UMD-spaces

This lecture is devoted to the study of a class of Banach spaces, the so-called UMD-spaces, which share many of the good properties of Hilbert spaces and is sufficiently broad to include L^{p}-spaces for $1<p<\infty$.

Experience has shown that the class of UMD-spaces is precisely the 'right' one for pursuing vector-valued stochastic analysis as well as vector-valued harmonic analysis. Indeed, many classical Hilbert space-valued results from both areas can be extended to the UMD-valued case, and often this fact characterises the UMD-property.

The relevant fact for our purposes is that the UMD-spaces are those Banach spaces E in which the Wiener integral of Lecture 6 can be extended from $\mathscr{L}(H, E)$-valued functions to $\mathscr{L}(H, E)$-valued stochastic processes. This is the subject matter of the next lecture. In the present lecture, we define UMD-spaces in terms of L^{p}-bounds for signed E-valued martingale difference sequences and study some of their elementary properties. At first sight, the definition of the UMD-property depends on the parameter $1<p<\infty$. It is a deep result of Maurey and Pisier that the UMD-property is independent of $1<p<\infty$. This theorem, which is proved in detail, enables us to prove that L^{p}-spaces are UMD-spaces for $1<p<\infty$.

12.1 UMD_{p}-spaces

We begin with a definition.
Definition 12.1. Let $\left(M_{n}\right)_{n=1}^{N}$ be an E-valued martingale. The sequence $\left(d_{n}\right)_{n=1}^{N}$ defined by $d_{n}:=M_{n}-M_{n-1}$ (with the understanding that $M_{0}=0$) is called the martingale difference sequence associated with $\left(M_{n}\right)_{n=1}^{N}$.

We call $\left(d_{n}\right)_{n=1}^{N}$ an L^{p}-martingale difference sequence if it is the difference sequence of an L^{p}-martingale.

If $\left(M_{n}\right)_{n=1}^{N}$ is a martingale with respect to the filtration $\left(\mathscr{F}_{n}\right)_{n=1}^{N}$, then $\left(d_{n}\right)_{n=1}^{N}$ is adapted to $\left(\mathscr{F}_{n}\right)_{n=1}^{N}$ and $\mathbb{E}\left(d_{n} \mid \mathscr{F}_{m}\right)=0$ for $1 \leqslant m<n \leqslant N$.

It is easy to see that these two properties characterise martingale difference sequences.

Proposition 12.2. Every L^{2}-martingale difference sequence with values in a Hilbert space H is orthogonal in $L^{2}(\Omega ; H)$.

Proof. We use the notations introduced above. For $1 \leqslant m<n \leqslant N$, from $\mathbb{E} d_{n}=\mathbb{E}\left(\mathbb{E}\left(d_{n} \mid \mathscr{F}_{n-1}\right)\right)=0$ we deduce that

$$
\mathbb{E}\left[d_{m}, d_{n}\right]=\mathbb{E}\left(\mathbb{E}\left(\left[d_{m}, d_{n}\right] \mid \mathscr{F}_{n-1}\right)\right)=\mathbb{E}\left(\left[d_{m}, \mathbb{E}\left(d_{n} \mid \mathscr{F}_{n-1}\right)\right]\right)=0
$$

The second identity follows from Proposition 11.6 (3) if d_{m} is replaced by a random variable in $g \in L^{2}\left(\Omega, \mathscr{F}_{m}\right) \otimes H$, and the general case follows from this since $L^{2}\left(\Omega, \mathscr{F}_{m}\right) \otimes H$ is dense in $L^{2}\left(\Omega, \mathscr{F}_{m} ; H\right)$.

This suggests that in the context of stochastic analysis in Banach spaces, martingale difference sequences provide a substitute for orthogonal sequences. To formalise this idea we note that in the situation of Proposition 12.2 for any choice of signs $\varepsilon_{n}= \pm 1$ we have

$$
\begin{equation*}
\mathbb{E}\left\|\sum_{n=1}^{N} \varepsilon_{n} d_{n}\right\|^{2}=\mathbb{E}\left\|\sum_{n=1}^{N} d_{n}\right\|^{2} \tag{12.1}
\end{equation*}
$$

It is this property that is generalised in the next definition. The exponent 2 has no special significance in the context of Banach spaces, and therefore we replace it by an exponent $1<p<\infty$.

