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Conditional expectations and martingales

Having finished our discussion of the stochastic Cauchy problem with additive
noise, we now turn to the more difficult case of equations with multiplicative
noise, where the fixed operator B ∈ L (H, E) is replaced by an operator-
valued function B : E → L (H, E):

{
dU(t) = AU(t) dt + B(U(t)) dt, t ∈ [0, T ],

U(0) = u0.

The solutions are then no longer given in closed form by the explicit formula
(8.1). Instead, they arise as fixed points of the stochastic integral equation

U(t) = S(t)x +

∫ t

0

S(t − s)B(U(s)) dWH (s).

The new difficulty here is that integrand is an L (H, E)-valued process de-
pending on U . This requires an extension of the stochastic integration theory
of Lecture 6 to this more general situation. As it turns out, in the setting of
UMD Banach spaces this can be achieved by a decoupling technique which
reduces the construction of the stochastic integral to the one already covered.

In this lecture we introduce the notion of E-valued martingales. They
will be used to define UMD Banach spaces as the class of Banach spaces
E such that certain a priori estimates hold for E-valued martingales. This
may sound rather technical, but the important fact is that Hilbert spaces,
Lp-spaces (1 < p < ∞), and spaces constructed from these, are UMD spaces.
From the point of view of applications, the UMD spaces therefore constitute
an important class of spaces.

11.1 Conditional expectations

Throughout this section we fix a probability space (Ω, F , P) and a sub-σ-
algebra G of F . For 1 6 p 6 ∞ we denote by Lp(Ω, G ) the subspace of
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all ξ ∈ Lp(Ω) having a G -measurable representative. With this notation,
Lp(Ω) = Lp(Ω, F ).

Lemma 11.1. Lp(Ω, G ) is a closed subspace of Lp(Ω).

Proof. Suppose that (ξn)∞n=1 is a sequence in Lp(Ω, G ) such that limn→∞ ξn =
ξ in Lp(Ω). We may assume that the ξn are pointwise defined and G -
measurable. After passing to a subsequence (when 1 6 p < ∞) we may
furthermore assume that limn→∞ ξn = ξ almost surely. The set C of all
ω ∈ Ω where the sequence (ξn(ω))∞n=1 converges is G -measurable. Put

ξ̃ := limn→∞ 1Cξn, where the limit exists pointwise. The random variable
ξ̃ is G -measurable and agrees almost surely with ξ. This shows that ξ defines
an element of Lp(Ω, G ). ⊓⊔

Our aim is to show that Lp(Ω, G ) is the range of a contractive projection
in Lp(Ω). For p = 2 this is clear: we have the orthogonal decomposition

L2(Ω) = L2(Ω, G ) ⊕ L2(Ω, G )⊥

and the projection we have in mind is the orthogonal projection, denoted
by PG , onto L2(Ω, G ) along this decomposition. Following common usage we
write

E(ξ|G ) := PG ξ, ξ ∈ L2(Ω),

and call E(ξ|G ) the conditional expectation of ξ with respect to G . Let us
emphasise that E(ξ|G ) is defined as an element of L2(Ω, G ), that is, as an
equivalence class of random variables.

Lemma 11.2. For all ξ ∈ L2(Ω) and G ∈ G we have

∫

G

E(ξ|G ) dP =

∫

G

ξ dP.

As a consequence, if ξ > 0 almost surely, then E(ξ|G ) > 0 almost surely.

Proof. By definition we have ξ − E(ξ|G ) ⊥ L2(Ω, G ). If G ∈ G , then 1G ∈
L2(Ω, G ) and therefore

∫

Ω

1G(ξ − E(ξ|G )) dP = 0.

This gives the desired identity. For the second assertion, choose a G -measurable
representative of g := E(ξ|G ) and apply the identity to the G -measurable set
{g < 0}. ⊓⊔

Taking G = Ω we obtain the identity E(E(ξ|G )) = Eξ. This will be used
in the lemma, which asserts that the mapping ξ 7→ E(ξ|G ) is L1-bounded.

