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Linear equations with additive noise II

In this lecture we pick up the thread of Lecture 8 and continue our investiga-
tion of the stochastic abstract Cauchy problem with additive noise,

{
dU(t) = AU(t) dt + B dWH(t), t ∈ [0, T ],

U(0) = x.

The goal is to prove optimal Hölder regularity results for the solutions in the
parabolic case, that is, for operators A generating an analytic C0-semigroup.
Since the problem is solved by

U(t) = S(t)x +

∫ t

0

S(t − s)B dWH(s)

it suffices to concentrate on the case x = 0. Assuming that x = 0 and
B ∈ γ(H, E), we shall prove that U has a Hölder continuous version for
any exponent α < 1

2 . The main technical tool is the γ-boundedness of the
family {tβ(−A)αS(t) : t ∈ (0, T )} for 0 < α < β < 1

2 (Lemma 10.17). Thus
by the γ-multiplier theorem (Theorem 9.14) this family acts as a multiplier
in γ(L2(0, T ; H), E). This provides a powerful tool for estimating the above
stochastic integral.

10.1 Analytic semigroups

We begin with a discussion of analytic semigroups. In this section, all Banach
spaces are complex. In later sections we shall return to the setting of real
Banach spaces and apply the results to their complexifications.

We begin with a definition (cf. Exercise 9.3).

Definition 10.1. Let D ⊆ C be open. A function f : D → E is analytic if

lim
z→z0

f(z) − f(z0)

z − z0
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exists in E for all z0 ∈ D.

Clearly, if f is analytic, then 〈f, x∗〉 is analytic for all x∗ ∈ E∗. In com-
bination with the Hahn-Banach theorem, this fact may be used to show that
many results on scalar-valued analytic functions extend to the vector-valued
setting.

For η ∈ (0, π] define the open sector

Ση = {z ∈ C \ {0} : | arg(z)| < η},

where the argument is taken in (−π, π].

Definition 10.2. A C0-semigroup S on E is called analytic on Ση if for all
x ∈ E the function t 7→ S(t)x extends analytically to Ση and satisfies

lim
z∈Ση, z→0

S(z)x = x.

We call S an analytic C0-semigroup if S is analytic on Ση for some η ∈ (0, π].

The supremum of all η ∈ (0, π] such that S analytic on Ση is called the
angle of analyticity of S.

If S is analytic on Ση, then for all z1, z2 ∈ Ση we have

S(z1)S(z2) = S(z1 + z2).

Indeed, for each x ∈ E the functions z1 7→ S(z1)S(t)x, S(t)S(z1)x, and S(z1+
t)x are analytic extensions of s 7→ S(s+t)x and are therefore equal. Repeating
this argument, the functions z2 7→ S(z1)S(z2)x, S(z2)S(z1)x, and S(z1 + z2)x
are analytic extensions of t 7→ S(z1 + t)x and are therefore equal.

As in the proof of Proposition 7.3, the uniform boundedness theorem im-
plies that if S is analytic on Ση, then S is uniformly bounded on Ση′ ∩ {z ∈
C : |z| 6 r} for all 0 < η′ < η and r > 0. Thus it makes sense to call S
a uniformly bounded analytic C0-semigroup if S is uniformly bounded on Ση

for some η ∈ (0, π]. Clearly, if A generates an analytic C0-semigroup on Ση,
then for any 0 < η′ < η the operator A − µ generates a uniformly bounded
analytic C0-semigroup on Ση′ if µ (depending on η′) is large enough.

Theorem 10.3. For a closed and densely defined operator A the following
assertions are equivalent:

(1) there exists η ∈ (0, 1
2π] such that A generates a uniformly bounded analytic

C0-semigroup on Ση;
(2) there exists θ ∈ (1

2π, π] such that Σθ ⊆ ̺(A) and sup
λ∈Σθ

‖λR(λ, A)‖ < ∞;

(3) S(t)x ∈ D(A) for all x ∈ E and t > 0, and sup
t>0

t‖AS(t)‖ < ∞.
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In this situation, the suprema η̃ and θ̃ for which (1) and (2) hold are related

by 1
2π + η̃ = θ̃. Furthermore we have the representation

S(t)x =
1

2πi

∫

Γ

eztR(z, A)xdz, t > 0, x ∈ E,

where Γ is the upwards oriented boundary of Σθ′ \ B for some θ′ ∈ (1
2π, θ)

and B is a closed ball centred at the origin.