Definition 12.3. Let $1<p<\infty$. A Banach space E is said to be a $U M D_{p^{-}}$ space if there exists a constant β such that for all E-valued L^{p}-martingale difference sequences $\left(d_{n}\right)_{n=1}^{N}$ we have

$$
\mathbb{E}\left\|\sum_{n=1}^{N} \varepsilon_{n} d_{n}\right\|^{p} \leqslant \beta^{p} \mathbb{E}\left\|\sum_{n=1}^{N} d_{n}\right\|^{p}
$$

If $\left(d_{n}\right)_{n=1}^{N}$ is an E-valued martingale difference sequence, then the same is true for $\left(\varepsilon_{n} d_{n}\right)_{n=1}^{N}$. This gives the reverse inequality

$$
\mathbb{E}\left\|\sum_{n=1}^{N} d_{n}\right\|^{p} \leqslant \beta^{p} \mathbb{E}\left\|\sum_{n=1}^{N} \varepsilon_{n} d_{n}\right\|^{p}
$$

The term 'UMD' is an abbreviation for 'unconditional martingale differences'. The least possible constant β in the above inequalities is called the $U M D_{p}$-constant of E, notation $\beta_{p}(E)$.

Every Hilbert space H is a UMD_{2}-space, with $\beta_{2}(H)=1$; this is the content of (12.1). It is a trivial consequence of the definition that every closed subspace F of a UMD_{p}-space is a UMD_{p}-space, with $\beta_{p}(F) \leqslant \beta_{p}(E)$.

As we shall see in the next section, if a Banach space is UMD_{p} for some $1<p<\infty$, then it is UMD_{p} for all $1<p<\infty$. In particular, Hilbert spaces are UMD_{p} for all $1<p<\infty$. Taking this for granted for the moment, the next result implies that for $1<p<\infty$ the spaces $L^{p}(A)$, and more generally $L^{p}(A ; H)$ for Hilbert spaces H, are UMD_{p}-spaces.

Theorem 12.4. Let (A, \mathscr{A}, μ) be a σ-finite measure space and let $1<p<\infty$. If E is a $U M D_{p}$-space, then $L^{p}(A ; E)$ is a $U M D_{p}$-space, with $\beta_{p}\left(L^{p}(A ; E)\right)=$ $\beta_{p}(E)$.

Proof. Let $\left(d_{n}\right)_{n=1}^{N}$ be an L^{p}-martingale difference sequence with values in $L^{p}(A ; E)$. With Fubini's theorem, for all choices of signs $\varepsilon_{n}= \pm 1$ we obtain

$$
\begin{aligned}
\mathbb{E}\left\|\sum_{n=1}^{N} \varepsilon_{n} d_{n}\right\|_{L^{p}(A)}^{p} & =\int_{A} \mathbb{E}\left\|\sum_{n=1}^{N} \varepsilon_{n} d_{n}\right\|^{p} d \mu \\
& \leqslant \beta_{p}(E)^{p} \int_{A} \mathbb{E}\left\|\sum_{n=1}^{N} d_{n}\right\|^{p} d \mu=\beta_{p}(E)^{p} \mathbb{E}\left\|\sum_{n=1}^{N} d_{n}\right\|_{L^{p}(A)}^{p}
\end{aligned}
$$

In this computation we used that for μ-almost all $\xi \in A$ the sequences $\left(d_{n}(\xi)\right)_{n=1}^{N}$ is an E-valued martingale difference sequence; this follows from the observation that under the identification $L^{p}\left(\Omega ; L^{p}(A ; E)\right) \simeq L^{p}\left(A ; L^{p}(\Omega ; E)\right)$ we have $\mathbb{E}_{L^{p}(A ; E)}\left(\cdot \mid \mathscr{F}_{n}\right)=I \otimes \mathbb{E}_{L^{p}(A)}\left(\cdot \mid \mathscr{F}_{n}\right)$. This proves that $L^{p}(A ; E)$ is a UMD_{p}-space, with $\beta_{p}\left(L^{p}(A ; E)\right) \leqslant \beta_{p}(E)$.