Lemma 11.3. For all ξ ∈ L2(Ω) we have E|E(ξ|G )| 6 E|ξ|.
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Proof. It suffices to check that |E(ξ|G )| 6 E(|ξ| |G ), since then the lemma
follows from E|E(ξ|G )| 6 EE(|ξ| |G ) = E|ξ|. Splitting ξ into positive and
negative parts, almost surely we have

|E(ξ|G )| = |E(ξ+|G ) − E(ξ−|G )|

6 |E(ξ+|G )| + |E(ξ−|G )| = E(ξ+|G ) + E(ξ−|G ) = E(|ξ| |G ). ⊓⊔

Since L2(Ω) is dense in L1(Ω) this lemma shows that the conditional
expectation operator has a unique extension to a contractive projection on
L1(Ω), which we also denote by E(·|G ). This projection is again positive in
the sense that it maps positive random variables to positive random variables;
this follows from Lemma 11.2 by approximation.

Lemma 11.4 (Conditional Jensen inequality). If φ : R → R is convex,
then for all ξ ∈ L1(Ω) such that φ ◦ ξ ∈ L1(Ω) we have, almost surely,

φ ◦ E(ξ|G ) 6 E(φ ◦ ξ|G ).

Proof. If a, b ∈ R are such that at + b 6 φ(t) for all t ∈ R, then the positivity
of the conditional expectation operator gives

aE(ξ|G ) + b = E(aξ + b|G ) 6 E(φ ◦ ξ|G )

almost surely. Since φ is convex we can find real sequences (an)∞n=1 and (bn)∞n=1

such that φ(t) = supn>1(ant+ bn) for all t ∈ R; we leave the proof of this fact
as an exercise. Hence almost surely,

φ ◦ E(ξ|G ) = sup
n>1

anE(ξ|G ) + bn 6 E(φ ◦ ξ|G ). ⊓⊔

Theorem 11.5 (Lp-contractivity). For all 1 6 p 6 ∞ the conditional ex-
pectation operator extends to a contractive positive projection on Lp(Ω) with
range Lp(Ω, G ). For ξ ∈ Lp(Ω), the random variable E(ξ|G ) is the unique
element of Lp(Ω, G ) with the property that for all G ∈ G ,

∫

G

E(ξ|G ) dP =

∫

G

ξ dP. (11.1)

Proof. For 1 6 p < ∞ the Lp-contractivity follows from Lemma 11.4 applied
to the convex function φ(t) = |t|p. For p = ∞ we argue as follows. If ξ ∈
L∞(Ω), then 0 6 |ξ| 6 ‖ξ‖∞1Ω and therefore 0 6 E(|ξ| |G ) 6 ‖ξ‖∞1Ω almost
surely. Hence, E(|ξ| |G ) ∈ L∞(Ω) and ‖E(|ξ| |G )‖∞ 6 ‖ξ‖∞.

For 2 6 p 6 ∞, (11.1) follows from Lemma 11.2. For ξ ∈ Lp(Ω) with
1 6 p < 2 we choose a sequence (ξn)∞n=1 in L2(Ω) such that limn→∞ ξn = ξ
in Lp(Ω). Then limn→∞ E(ξn|G ) = E(ξ|G ) in Lp(Ω) and therefore, for any
G ∈ G ,
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∫

G

E(ξ|G ) dP = lim
n→∞

∫

G

E(ξn|G ) dP = lim
n→∞

∫

G

ξn dP =

∫

G

ξ dP.

If η ∈ Lp(Ω, G ) satisfies
∫

G
η dP =

∫
G

ξ dP for all G ∈ G , then
∫

G
η dP =∫

G
E(ξ|G ) dP for all G ∈ G . Since both η and E(ξ|G ) are G -measurable, as

in the proof of the second part of Lemma 11.2 this implies that η = E(ξ|G )
almost surely.

In particular, E(E(ξ|G )|G ) = E(ξ|G ) for all ξ ∈ Lp(Ω) and E(ξ|G ) = ξ for
all ξ ∈ Lp(Ω, G ). This shows that E(·|G ) is a projection onto Lp(Ω, G ). ⊓⊔

The next two results develop some properties of conditional expectations.

Proposition 11.6.

(1) If ξ ∈ L1(Ω) and H is a sub-σ-algebra of G , then almost surely

E(E(ξ|G )|H ) = E(ξ|H ).

(2) If ξ ∈ L1(Ω) is independent of G (that is, ξ is independent of 1G for all
G ∈ G ), then almost surely

E(ξ|G ) = Eξ.

(3) If ξ ∈ Lp(Ω) and η ∈ Lq(Ω, G ) with 1 6 p, q 6 ∞, 1
p

+ 1
q

= 1, then almost
surely

E(ηξ|G ) = ηE(ξ|G ).