Proof. (1)⇒(2): By Proposition 7.8, if G is the generator of a uniformly
bounded C0-semigroup, then {Reλ > 0} ⊆ ̺(G) and λR(λ, G) is uniformly
bounded on every proper sub-sector Σρ, 0 < ρ < 1

2π.
Let S be the C0-semigroup generated by A and let it be uniformly bounded

on the sector Ση. The implication (1)⇒(2) follows by applying the above

observation to the uniformly bounded C0-semigroups (S(eiη′

t))t>0 with 0 <

η′ < η, whose generators are eiη′

A. This gives the uniform boundedness of
λR(λ, A) on the union of all sectors eiη′

Σρ for 0 < η′ < η and 0 < ρ < 1
2π,

which equals Σ 1

2
π+η′ . This argument also proves the inequality θ̃ >

1
2π + η̃.

(2)⇒(3): First we prove that the conditions of (2) imply the integral
representation for S(t)x.

The integral converges absolutely for all t > 0 and x ∈ E, and as a
function of t it extends to a bounded analytic function on the sector Ση′ for

any η′ < θ′ − 1
2π. This proves the inequality θ̃ 6 1

2π + η̃.
Fix t > 0 and x ∈ E. For µ > 0 such that µ 6∈ B define

vµ(t)x =
1

2πi

∫

Γ

ezt(µ − z)−1R(z, A)xdz.

Our aim is to show that vµ(t)x = S(t)R(µ, A)x. Then,

S(t)x = lim
µ→∞

S(t)µR(µ, A)x = lim
µ→∞

µvµ(t)x =
1

2πi

∫

Γ

eztR(z, A)xdz,

where the first equality follows from Lemma 7.9 and the last is obtained by
splitting Γ = Γr,1 ∪ Γr,2 with Γr,1 = {z ∈ Γ : ‖z‖ 6 r} and Γr,2 = {z ∈ Γ :
‖z‖ > r}: for large fixed r, the integral over Γr,2 is less than ε, uniformly with
respect to µ > 2r, while the integral over Γr,1 tends to 1

2πi

∫
Γr,1

eztR(z, A)xdz

by dominated convergence. Now pass to the limit r → ∞.
The strategy is to prove that t 7→ vµ(t)x is a weak solution of the Cauchy

problem {
u′(t) = Au(t), t ∈ [0, T ],

u(0) = R(µ, A)x.

Then t 7→ vµ(t)x is a strong solution by Proposition 7.16 and by the uniqueness
part of Theorem 7.17 it follows that vµ(t)x = S(t)R(µ, A)x.
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It is easily checked that t 7→ vµ(t) is integrable on [0, T ] (even continuous),
and for all x∗ ∈ D(A∗) we obtain

∫ t

0

〈vµ(s), A∗x∗〉 ds =

∫ t

0

1

2πi

∫

Γ

ezs(µ − z)−1〈R(z, A)x, A∗x∗〉 dz ds

=

∫ t

0

1

2πi

∫

Γ

ezs(µ − z)−1〈zR(z, A)x − x, x∗〉 dz ds

(∗)
=

∫ t

0

1

2πi

∫

Γ

ezs(µ − z)−1〈zR(z, A)x, x∗〉 dz ds

=
1

2πi

∫

Γ

(ezt − 1)(µ − z)−1〈R(z, A)x, x∗〉 dz

(∗∗)
=

1

2πi

∫

Γ

ezt(µ − z)−1〈R(z, A)x, x∗〉 dz − 〈R(µ, A)x, x∗〉.

Here the equality (∗) follows from the observation that by Cauchy’s theorem
we have

1

2πi

∫

Γ

(µ − z)−1ezs dz = 0,

since µ 6∈ B is on the right of Γ . The equality (∗∗) follows from

1

2πi

∫

Γ

(µ − z)−1〈R(z, A)x, x∗〉 dz = 〈R(µ, A)x, x∗〉

by the analyticity of the resolvent (Exercise 7.2) and Cauchy’s theorem.
Now we are ready for the proof that (2) implies (3). Fix t > 0 and x ∈ E.

Since
M := sup

z∈Γ

‖AR(z, A)‖ = sup
z∈Γ

‖zR(z, A)− I‖

is finite, the integral 1
2πi

∫
Γ

etzR(z, A)Axdz converges absolutely. From Hille’s
theorem we deduce that S(t)x ∈ D(A) and

AS(t)x =
1

2πi

∫

Γ

etzR(z, A)Axdz.

By estimating this integral and letting the radius of the ball B in the definition
of Γ tend to 0, it follows moreover that

‖AS(t)x‖ 6
M

π
‖x‖

∫ ∞

0

eρt cos θ′

dρ = t−1 M

π| cos θ′| ‖x‖.