If $f \in L^{p}(A)$ has norm 1 , then $x \mapsto f \otimes x$ defines an isometric embedding of E into $L^{p}(A ; E)$; this gives the opposite inequality $\beta_{p}(E) \leqslant \beta_{p}\left(L^{p}(A ; E)\right)$.

Duality provides another way to produce new UMD-spaces from old:
Proposition 12.5. Let $1<p, q<\infty$ satisfy $\frac{1}{p}+\frac{1}{q}=1$. Then E is a $U M D_{p^{-}}$ space if and only if E^{*} is a $U M D_{q}$-space, and in this situation we have $\beta_{p}(E)=$ $\beta_{q}\left(E^{*}\right)$.

Proof. Suppose E is a UMD_{p}-space and let $\left(d_{n}^{*}\right)_{n=1}^{N}$ be an E^{*}-valued L^{q} martingale difference sequence with respect to $\left(\mathscr{F}_{n}\right)_{n=1}^{N}$. Fix an arbitrary $Y \in$ $L^{p}\left(\Omega, \mathscr{F}_{N} ; E\right)$ of norm 1, and define the E-valued L^{p}-martingale $\left(M_{n}\right)_{n=1}^{N}$ by $M_{n}:=\mathbb{E}\left(Y \mid \mathscr{F}_{n}\right)$. Let $\left(d_{n}\right)_{n=1}^{N}$ be its difference sequence. Then $Y=\sum_{m=1}^{N} d_{m}$. If $1 \leqslant m<n \leqslant N$, then

$$
\mathbb{E}\left\langle d_{m}, d_{n}^{*}\right\rangle=\mathbb{E} \mathbb{E}\left(\left\langle d_{m}, d_{n}^{*}\right\rangle \mid \mathscr{F}_{n-1}\right)=\mathbb{E}\left\langle d_{m}, \mathbb{E}\left(d_{n}^{*} \mid \mathscr{F}_{n-1}\right)\right\rangle=0
$$

The second identity is justified as in the proof of Proposition 12.2 A similar computation shows that $\mathbb{E}\left\langle d_{m}, d_{n}^{*}\right\rangle=0$ if $1 \leqslant n<m \leqslant N$. Hence,

$$
\begin{aligned}
\left|\mathbb{E}\left\langle Y, \sum_{n=1}^{N} \varepsilon_{n} d_{n}^{*}\right\rangle\right| & =\left|\mathbb{E}\left\langle\sum_{m=1}^{N} d_{m}, \sum_{n=1}^{N} \varepsilon_{n} d_{n}^{*}\right\rangle\right| \\
& =\left|\mathbb{E}\left\langle\sum_{m=1}^{N} \varepsilon_{m} d_{m}, \sum_{n=1}^{N} d_{n}^{*}\right\rangle\right| \\
& \leqslant \beta_{p}(E)\left(\mathbb{E}\left\|\sum_{m=1}^{N} d_{m}\right\|^{p}\right)^{\frac{1}{p}}\left(\mathbb{E}\left\|\sum_{n=1}^{N} d_{n}^{*}\right\|^{q}\right)^{\frac{1}{q}} \\
& =\beta_{p}(E)\left(\mathbb{E}\left\|\sum_{n=1}^{N} d_{n}^{*}\right\|^{q}\right)^{\frac{1}{q}}
\end{aligned}
$$