Proof. (1): For all H ∈ H we have
∫

H
E(E(ξ|G )|H ) dP =

∫
H

E(ξ|G ) dP =∫
H

ξ dP by Theorem 11.5, first applied to H and then to G (observe that
H ∈ G ). Now the result follows from the uniqueness part of the theorem.

(2): For all G ∈ G we have
∫

G
Eξ dP = E1GEξ = E1Gξ =

∫
G

ξ dP, and the
result follows from the uniqueness part of Theorem 11.5.

(3): For all G, G′ ∈ G we have
∫

G
1G′E(ξ|G ) dP =

∫
G∩G′

E(ξ|G ) dP =∫
G∩G′

ξ dP =
∫

G
ξ1G′ dP. Hence E(ξ1G′ |G ) = 1G′E(ξ|G ) by the uniqueness

part of Theorem 11.5. By linearity, this gives the result for simple functions
η, and the general case follows by approximation. ⊓⊔

If C is a collection of subsets of Ω, then σ(C ) denotes the σ-algebra
generated by C , that is, the smallest σ-algebra in Ω which contains all
sets of C . In this context we shall use self-explanatory notations such as
E(ξ|C ) := E(ξ|σ(C )) and E(ξ|C1, C2) := E(ξ|σ(C1 ∪ C2)).

If η : Ω → E is a random variable, then σ(η) denotes the σ-algebra
{η−1(B) : B ∈ B(E)}. This is the smallest σ-algebra in Ω with respect to
which η is Borel measurable. Again, notations such as E(ξ|η) := E(ξ|σ(η))
and E(ξ|η1, η2) := E(ξ|σ(η1, η2)) are self-explanatory.

Proposition 11.7. Let G and H be sub-σ-algebras of F , let ξ ∈ L1(Ω), and
suppose that H is independent of σ(ξ, G ). Then, almost surely,

E(ξ|G , H ) = E(ξ|G ).
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Proof. First we claim that σ(G , H ) is generated by the collection C of all
sets of the form G∩H with G ∈ G and H ∈ H . Indeed, from G = G∩Ω ∈ C

and H = Ω ∩ H ∈ C we see that C contains both G and H .
Next, from (G1∩H1)∩(G2∩H2) = (G1∩G2)∩(H1∩H2) it follows that C

is closed under taking finite intersections. This being said, the strategy is to
apply Dynkin’s lemma. By considering positive and negative parts separately
we may assume that ξ > 0 almost surely. Also we may assume that Eξ > 0,
since otherwise there is nothing to prove.

For G ∩ H ∈ C we have
∫

G∩H

E(ξ|G , H ) dP =

∫

G∩H

ξ dP = E(1G1Hξ)

(i)
= E1HE(1Gξ) = E1HE(1GE(ξ|G ))

(ii)
= E(1G1HE(ξ|G )) =

∫

G∩H

E(ξ|G ) dP.

In (i) and(ii) we used the independence of H and σ(ξ, G ). By Dynkin’s lemma,
applied to the probability measures µ(C) := 1

Eξ

∫
C

E(ξ|G , H ) dP and ν(C) :=
1

Eξ

∫
C

E(ξ|G ) dP it follows that µ = ν on σ(C ) = σ(G , H ). This means that
∫

C

E(ξ|G , H ) dP =

∫

C

E(ξ|G ) dP ∀C ∈ σ(G , H )

and the result follows. ⊓⊔

11.2 Vector-valued conditional expectations

Our next aim is to extend the conditional expectation operators from Lp(Ω)
to Lp(Ω; E), where E is an arbitrary Banach space.

Let us fix 1 6 p < ∞ for the moment and let (A, A , µ) be an arbitrary
σ-finite measure space. For a Banach space E we denote by Lp(A) ⊗ E the
linear span of all functions of the form f ⊗ x with f ∈ Lp(A) and x ∈ E.

Lemma 11.8. Lp(A) ⊗ E is dense in Lp(A; E).

Proof. It has been observed in Lecture 1 that the µ-simple functions are dense
in Lp(A; E). Clearly these belong to Lp(A) ⊗ E. ⊓⊔

Suppose next that a bounded linear operator T on Lp(A) is given. We may
define a linear operator T ⊗ I on Lp(A) ⊗ E by the formula

(T ⊗ I)(f ⊗ x) := Tf ⊗ x.