(3)⇒(1): For all x ∈ D(An), t 7→ S(t)x is n times continuously
differentiable and S(n)(t)x = AnS(t)x = (AS(t/n))nx. Since D(An) is
dense, the boundedness of AS(t/n) and closedness of the nth derivative in
C([0, T ]; E) together imply that the same conclusion holds for x ∈ E. More-
over, ‖S(n)(t)x‖ 6 Cnnn/tn‖x‖, where C is the supremum in (3). From
n! > nn/en we obtain that for each t > 0 the series
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S(z)x :=
∞∑

n=0

1

n!
(z − t)nS(n)(t)x

converges absolutely on the ball B(t, rt/eC) for all 0 < r < 1 and defines
an analytic function there. The union of these balls is the sector Ση with
sin η = 1/eC. We shall complete the proof by showing that S(z) is uniformly
bounded and satisfies limz→0 S(z)x = x in Ση′ for each 0 < η′ < η. To this
end we fix 0 < r < 1. For z ∈ B(t, rt/eC) we have

‖S(z)x‖ 6

∞∑

n=0

1

n!
rn(t/eC)nCnnn/tn‖x‖ 6

∞∑

n=0

rn‖x‖.

This proves uniform boundedness on the sectors Ση′ . To prove strong continu-
ity it then suffices to consider x ∈ D(A), for which it follows from estimating
the identity

S(z)x − x = eiθ

∫ r

0

S(seiθ)Axds

where z = reiθ . ⊓⊔

Remark 10.4. We will use analyticity only through condition (3), which gives
a ‘real’ characterisation of analyticity. In the context of semigroups on real
Banach spaces this condition could be taken as the definition for analyticity,
which has the advantage of avoiding the digressions through complexified
spaces. In concrete examples, however, it is often easier to check analyticity
using Definition 10.2 or condition (2) of Theorem 10.3.

By a rescaling argument we obtain:

Corollary 10.5. If A generates an analytic C0-semigroup S on E, then

lim sup
t↓0

t‖AS(t)‖ < ∞.

From the fact that S(t)x ∈ D(A) for all t > 0 and x ∈ E we deduce:

Corollary 10.6. If A generates an analytic C0-semigroup S on E, then for
all initial values x ∈ E the problem (ACP) has a unique classical solution,
which is given by u(t) = S(t)x.

10.2 Fractional powers

Throughout this section we assume that A is the generator of a C0-semigroup
S on E which is uniformly exponentially stable in the sense that there exist
constants M > 1 and µ > 0 such that ‖S(t)‖ 6 Me−µt for all t > 0.

The next definition is motivated by the trivial identity
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c−α =
1

Γ (α)

∫ ∞

0

tα−1e−ct dt, c > 0,

where Γ (α) =
∫ ∞

0 tα−1e−t dt is the Euler gamma function.

Definition 10.7. For 0 < α < 1 we define the fractional power (−A)−α of
−A by the formula

(−A)−αx :=
1

Γ (α)

∫ ∞

0

tα−1S(t)xdt, x ∈ E.

Note that (−A)−α is well-defined and bounded on E and commutes with
S(t) for all t > 0. Sometimes it is useful to extend the definition to the limiting
values α ∈ {0, 1} by putting (−A)0 = I and (−A)−1 = −A−1.

Lemma 10.8. For all 0 < α, β < 1 satisfying 0 < α + β < 1 we have

(−A)−α(−A)−β = (−A)−β(−A)−α = (−A)−α−β .

Proof. It suffices to prove that (−A)−α(−A)−β = (−A)−α−β ; the other iden-
tity follows upon interchanging α and β.

For all x ∈ E we have

(−A)−α(−A)−βx =
1

Γ (α)Γ (β)

∫ ∞

0

∫ ∞

0

tα−1sβ−1S(s + t)xds dt

=
1

Γ (α)Γ (β)

∫ ∞

0

∫ ∞

t

tα−1(s − t)β−1S(s)xds dt

=
1

Γ (α)Γ (β)

∫ ∞

0

( ∫ s

0

tα−1(s − t)β−1 dt
)
S(s)xds

(∗)
=

1

Γ (α + β)

∫ ∞

0

sα+β−1S(s)xds = (−A)−α−βx,

where the identity (∗) follows from

1

Γ (α)Γ (β)

∫ s

0

tα−1(s−t)β−1dt =
sα+β−1

Γ (α)Γ (β)

∫ 1

0

τα−1(1−τ)β−1dτ =
sα+β−1

Γ (α + β)
.