In the last identity we used the assumption that $\|Y\|_{p}=1$. Since $L^{p}\left(\Omega, \mathscr{F}_{N} ; E\right)$ is norming for $L^{q}\left(\Omega, \mathscr{F}_{N} ; E^{*}\right)$ (see Exercise 15), by taking the supremum over all Y of norm 1 we obtain the estimate

$$
\left(\mathbb{E}\left\|\sum_{n=1}^{N} \varepsilon_{n} d_{n}^{*}\right\|^{q}\right)^{\frac{1}{q}} \leqslant \beta_{p}(E)\left(\mathbb{E}\left\|\sum_{n=1}^{N} d_{n}^{*}\right\|^{q}\right)^{\frac{1}{q}}
$$

This proves that E^{*} is a UMD_{q}-space, with $\beta_{q}\left(E^{*}\right) \leqslant \beta_{p}(E)$.
If E^{*} is a UMD_{q}-space, the result just proved implies that $E^{* *}$ is a $\mathrm{UMD}_{p^{-}}$ space, with $\beta_{p}\left(E^{* *}\right) \leqslant \beta_{q}\left(E^{*}\right)$. Hence also E, being isometrically contained as a closed subspace in $E^{* *}$ (by the Hahn-Banach theorem each $x \in E$ defines a functional ϕ_{x} in $E^{* *}$ of norm $\left\|\phi_{x}\right\|=\|x\|$ by the formula $\left\langle x^{*}, \phi_{x}\right\rangle:=\left\langle x, x^{*}\right\rangle$), is a UMD_{p}-space, with $\beta_{p}(E) \leqslant \beta_{p}\left(E^{* *}\right) \leqslant \beta_{q}\left(E^{*}\right)$.

Combining both parts, we obtain the equality $\beta_{p}(E)=\beta_{q}\left(E^{*}\right)$.
Remark 12.6. It can be shown that every UMD_{p}-space E is reflexive, that is, the canonical mapping $x \mapsto \phi_{x}$ from E to $E^{* *}$ is surjective. This fact will not be needed in what follows.

$12.2 p$-Independence of the UMD_{p}-property

This section is devoted to the proof of the highly non-trivial fact, already mentioned above, that the UMD_{p}-property is independent of the parameter $1<p<\infty$. The work consists of two parts: a reduction of the problem to difference sequences of so-called Haar martingales, and then proving the p-independence for this class of martingales.

12.2.1 Reduction to Haar martingales

A probability space $(\Omega, \mathscr{F}, \mathbb{P})$ is said to be divisible if for all $F \in \mathscr{F}$ and $0<r<1$ we have $F=F_{1} \cup F_{2}$ with $F_{1}, F_{2} \in \mathscr{F}$ and

$$
\mathbb{P}\left(F_{1}\right)=r \mathbb{P}(F), \quad \mathbb{P}\left(F_{2}\right)=(1-r) \mathbb{P}(F)
$$

For $1<p<\infty$, let us say that E has the $U M D_{p}^{\text {div }}$-property if there exists a constant $\beta_{p}^{\text {div }}(E)$ such that

$$
\mathbb{E}\left\|\sum_{n=1}^{N} \varepsilon_{n} d_{n}\right\|^{p} \leqslant\left(\beta_{p}^{\mathrm{div}}(E)\right)^{p} \mathbb{E}\left\|\sum_{n=1}^{N} d_{n}\right\|^{p}
$$

for all E-valued L^{p}-martingale difference sequences $\left(d_{n}\right)_{n=1}^{N}$ defined on a divisible probability space. Trivially, if E has the UMD_{p}-property, then it has the $\mathrm{UMD}_{p}^{\text {div }}$-property and $\beta_{p}^{\text {div }}(E) \leqslant \beta_{p}(E)$. The next lemma establishes the converse.

Lemma 12.7. Let $1<p<\infty$. If E has the $U M D_{p}^{\text {div }}$-property, then it has the $U M D_{p}$-property and $\beta_{p}(E)=\beta_{p}^{\text {div }}(E)$.
Proof. Suppose that $\left(d_{n}\right)_{n=1}^{N}$ is an E-valued L^{p}-martingale difference sequence with respect to a filtration $\left(\mathscr{F}_{n}\right)_{n=1}^{N}$ on an arbitrary probability space $(\Omega, \mathscr{F}, \mathbb{P})$. The idea is to enlarge the probability space in such a way that it becomes divisible, without affecting the L^{p}-estimates for the martingale differences.