We leave it to the reader to check that the resulting linear operator on Lp(A)⊗
E is well-defined. In view of Lemma 11.8 one may now ask whether T ⊗ I
extends to a bounded operator on Lp(A; E). Unfortunately, without additional
assumptions this is generally not the case. For positive operators T on Lp(A)
we have the following result.
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Proposition 11.9. If T is a positive operator on Lp(A), then T ⊗ I extends
uniquely to a bounded operator on Lp(A; E) and we have

‖T ⊗ I‖ = ‖T ‖.

Proof. Let g ∈ Lp(A) ⊗ E be a µ-simple function, say g =
∑N

n=1 1An
⊗ xn

with the sets An ∈ A mutually disjoint. Then from the positivity of T we
have |T 1A| = T 1An

and we obtain the estimates

∥∥∥(T ⊗ I)

N∑

n=1

1An
⊗ xn

∥∥∥
p

Lp(A;E)
=

∫

A

∥∥∥
N∑

n=1

T 1An
⊗ xn

∥∥∥
p

dµ

6

∫

A

∣∣∣
N∑

n=1

|T 1An
|‖xn‖

∣∣∣
p

dµ

=

∫

A

∣∣∣T
N∑

n=1

1An
‖xn‖

∣∣∣
p

dµ

6 ‖T ‖p

∫

A

∣∣∣
N∑

n=1

1An
‖xn‖

∣∣∣
p

dµ

= ‖T ‖p
∥∥∥

N∑

n=1

1An
⊗ xn

∥∥∥
p

Lp(A;E)
.

Since the µ-simple functions are dense in Lp(A; E), this proves that T ⊗ I has
a unique extension to a bounded operator on Lp(A; E) of norm ‖T⊗I‖ 6 ‖T ‖.
Equality ‖T ⊗I‖ = ‖T ‖ is obtained by considering functions of the form f ⊗x
with f ∈ Lp(A) and x ∈ E of norm one. ⊓⊔

Returning to conditional expectations we obtain the following result:

Theorem 11.10. For 1 6 p 6 ∞ the operator E(·|G ) ⊗ I extends uniquely
to a contractive projection on Lp(Ω; E) with range Lp(Ω, G ; E). For all X ∈
Lp(Ω; E), the random variable

E(X |G ) := (E(·|G ) ⊗ I)X

is the unique element of Lp(Ω, G ; E) with the property that for all G ∈ G ,

∫

G

E(X |G ) dP =

∫

G

X dP.

Proof. For 1 6 p < ∞ the Lp-contractivity follows from Proposition 11.9.
Before continuing with the case p = ∞, let us note that for a simple

random variable of the form X =
∑N

n=1 1An
⊗ xn with disjoint sets An ∈ F

we have
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‖E(X |G )‖ =
∥∥∥

N∑

n=1

E(1An
|G ) ⊗ xn

∥∥∥ 6

N∑

n=1

E(1An
|G )‖xn‖ = E(‖X‖ |G ).

By a density argument, this inequality extends to arbitrary random variables
X ∈ L1(Ω; E). By inclusion, this implies the corresponding inequality for
random variables X ∈ Lp(Ω; E), 1 6 p 6 ∞.

Next let X ∈ L∞(Ω; E). Then ‖X‖ ∈ L∞(Ω), and by the inequality
which has just been proved together with the contractivity of the conditional
expectation in L∞(Ω) we obtain

‖E(X |G )‖L∞(Ω;E) 6 ‖E(‖X‖ |G )‖L∞(Ω) 6
∥∥‖X‖

∥∥
L∞(Ω)

= ‖X‖L∞(Ω;E).

This proves that the conditional expectation is a contraction in L∞(Ω; E).
For simple random variables X , the identity

∫
G

E(X |G ) dP =
∫

G
X dP fol-

lows from the corresponding assertion in the scalar case. By density, the iden-
tity extends to random variables X ∈ L1(Ω; E), and hence for X ∈ Lp(Ω; E),
1 6 p 6 ∞. The uniqueness assertion follows from the scalar case via Corol-
lary 1.14. ⊓⊔

We leave it to the reader to check that Propostions 11.6 and 11.7 extend to
the vector-valued setting and finish this section with two important examples.
We have already encountered the first example in the proof of Theorem 6.17.