Indeed, computing as above,

Γ (α + β)

∫ 1

0

τα−1(1 − τ)β−1 dτ =

∫ ∞

0

∫ 1

0

sα+β−1τα−1(1 − τ)β−1e−s dτ ds

=

∫ ∞

0

∫ s

0

tα−1(s − t)β−1e−s dt ds

=

∫ ∞

0

∫ ∞

t

tα−1(s − t)β−1e−s ds dt

=

∫ ∞

0

∫ ∞

0

tα−1sβ−1e−s−t ds dt

= Γ (α)Γ (β). ⊓⊔
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Lemma 10.9. We have sup0<α<1 ‖(−A)−α‖ < ∞.

Proof. We estimate ‖(−A)−αx‖ by

1

Γ (α)

∥∥∥
∫ 1

0

tα−1S(t)xdt
∥∥∥ +

1

Γ (α)

∥∥∥
∫ ∞

1

tα−1S(t)xdt
∥∥∥ =: (I) + (II).

Now,

(I) 6
M‖x‖
αΓ (α)

=
M‖x‖

Γ (α + 1)
, (II) 6

M‖x‖
Γ (α)

∫ ∞

1

tα−1e−µt dt 6
M‖x‖

µα
,

and both right hand sides are uniformly bounded for 0 < α < 1. ⊓⊔

Lemma 10.10. For all x ∈ E, α 7→ (−A)−αx is continuous on [0, 1].

Proof. First let x ∈ D(A) and put Ax = y. An integration by parts gives

(−A)−αx − x =
1

Γ (α)

∫ ∞

0

tα−1S(t)xdt − x

= − 1

αΓ (α)

∫ ∞

0

tαS(t)y dt − x

= −
∫ ∞

0

( tα

Γ (α + 1)
− 1

)
S(t)y dt,

where we used that x = A−1y = −
∫ ∞

0
S(t)y dt. Hence, for any r > 1,

‖(−A)−αx − x‖ 6 M‖y‖
∫ r

0

∣∣∣
tα

Γ (α + 1)
− 1

∣∣∣ dt + CM‖y‖
∫ ∞

r

tαe−µt dt,

where C = sup
{∣∣ 1

Γ (α+1) − 1
tα

∣∣ : 0 < α < 1, t > 1
}
. Choosing r > 1 so large

that the second term is less than ε and then passing to the limit α ↓ 0 in the
first, we obtain the continuity of α 7→ (−A)−αx at α = 0 for x ∈ D(A). In
view of the previous lemma, continuity at α = 0 for all x ∈ E follows from
this.

The continuity of α 7→ (−A)−αx at α = 1 is proved in the same way, this
time noting that for all x ∈ D(A) we have

(−A)−αx − (−A)−1x =

∫ ∞

0

( tα−1

Γ (α)
− 1

)
S(t)xds.

Finally the continuity for α ∈ (0, 1) follows from the continuity at α = 0 and
the ‘semigroup’ property of Lemma 10.8. ⊓⊔

Lemma 10.11. For 0 < α < 1 the operator (−A)−α is injective.

Proof. Suppose (−A)−αx = 0. Then Lemma 10.8 implies (−A)−βx = 0 for
all α < β < 1, and Lemma 10.10 gives A−1x = 0. Hence x = 0. ⊓⊔
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This lemma suggests the following definition.

Definition 10.12. For 0 < α < 1 define (−A)α := ((−A)−α)−1.

As an unbounded operator with the range of (−A)−α as its natural domain,
(−A)α is a closed and injective operator in E. With respect to the norm

‖x‖D((−A)α) := ‖(−A)αx‖, (10.1)

D((−A)α) is a Banach space and (−A)α : D((−A)α) → E is an isometric
isomorphism. For later reference we note that D(A) is dense in D((−A)α).
Indeed, for any x ∈ D((−A)α) we have limλ→∞ λR(λ, A)(−A)αx = (−A)αx,
and since R(λ, A) and (−A)α commute this means that limλ→∞ λR(λ, A)x =
x in the norm of D((−A)α).

Lemma 10.13. For 0 < α < 1 we have

(−A)α−1(−A)−α = (−A)−α(−A)α−1 = (−A)−1.

Proof. This follows from Lemmas 10.8 and 10.10:

(−A)−1x = lim
β↑1

(−A)−βx = lim
β↑1

(−A)−α(−A)α−βx = (−A)−α(−A)α−1x. ⊓⊔

In the next two lemmas we assume that the C0-semigroup S, in addition
to being uniformly exponentially stable, is analytic.