Consider $\widetilde{\Omega}:=\Omega \times[0,1], \widetilde{\mathscr{F}}:=\mathscr{F} \times \mathscr{B}([0,1])$, and $\widetilde{P}:=\mathbb{P} \times m$, where m is the Lebesgue measure on the Borel σ-algebra $\mathscr{B}([0,1])$. The probability space $(\widetilde{\Omega}, \widetilde{\mathscr{F}}, \widetilde{\mathbb{P}})$ is divisible: this follows from the intermediate value theorem applied to the continuous function $t \mapsto \widetilde{\mathbb{P}}(\widetilde{F} \cap(\Omega \times[0, t]))$, where $\widetilde{F} \in \widetilde{\mathscr{F}}$.

Let $\left(M_{n}\right)_{n=1}^{N}$ be the martingale associated with $\left(d_{n}\right)_{n=1}^{N}$. Define $\widetilde{M}_{n}(\omega, t):=$ $M_{n}(\omega)$ and $\widetilde{\mathscr{F}}_{n}:=\mathscr{F}_{n} \times \mathscr{B}([0,1])$. It is easily checked that $\left(\widetilde{M}_{n}\right)_{n=1}^{N}$ is a martingale with respect to $\left(\widetilde{\mathscr{F}}_{n}\right)_{n=1}^{N}$ and, for every sequence of signs $\left(\varepsilon_{n}\right)_{n=1}^{N}$, its difference sequence $\left(\widetilde{d}_{n}\right)_{n=1}^{N}$ satisfies

$$
\begin{aligned}
\mathbb{E}\left\|\sum_{n=1}^{N} \varepsilon_{n} d_{n}\right\|^{p} & =\widetilde{\mathbb{E}}\left\|\sum_{n=1}^{N} \varepsilon_{n} \widetilde{d}_{n}\right\|^{p} \\
& \leqslant\left(\beta_{p}^{\mathrm{div}}(E)\right)^{p} \widetilde{\mathbb{E}}\left\|\sum_{n=1}^{N} \widetilde{d}_{n}\right\|^{p}=\left(\beta_{p}^{\mathrm{div}}(E)\right)^{p} \mathbb{E}\left\|\sum_{n=1}^{N} d_{n}\right\|^{p}
\end{aligned}
$$

using the $\mathrm{UMD}_{p}^{\mathrm{div}}$-property of E.
In the next step we restrict the class of probability spaces even further. If $(\Omega, \mathscr{F}, \mathbb{P})$ is a probability space, we call a sub- σ-algebra \mathscr{G} of \mathscr{F} dyadic if it is generated by 2^{m} sets of measure 2^{-m} for some integer $m \geqslant 0$. We call a filtration in $(\Omega, \mathscr{F}, \mathbb{P})$ dyadic if each of its constituting σ-algebras is dyadic. For $1<p<\infty$, let us say that E has the $U M D_{p}^{\text {dyad }}$-property if there exists a constant $\beta_{p}^{\text {dyad }}(E)$ such that

$$
\mathbb{E}\left\|\sum_{n=1}^{N} \varepsilon_{n} d_{n}\right\|^{p} \leqslant\left(\beta_{p}^{\mathrm{dyad}}(E)\right)^{p} \mathbb{E}\left\|\sum_{n=1}^{N} d_{n}\right\|^{p}
$$

holds for all E-valued L^{p}-martingale difference sequences $\left(d_{n}\right)_{n=1}^{N}$ with respect to a dyadic filtration $\left(\mathscr{F}_{n}\right)_{n=1}^{N}$ on a divisible probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Trivially, if E has the UMD_{p}-property, then it has the $\mathrm{UMD}_{p}^{\text {dyad }}$-property and $\beta_{p}^{\text {dyad }}(E) \leqslant \beta_{p}(E)$. In order to establish the converse we need a simple approximation result. The proof appears somewhat technical, but by drawing a picture one sees that it is nearly trivial.