Example 11.11 (Averaging). Consider a decomposition (0, 1) =
⋃N

n=1 In,
where the In are disjoint intervals with Lebesgue measure |In| > 0. Let F

be the Borel σ-algebra of (0, 1) and let G be the σ-algebra generated by the
intervals In. Let E be a Banach space. Then for all f ∈ L1(0, 1; E) we have

E(f |G ) =

N∑

n=1

cn1In
with cn =

1

|In|

∫

In

f(t) dt.

This is verified by checking the condition of Theorem 11.5.

Example 11.12 (Sums of independent random variables). Let (ξn)∞n=1 be a
sequence of independent integrable E-valued random variables. For each n > 1
let Fn := σ(ξ1, . . . , ξn) and put Sn = ξ1 + · · · + ξn. Then for all N > n > 1
we have

E(SN |Fn) = Sn + E(ξn+1) + · · · + E(ξN ).

This follows from Proposition 11.6 (1), (2). In particular, if the ξn are centred,

E(SN |Fn) = Sn.

11.3 Martingales

Let (Ω, F , P) be a probability space and (I, 6) a partially ordered set, that
is, a set I with a relation 6 which satisfies the following properties:
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(1) i 6 i for all i ∈ I;
(2) i 6 j and j 6 i imply i = j;
(3) i 6 j and j 6 k imply i 6 k.

Definition 11.13. Let I be a partially ordered set. A filtration with index set
I is a family (Fi)i∈I of sub-σ-algebras of F such that Fi ⊆ Fj whenever
i 6 j in I. A family (Xi)i∈I of E-valued random variables is adapted to the
filtration (Fi)i∈I if each Xi is strongly Fi-measurable.

In this definition the random variables are defined pointwise. The defini-
tions carry over to equivalence classes modulo null sets, provided one replaces
‘is strongly Fi-measurable’ with ‘has a strongly Fi-measurable representative’
in the definition of adaptedness.

Every family X = (Xi)i∈I is adapted to the filtration (FX
i )i∈I , where

FX
i := σ(Xj : j 6 i). We call this filtration the filtration generated by X .

Definition 11.14. A family (Mi)i∈I of integrable E-valued random variables
is an E-valued martingale with respect to a filtration (Fi)i∈I if it is adapted
with respect to (Fi)i∈I and

E(Mj |Fi) = Mi

almost surely whenever i 6 j in I. If in addition E‖Mi‖
p < ∞ for all i ∈ I,

then we call (Mi)i∈I an E-valued Lp-martingale.

Example 11.15. Let X ∈ L1(Ω; E) be given. For any filtration (Fi)i∈I , the
family (Xi)i∈I defined by

Xi := E(X |Fi)

is a martingale with respect to (Fi)i∈I ; this follows from Proposition 11.6 (1).

In most examples, I is a finite or infinite interval in Z or R. In these cases
one speaks of discrete time martingales and continuous time martingales. Here
are two examples.

Example 11.16 (Sums of independent random variables). If X = (Xn)∞n=1 is
a sequence of independent integrable E-valued random variables satisfying
EXn = 0 for all n > 1, then the partial sum sequence (Sn)∞n=1 is a martingale
with respect to the filtration (FX

n )∞n=1, where

F
X
n := σ(X1, . . . , Xn).

This is immediate from Example 11.12.

Example 11.17 (Brownian motion). Every Brownian motion (W (t))t∈[0,T ] is a
martingale with respect to the filtration (FW

t )t∈[0,T ] defined by

F
W
t := σ(W (s) : 0 6 s 6 t).
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Adaptedness and integrability being clear, it remains to show that

E(W (t)|FW
s ) = W (s)

almost surely for all 0 6 s 6 t 6 T . Writing W (t) = W (s) + (W (t) − W (s)),
and noting that W (s) is FW

s -measurable and W (t)−W (s) is independent of
FW

s (this will be proved in a moment), with Proposition 11.6 (2), we obtain

E(W (t)|FW
s ) = W (s) + E(W (t) − W (s)) = W (s)

almost surely.

That W (t)−W (s) is independent of FW
s is a consequence of the following

general observation:

Lemma 11.18. A random variable X is independent of the family (Yj)j∈J if
and only if X is independent of the σ-algebra generated by (Yj)j∈J .