Lemma 10.14. For all 0 < α < 1 and t > 0 the operator (−A)αS(t) is
bounded and we have

sup
t>0

tα‖(−A)αS(t)‖ < ∞.

Proof. Since S is analytic, S(t) maps E into D(A) and supt>0 t‖AS(t)‖ < ∞.
The boundedness of (−A)αS(t) follows from the boundedness of AS(t) by the
identity (−A)αS(t) = −(−A)α−1AS(t).

To prove the estimate, note that for all x ∈ E we have

(−A)αS(t)x =
−1

Γ (1 − α)

∫ ∞

0

s−αAS(t + s)xds,

so, for t > 0,

‖(−A)αS(t)x‖ 6
C

Γ (1 − α)

∫ ∞

0

s−α(t + s)−1‖x‖ ds

=
Ct−α

Γ (1 − α)

∫ ∞

0

τ−α(1 + τ)−1‖x‖ dτ. ⊓⊔

Lemma 10.15. For all 0 < α < 1 we have

sup
t>0

t−α‖S(t)(−A)−α − (−A)−α‖ < ∞.
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Proof. From the identity (−A)−α(−A)x = (−A)1−αx for x ∈ D(A) and
Lemma 10.14 we obtain, for t > 0,

‖S(t)(−A)−αx − (−A)−αx‖ 6

∫ t

0

‖(−A)−αAS(s)x‖ ds 6
Ctα

α
‖x‖,

where C = supt>0 t1−α‖(−A)1−αS(t)‖. ⊓⊔

In the next section we shall consider generators A of analytic C0-semigroups
which are not necessarily uniformly exponentially stable. In this situation,
fractional powers still can be defined for the shifted operators A − λ with λ
large enough. The next lemma states that the resulting domains D((λ−A)α)
are independent of λ.

To make things more precise, let A be the generator of an arbitrary C0-
semigroup on E and suppose M > 1 and µ ∈ R are such that ‖S(t)‖ 6 Meµt

for all t > 0.

Lemma 10.16. For all 0 < α < 1 and λ1, λ2 > µ we have

D((λ1 − A)α) = D((λ2 − A)α)

with equivalent norms.

Proof. The linear operator (λ2 − A)−α(λ1 − A)α is a bounded and injective
mapping from D((λ1 −A)α) onto D((λ2 −A)α) with inverse (λ1 −A)−α(λ2 −
A)α. Thus D((λ1−A)α) and D((λ2−A)α) are isomorphic as Banach spaces. It
remains to prove that D((λ1 −A)α) = D((λ2 −A)α) as linear subspaces of E.
But this follows from the fact that these spaces are the completions of D(A)
with respect to the equivalent norms ‖ · ‖D((λ1−A)α) and ‖ · ‖D((λ2−A)α). ⊓⊔

This proposition justifies the notation Eα := D((λ − A)α)); this defines
Eα as a Banach space up to an equivalent norm.

10.3 Hölder regularity

We now turn to the stochastic abstract Cauchy problem

{
dU(t) = AU(t) dt + B dWH(t), t ∈ [0, T ],

U(0) = 0.
(SACP0)

We shall assume throughout this section that A generates an analytic C0-
semigroup S on E satisfying ‖S(t)‖ 6 Meµt for certain M > 1, µ ∈ R, and
all t > 0.

The key lemma for proving Hölder regularity of the solutions of (SACP0)
reads as follows.
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Lemma 10.17. For all real numbers α, β, η > 0 satisfying 0 6 α + η < β < 1
and λ > µ, the set

{tβ(λ − A)ηS(t) : t ∈ (0, T )}
is R-bounded (and hence γ-bounded) in L (E, Eα), with γ-bound O(T β−α−η).

Proof. For all x ∈ E the L (E, Eα)-valued function Ψ(t)x := tβ(λ−A)ηS(t)x
is continuously differentiable on (0, T ) with derivative

Ψ ′(t)x = βtβ−1(λ − A)ηS(t)x + tβ(λ − A)ηAS(t)x,

where the second expression on the right hand side is well-defined since we
may write AS(t) = S(t/2)AS(t/2). By Lemma 10.14,

‖Ψ ′(t)‖L (E,Eα) 6 Ctβ−α−η−1, t ∈ (0, T ),

where C is a constant depending on T . Here we estimated the second term as

‖(λ − A)ηAS(t)‖L (E,Eα) = ‖(λ − A)ηS(t/2)AS(t/2)‖L (E,Eα)

6 Ct−α−η‖AS(t/2)‖ 6 C′t−α−η−1.

Since tβ−α−η−1 is integrable, the lemma follows from Theorem 9.9. ⊓⊔

After these preparations we are ready to state and prove the main results
of this lecture. The first is an existence result.

