 has type 2;
(2) every uniformly bounded subset of L (E1, E2) is R-bounded;
(3) every uniformly bounded subset of L (E1, E2) is γ-bounded.

Hint: For the proofs that (2) and (3) imply (1), consider suitable uniformly
bounded families of rank one operators from E1 to E2. Recall that the
notions of (co)type and Gaussian (co)type are equivalent (see Exercise
3.5).

Remark: Via Kwapień’s theorem (see the Notes of Lecture 5), from this
exercise we infer that for a Banach space E the following assertions are
equivalent:

(1) E is isomorphic to a Hilbert space;
(2) every uniformly bounded subset of L (E) is R-bounded;
(3) every uniformly bounded subset of L (E) is γ-bounded.

Notes. The notion of R-boundedness has its origin in the work of Bourgain

on vector-valued multiplier theorems and has since then been studied by many
authors. The results presented here are taken from the fundamental papers by
Clément, de Pagter, Sukochev, Witvliet [24] and Weis [108]. We refer
to Denk, Hieber, Prüss [32] and Kunstmann and Weis [61] for more on
the history of this notion and bibliographical references. It is well established
by now that a large class of operators associated with analytic semigroups
are R-bounded in Lp, a fact which explains the importance of R-boundedness
for the theory of parabolic PDEs. Profound R-boundedness results are also
available in harmonic analysis (e.g., in connection with Fourier multipliers)
and probability theory (in connection with conditional expectation operators).
The examples presented in this lecture only give a glimpse of the rich body
of results nowadays available.

The result of Exercise 3 is due to Weis [108]. The result of Exercise 5 is
due to Le Merdy and Pisier; see Arendt and Bu [4].