Proof. Let X take its values in E and each Yj in Ej .
We begin with the ‘only if’ part. Suppose that X is independent of

(Yj)j∈J . By definition this means that X is independent of (Yj1 , . . . , YjN
)

for all j1, . . . , jN ∈ J . In particular,

P({X ∈ B} ∩ C) = P{X ∈ B}P(C) (11.2)

for all sets C = {Yj1 ∈ B1, . . . , YjN
∈ BN}. The collection of all such sets C,

which we shall denote by C , is closed under taking finite intersections and
generates σ((Yj)j∈J ). We must show that (11.2) holds for all C ∈ σ((Yj)j∈J ).
Fix B ∈ B(E) and assume without loss of generality that P{X ∈ B} > 0.
Consider the probability measure PB on (Ω, F ) defined by

PB(F ) :=
P({X ∈ B} ∩ F )

P{X ∈ B}
.

The measures PB and P coincide on C , and therefore they coincide on σ(C ) =
σ((Yj)j∈J ) by Dynkin’s lemma.

To prove the ‘if’ part it suffices to observe that the sets {(Yj1 , . . . , YjN
) ∈

B}) with B ∈ B(Ej1 × · · · × EjN
) belong to σ((Yj)j∈J ). ⊓⊔

More generally, this argument can be used to show that two families
(Xi)i∈I and (Yj)j∈J are independent of each other if and only if σ((Xi)i∈I)
and σ((Yj)j∈J ) are independent.

Our final example will be used in the next lecture.

Example 11.19 (Martingale transforms). A real-valued sequence v = (vn)N
n=1

is said to be predictable with respect to a filtration (Fn)N
n=1 if vn is Fn−1-

measurable for n = 1, . . . , N (with the understanding that F0 = {∅, Ω}, so
v1 is constant almost surely). If M = (Mn)N

n=1 is an E-valued martingale with
respect to (Fn)N

n=1, the sequence v ∗ M = ((v ∗ M)n)N
n=1 defined by
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(v ∗ M)n :=
n∑

j=1

vj(Mj − Mj−1), n = 1, . . . , N

(with the understanding that M0 = 0) is called the martingale transform of
M by v.

The intuitive meaning is as follows. Suppose the increment Mj − Mj−1

represents the outcome of the j-th gambling game. The assumption that M
is a martingale means that the game is fair. Let vj be the stake a player
puts on this game. The requirement that vj be Fj−1-measurable means that
the stake has to be decided knowing the outcomes of the first j − 1 games
only. The random variable (v ∗ M)n then represents the total winnings after
game n. An obvious question is whether the player can devise a favourable
strategy. Under a mild additional assumption the answer is ‘no’: if the vn

are bounded, then v ∗ M is a martingale with respect to (Fn)N
n=1. Let us

prove this. Clearly, v ∗M is adapted with respect to (Fn)N
n=1 and the random

variables vn(Mn − Mn−1) are integrable. By Proposition 11.6 (3) and the
Fn−1-measurability of (v ∗ M)n−1 and vn,

E((v ∗ M)n)|Fn−1) = (v ∗ M)n−1 + vnE(Mn − Mn−1|Fn−1) = (v ∗ M)n−1.

11.4 L
p-martingales

An important inequality for Lp-martingales, due to Doob, states that for
1 < p < ∞ the maximum of an Lp-martingale is in Lp again.

Let M = (Mn)N
n=1 be an E-valued martingale with respect to F = (Fn)N

n=1

and define M∗
N : Ω → R+ by

M∗
N := max

16n6N
‖Mn‖.

Theorem 11.20 (Doob). For all r > 0 we have

P{M∗
N > r} 6

1

r
E‖MN‖.

If 1 < p < ∞ and MN ∈ Lp(Ω; E), then M∗
N ∈ Lp(Ω) and

‖M∗
N‖p 6

p

p − 1
‖MN‖p.

Proof. The proof proceeds in two steps.
Step 1 – We claim that for all r > 0,

rP{M∗
N > r} 6 E(1{M∗

N
>r}‖MN‖). (11.3)

This implies the first inequality.
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Let us fix r > 0 and define τ : Ω → {1, . . . , N + 1} by τ := min{1 6

n 6 N : ‖Mn‖ > r} with the convention that min ∅ := N + 1. Then
{M∗

N > r} = {τ 6 N}. On the set {τ = n} we have ‖Mn‖ > r and therefore

rP{M∗
N > r} = r

N∑

n=1

P{τ = n} 6

N∑

n=1

E(1{τ=n}‖Mn‖)

(∗)

6

N∑

n=1

E(1{τ=n}‖MN‖) = E(1{τ6N}‖MN‖)

= E(1{M∗

N
>r}‖MN‖)

which gives (11.3). The inequality (∗) follows from the martingale property,
since almost surely we have

‖Mn‖ = ‖E(MN |Fn)‖ 6 E(‖MN‖|Fn).