Theorem 10.18. If B ∈ γ(H, E), then the L (H, E)-valued function t 7→
S(t)B is stochastically integrable on (0, T ) with respect to WH . As a con-
sequence, the stochastic Cauchy problem (SACP0) associated with A and B
admits a unique strong solution.

Proof. By Theorems 8.6 and 8.10 it suffices to check that the function Φ(t) =
S(t)B is stochastically integrable with respect to WH , or equivalently, that
the operator

RΦf :=

∫ T

0

Φ(t)f(t) dt, f ∈ L2(0, T ; H),

is γ-radonifying from L2(0, T ; H) to E.
Pick a number β ∈ (0, 1

2 ) and write

Φ(t) = tβS(t)[t−βB] := tβS(t)Ψ(t),

where Ψ(t) := t−βB. By Lemma 10.17 and the γ-multiplier theorem (Theorem
9.14), the operator RΦ belongs to γ(L2(0, T ; H), E) once we know that RΨ ∈
γ(L2(0, T ; H), E). But this is immediate from the result of Exercise 5.3, since
t 7→ t−β belongs to L2(0, T ) and B belongs to γ(H, E). ⊓⊔
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Under the assumptions of the theorem we define the E-valued process
(U(t))t∈[0,T ] by

U(t) :=

∫ t

0

S(t − s)B dWH(s).

In order to formulate the second main result, for a Banach space F and
0 6 β < 1 we define Cβ([0, T ]; F ) as the space of all continuous functions
u : [0, T ] → F for which

sup
06s<t6T

‖u(t) − u(s)‖
(t − s)β

< ∞.

The elements of Cβ([0, T ]; F ) are said to be Hölder continuous of exponent β.

Theorem 10.19 (Hölder regularity). Under the assumptions of the previ-
ous theorem, for all α > 0 and β > 0 satisfying α +β < 1

2 and 1 6 p < ∞ the
solution U belongs to Lp(Ω; Eα) and there exists a constant C > 0 such that
for all 0 6 s, t 6 T ,

(
E‖U(t) − U(s)‖p

Eα

) 1

p 6 C|t − s|β.

As a consequence, for all α > 0 and β > 0 satisfying α + β < 1
2 the process

(U(t))t∈[0,T ] has a version with trajectories in Cβ([0, T ]; Eα).

Proof. By the Kahane-Khintchine inequality it suffices to prove the Lp-
estimate for p = 2.

Fix α > 0 and β > 0 such that α + β < 1
2 . Let us first prove that for

all t ∈ [0, T ] the random U(t) takes its values in Eα almost surely. We do
so by showing that S(·)B is stochastically integrable as an L (H, Eα)-valued
function. Fix α < θ < 1

2 . Then {tθS(t) : t ∈ (0, T )} is γ-bounded in L (E, Eα)
by Lemma 10.17. As we have seen, the function t 7→ t−θB defines an operator
in γ(L2(0, T ; H), E) of norm ‖t−θ‖L2(0,T )‖B‖γ(H,E). Now Theorem 9.14 and

the identity S(t)B = tθS(t)t−θB imply that

‖RS(·)B‖γ(L2(0,T ;H),Eα) 6 C‖B‖γ(H,E).

Fix 0 6 s 6 t 6 T . By the triangle inequality in L2(Ω; Eα),

(
E‖U(t) − U(s)‖2

Eα

) 1

2 6

(
E

∥∥∥
∫ s

0

[S(t − r) − S(s − r)]B dW (r)
∥∥∥

2

Eα

) 1

2

+
(
E

∥∥∥
∫ t

s

S(t − r)B dW (r)
∥∥∥

2

Eα

) 1

2

.

Choose λ ∈ R sufficiently large in order that the fractional powers of λ − A
exist. For the first term we have, for any choice of ε > 0 such that α+β+ε < 1

2 ,
and using Lemmas 10.8 and 10.15,
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E

∥∥∥
∫ s

0

[S(t − r) − S(s − r)]B dW (r)
∥∥∥

2

Eα

≃ E

∥∥∥
∫ s

0

(s − r)α+β+ε(λ − A)α+βS(s − r)

× (s − r)−α−β−ε[S(t − s) − I](λ − A)−βB dW (r)
∥∥∥

2

6 C2
E

∥∥∥
∫ s

0

(s − r)−α−β−ε[S(t − s) − I](λ − A)−βB dW (r)
∥∥∥

2

= C2‖[S(t − s) − I](λ − A)−βB‖2
γ(H,E)

∫ s

0

(s − r)−2(α+β+ε) dr

6 C2‖[S(t − s) − I](λ − A)−β‖2‖B‖2
γ(H,E)s

1−2(α+β+ε)

6 C2
T (t − s)2β‖B‖2

γ(H,E).