Step 2 – Next let 1 < p < ∞ and assume that ‖MN‖p < ∞. We may
assume that ‖M∗

N‖p > 0, since otherwise there is nothing to prove. Integrating
by parts and using (11.3) and Hölder’s inequality,

‖M∗
N‖p

p =

∫ ∞

0

prp−1
P{M∗

N > r} dr 6

∫ ∞

0

prp−2
E(1{M∗

N
>r}‖MN‖) dr

= E

(
‖MN‖

∫ M∗

N

0

prp−2 dr
)

=
p

p − 1
E(‖MN‖(M∗

N )p−1)

6
p

p − 1
‖MN‖p‖M

∗
N‖p−1

p .

The result follows upon dividing both sides by ‖M∗
N‖p−1

p . ⊓⊔

We shall apply the first part of Doob’s inequality to prove the following
result on convergence of certain Lp-martingales.

Suppose a filtration (Fn)∞n=1 is given on (Ω, F , P). We denote by F∞

the σ-algebra generated by (Fn)∞n=1, that is, F∞ is the smallest σ-algebra
containing each of the Fn.

Theorem 11.21. Let 1 6 p < ∞ and assume that X ∈ Lp(Ω; E). Then,

lim
n→∞

E(X |Fn) = E(X |F∞)

both in Lp(Ω; E) and almost surely.

Proof. We claim that
⋃∞

n=1 Lp(Ω, Fn; E) is dense in Lp(Ω, F∞; E). Assuming
this for the moment we first show how the Lp-convergence is obtained from
this.



162 11 Conditional expectations and martingales

For all Y ∈ Lp(Ω, Fm; E) and n > m we have E(Y |Fn) = E(Y |F∞) = Y ,
and therefore we trivially have limn→∞ E(Y |Fn) = Y in Lp(Ω, F∞; E). Since
the conditional operators are contractive, it follows that limn→∞ E(Y |Fn) =
Y in Lp(Ω, F∞; E) for all Y ∈ Lp(Ω, F∞; E). In particular this is true for
Y = E(X |F∞).

Let us next prove that
⋃∞

n=1 Lp(Ω, Fn; E) is dense in Lp(Ω, F∞; E). Let
G be the collection of all sets G ∈ F∞ with the property that for all ε > 0
there exists an n > 1 and a set F ∈ Fn such that P(F∆G) < ε. Here,
F∆G = (F \G)∪ (G \ F ) is the symmetric difference of F and G. It is easily
checked that the collection of all approximable sets is a sub-σ-algebra of F∞.
Clearly, this σ-algebra contains each Fn, and therefore it contains F∞.

By what we have shown so far, G ∈ F∞ implies that 1G = limk→∞ 1Gk

in Lp(Ω; E), where Gk ∈ Fnk
for some nk > 1. It follows that every simple

function of Lp(Ω, F∞; E) is contained in the closure of
⋃∞

n=1 Lp(Ω, Fn; E)
in Lp(Ω, F∞; E). As a consequence, all of Lp(Ω, F∞; E) is contained in the
closure of

⋃∞
n=1 Lp(Ω, Fn; E).

So far we have proved the Lp-convergence. To prove the almost sure conver-
gence, note that by the first part of Theorem 11.20 and monotone convergence
we have

P
{

sup
n>1

‖Mn‖ > r
}

6
1

r
sup
n>1

E‖Mn‖,

where we put Mn := E(X |Fn) for brevity. Applying this with X replaced by
X − MN , for all n > N we obtain

P
{

sup
n>N

‖Mn − MN‖ > r
}

6
1

r
sup
n>N

E‖Mn − MN‖.

By what we have proved already we find indices N1 < N2 < . . . such that

sup
n>Nk

E‖Mn − MNk
‖ <

1

22k
.

With r = 1/2k this gives

P

{
sup

n>Nk

‖Mn − MNk
‖ >

1

2k

}
6

1

2k
.