Similarly,

E

∥∥∥
∫ t

s

S(t − r)B dW (r)
∥∥∥

2

Eα

h E

∥∥∥
∫ t

s

(t − r)
1

2
−β(λ − A)αS(t − r)(t − r)−

1

2
+βB dW (r)

∥∥∥
2

6 C2
E

∥∥∥
∫ t

s

(t − r)−
1

2
+βB dW (r)

∥∥∥
2

= C2‖B‖2
γ(H,E)

∫ t

s

(t − r)−1+2β dr

6 C2
T ‖B‖2

γ(H,E)(t − s)2β .

The first part of the theorem follows by combining these estimates.
For the second part, pick β < β′ < 1

2 − α. Given p > 1, by the above we
find a constant C such that for 0 6 s, t 6 T ,

E‖U(t) − U(s)‖p
Eα

6 Cp|t − s|β′p.

For p large enough the existence of a version with β-Hölder continuous tra-
jectories now follows from Kolmogorov’s theorem (Theorem 6.9). ⊓⊔
Example 10.20. For the stochastic heat equation in L2(0, 1) with Dirichlet
boundary conditions, Theorem 10.19 implies the existence of a solution U
with trajectories in ∈ Cη([0, T ]; Cθ[0, 1]) for all η, θ > 0 satisfying 2η + θ < 1

2 .
This will be shown as a special case of a more general space-time regularity
result in the last lecture.

10.4 Exercises

1. a) Show that the heat semigroup S on Lp(Rd) with 1 6 p < ∞ (Example
7.20) is analytic on the sector Σ 1

2
π, and uniformly bounded on every

proper subsector of Σ 1

2
π.
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Hint: Put S(z)f = Kz ∗ f , where Kz is the analytic extension of the
heat kernel. Use Young’s inequality together with the estimate

‖Kz‖1 =
( |z|

Re(z)

) 1

2
d

.

b) Show that in L2(Rd), S is contractive on Σ 1

2
π.

Remark: Using interpolation theory, the above results imply the estimate

‖S(t)‖p 6

( |z|
Re(z)

)| 1
2
− 1

p
|d

, Re(z) > 0.

2. This exercise gives a two-dimensional example of a bounded analytic C0-
semigroup which is uniformly exponentially stable, contractive on R+, and
fails to be contractive on any open sector containing R+.

On R2 consider the norm ‖ · ‖Q induced by the inner product [x, y]Q :=
[Qx, y], where [·, ·] represents the standard inner product of R2 and

Q =

[
2 −1

−1 1

]
.

a) Show that the symmetric matrix Q is positive and conclude that [·, ·]Q
does indeed define an inner product on R2.

On (R2, ‖ · ‖Q) we consider the C0-semigroup S,

S(t) = e−t

[
1 t
0 1

]
.

b) Show that ‖S(t)‖Q = e−t(t +
√

t2 + 1) and conclude that S is con-
tractive on R+.

Hint: Use the fact that ‖S(t)‖2
Q equals the largest eigenvalue of S(t)S∗(t)

(the adjoint refers to the inner product [·, ·]Q). For this, solve the equation
det(S(t)Q−1S′(t) − λQ−1) = 0, where S′(t) is the transpose of S(t).
On the complexification C

2 of R
2 we consider the inner product

〈x, y〉Q := 〈Qx, y〉,

where this time 〈·, ·〉 represents the standard inner product of C2. Prove
that the complexified semigroup S has the following properties:
c) S extends to an entire C0-semigroup which is uniformly bounded on

the sector Ση for all 0 < η < 1
2π.

d) S fails to be contractive on any open sector Ση.



148 10 Linear equations with additive noise II

3. This exercise gives necessary and sufficient conditions for a closed densely
defined operator A in E to generate an analytic C0-semigroup which is
contractive on a sector Ση. For x ∈ E we define

∂(x) = {x∗ ∈ E∗ : ‖x‖ = ‖x∗‖, 〈x, x∗〉 = ‖x‖‖x∗‖}.

By the Hahn-Banach theorem, for all x ∈ E we have ∂(x) 6= ∅. Let A be a
closed densely defined operator in E and assume that ̺(A) ∩ (0,∞) 6= ∅.
Prove that the following assertions are equivalent:

(1) A generates an analytic C0-semigroup on E which is contractive on
an open sector Ση;

(2) There exists a constant C > 0 such that for all non-zero x ∈ D(A)
and all x∗ ∈ ∂(x) we have

|Im〈Ax, x∗〉| 6 −C Re〈Ax, x∗〉;

(3) There exists a constant C > 0 such that for all non-zero x ∈ D(A)
there exists x∗ ∈ ∂(x) such that

|Im〈Ax, x∗〉| 6 −C Re〈Ax, x∗〉.

Hint: For (1)⇒(2) differentiate the function Re〈S(teiη′

)x, x∗〉 for |η′| < η
and x∗ ∈ ∂(x). For (3)⇒(1) observe that if cot η = C, then for x and x∗ as
indicated and λ = reiη′

with |η′| < η we have ‖(λ−A)x‖ > r‖x‖ = |λ| ‖x‖.
4. Suppose that A is a closed linear operator with (0,∞) ⊆ ̺(A) and

supλ>0(λ + 1)‖R(λ, A)‖ < ∞.

a) Show that Ση ⊆ ̺(A) and supλ∈Ση
|λ + 1|‖R(λ, A)‖ < ∞ for some

η > 0.

Define

(−A)−α :=
1

2πi

∫

Γ

(−z)−αR(z, A) dz,

where Γ is the upwards oriented boundary of Ση ∪B, where B is a closed
ball centred at the origin.

b) Show, by using Cauchy’s formula, that for all x ∈ E we have

(−A)−αx =
sin απ

π

∫ ∞

0

λ−αR(λ, A)xdλ.

c) Now assume that A generates a uniformly exponentially stable C0-
semigroup S and prove that the definition in b) agrees with Definition
10.7.

5. In this exercise we sketch an alternative approach to Theorem 10.19, whose
notations and assumptions we use.
Let U(t) =

∫ t

0
S(t − s)B dWH(t). Being the weak solution of the problem

dU(t) = AU(t) dt+B dWH with initial value U(0) = 0, the process U has
a version with integrable trajectories. Using this version we define
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V (t) :=

∫ t

0

U(s) ds.

Let WB be the Brownian motion canonically associated with B and WH

(see Proposition 8.8). Fixing 0 6 α < 1
2 , we note that WB has a version

with trajectories in Cα([0, T ]; E) by Kolmogorov’s theorem.

a) Show that almost surely, the following identity holds for all t ∈ [0, T ]:

V (t) =

∫ t

0

S(t − s)WB(s) ds.

b) Show that almost surely, U has trajectories in Cα([0, T ]; E).
Hint: Show that almost surely, the trajectories of V belong to
C1([0, T ]; E) and have derivatives in Cα([0, T ]; E).

c) Refine this argument to obtain the result of Theorem 10.19.

Notes. The results of Sections 10.1 and 10.2 are standard.
Theorem 10.3 can be found in most textbooks on semigroups (see the

Notes of Lecture 7). We have tried to shorten the proof as much as pos-
sible. Of course, much more is to be said about the representation of the
operators S(t) in terms of the resolvent R(λ, A). Indeed, this formula is a
special case of the complex inversion formula for the Laplace transform, and
suitable generalisations can be given to arbitrary C0-semigroups. We refer to
Arendt, Batty, Hieber, Neubrander [3] for a thorough discussion of this
topic. A systematic treatment of analytic semigroups and their applications
to parabolic evolution equations is given in the monograph of Lunardi [72].
Exercise 2 is taken from [42].

Fractional powers of unbounded operators are discussed in Arendt,
Batty, Hieber, Neubrander [3], Haase [45], Lunardi [72], and Pazy

[89]. We followed the presentation of [89]. Our approach is rather ad hoc and
was designed to keep the technicalities at a minimum. A more systematic
approach starts from the Dunford integral along the lines of Exercise 4.

The results of Section 10.3 are taken from [34]. The proof of Theorem 10.19
presented here contains a simplification due to Veraar. Our results generalise
the Hilbert space case which is due to Da Prato, Kwapień, Zabczyk [26].
The approach of [26] is based on a factorisation trick which is based on the
identity

1

Γ (α)Γ (1 − α)

∫ t

r

(t − s)α−1(s − r)−α ds = 1,

valid for 0 < α < 1 and t > r > 0. This identity allows one to write the
solution process as a repeated integral. Hölder regularity is then obtained
by applying the stochastic Fubini theorem and exploiting the regularising
properties of fractional integrals. This method was extended to Banach spaces
by Millet and Smoleński [77]. The idea of Exercise 5 is taken from Da

Prato, Kwapień, Zabczyk [26].