The Borel-Cantelli lemma now implies that limn→∞ Mn = M∞ = E(X |F∞)
almost surely. ⊓⊔

11.5 Exercises

1. Let f, g be random variables on Ω. Prove that if f is σ(g)-measurable,
then f = φ ◦ g for some Borel function φ.
Hint: First suppose that f = 1A with A ∈ σ(g).
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2. a) Let X1, . . . , XN be independent and identically distributed integrable
E-valued random variables and put SN = X1 + · · · + XN . Show that
E(X1|SN ) = · · · = E(XN |SN ) and deduce that E(Xn|SN ) = SN/N
for all n = 1, . . . , N.

b) (!) Let X and Y be independent and identically distributed integrable
E-valued random variables on Ω. Prove that E(X − Y |X + Y ) = 0.

3. Let (Mi)i∈I be a martingale with respect to the filtration (Fi)i∈I , and
let (Gi)i∈I be a filtration which is independent of (Fi)i∈I . Define the
filtration (Hi)i∈I by Hi := σ(Fi, Gi). Show that (Mi)i∈I is a martingale
with respect to (Hi)i∈I .

4. Let WH be an H-cylindrical Brownian motion. The filtration (FWH

t )t∈[0,T ]

generated by WH is defined by F
WH

t := σ(WH(s)h : s ∈ [0, t], h ∈ H).
a) Show that for all h ∈ H and 0 6 s 6 t 6 T the increment WH(t)h −

WH(s)h is independent of FWH
s .

b) Show that for all h ∈ H the Brownian motion (W (t)h)t∈[0,T ] is a

martingale with respect to (FWH

t )t∈[0,T ].

5. This exercise is a continuation of Exercise 6.3 on averaging operators.
Using the notations introduced there, show that for all f ∈ Lp(0, T ; E)
we have limn→∞ Anf = f almost everywhere.

Notes. An elementary introduction to the theory of martingales is the book by
Williams [109]; for more comprehensive treatments we refer to Kallenberg

[55] and Rogers and Williams [95]. A systematic account of the vector-
valued theory can be found in Diestel and Uhl [36].

The results of Sections 11.1 and 11.2 are standard. The approach taken
in Section 11.1 by first defining conditional expectations in L2(Ω) by an or-
thogonal projection is the most elementary one and, in our opinion, the most
intuitive. A shorter, but less elementary approach is to define conditional ex-
pectations in L1(Ω) by the identity (11.1) and then to use the Radon-Nikodým
theorem to prove their existence and uniqueness.

For further results on vector-valued extensions of positive operators we
refer to the nice paper by Haase [46].

The proof of Doob’s inequality (Theorem 11.20) is standard and can be
found in many textbooks. It only requires the fact that (‖Mn‖)

N
n=1 is a non-

negative submartingale, that is, it satisfies ‖Mn‖ 6 E(‖Mn‖|Fm) almost
surely for all m 6 n.

The proof of the martingale convergence theorem (Theorem 11.21) is taken
from [36]. In the scalar theory it is true that any L1-bounded martingale
converges almost surely, with convergence in L1 if the martingale is uniformly
integrable (which is the case, e.g., if the martingale is Lp-bounded for some
1 < p < ∞). For Banach space-valued martingales E, the same result holds if
E has the so-called Radon-Nikodým property. Examples of spaces with this
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property are reflexive spaces and separable dual spaces. We refer to [36] for
the full story.

It is worth mentioning the following result of Davis, Ghoussoub, John-

son, Kwapień, Maurey [30], which generalises the Itô-Nisio theorem to E-
valued martingales:

Theorem 11.22. Let E be an arbitrary Banach space and suppose that
(Mn)∞n=1 is an L1-bounded E-valued martingale. For an E-valued random
variable M the following assertions are equivalent:

(1) For all x∗ ∈ E∗ we have limn→∞〈Mn, x∗〉 = 〈M, x∗〉 almost surely;
(2) For all x∗ ∈ E∗ we have limn→∞〈Mn, x∗〉 = 〈M, x∗〉 in probability;
(3) limn→∞ Mn = M almost surely;
(4) limn→∞ Mn = M in probability.

If M ∈ Lp(Ω; E) for some 1 6 p < ∞, then Mn ∈ Lp(Ω; E) for all n > 1 and
we have limn→∞ Mn = M in Lp(Ω; E).

Note that the Itô-Nisio theorem holds without any integrability conditions.
It is clear that in the above theorem we need to impose integrability of the
random variables Mn in order to define the their conditional expectations.
In [30] a simple example is given which shows that even the L1-boundedness
condition on the Mn cannot be omitted.