Lemma 12.8. Let $1 \leqslant p<\infty$ and $\varepsilon>0$ be given. If f is a simple random variable on a divisible probability space $(\Omega, \mathscr{F}, \mathbb{P})$ and \mathscr{G} is a dyadic sub- σ algebra of \mathscr{F}, there exists a dyadic sub- σ-algebra $\mathscr{G} \subseteq \mathscr{H} \subseteq \mathscr{F}$ and an \mathscr{H} measurable simple random variable h such that $\|f-h\|_{p}<\varepsilon$.

Proof. Suppose \mathscr{G} is generated by 2^{m} sets of measure 2^{-m}.
It suffices to prove the lemma for indicator functions $f=1_{F}$ with $F \in \mathscr{F}$. Considering $F \in \mathscr{F}$ as fixed, we write $1_{F}=\sum_{G} 1_{F \cap G}$ where the sum extends over the 2^{m} generating sets G of \mathscr{G}.

Take one such G and let $\left(b_{j}^{G}\right)_{j=1}^{\infty}$ denote the digits in the binary expansion of the real number $\mathbb{P}(F \cap G)$. Informally, we use the digits to write $F \cap G$ inductively as a union, up to a null set, of disjoint 'dyadic' subsets of maximal measure.

To be more precise, inductively define sets A_{j}^{G} and B_{j}^{G} by $A_{0}^{G}=F \cap G$ and $B_{0}^{G}=\varnothing$, and requiring, for $j \geqslant 1$, that $B_{j}^{G} \subseteq A_{j-1}^{G}$ satisfies $B_{j}^{G} \in \mathscr{F}$ and $\mathbb{P}\left(B_{j}^{G}\right)=b_{j}^{G} 2^{-j}$ (we may take $B_{j}^{G}:=\varnothing$ if $b_{j}^{G}=0$). Then put $A_{j}^{G}:=A_{j-1}^{G} \backslash B_{j}^{G}$ and continue.

The sets $B_{j}^{G} \in \mathscr{F}$ thus constructed are disjoint, contained in G, and satisfy $\mathbb{P}\left((F \cap G) \backslash \bigcup_{j=1}^{\infty} B_{j}^{G}\right)=0$. Let $n \geqslant 1$ be the first integer such that

$$
\mathbb{P}\left((F \cap G) \backslash \bigcup_{j=1}^{n} B_{j}^{G}\right)<\frac{\varepsilon^{p}}{2^{m}}
$$

For each $1 \leqslant j \leqslant n$ such that $b_{j}^{G}=1$ we have $\mathbb{P}\left(B_{j}^{G}\right)=2^{-j}$. If follows that we can split G into disjoint subsets of measure 2^{-n} in such a way that each $B_{j}^{G}, 1 \leqslant j \leqslant n$, is a finite union of these subsets.

We subdivide each of the 2^{m} generating sets G in this way. The number n varies over G, but by considering further subdivisions we may assume it to be independent of G. Let \mathscr{H} be the σ-algebra generated by the 2^{n} sets of measure 2^{-n} thus obtained. This σ-algebra is dyadic, it contains \mathscr{G}, and the simple function

$$
h:=\sum_{G} \sum_{\substack{1 \leqslant j \leqslant n \\ b_{j}^{G}=1}} 1_{B_{j}^{G}}
$$

is \mathscr{H}-measurable and satisfies $\|f-h\|_{p}<\varepsilon$.
Lemma 12.9. Let $1<p<\infty$. If E has the $U M D_{p}^{\text {dyad }}$-property, then it has the $U M D_{p}$-property and $\beta_{p}(E)=\beta_{p}^{\text {dyad }}(E)$.

Proof. Suppose that $\left(d_{n}\right)_{n=1}^{N}$ is an E-valued L^{p}-martingale difference sequence with respect to a filtration $\left(\mathscr{F}_{n}\right)_{n=1}^{N}$ on a divisible probability space $(\Omega, \mathscr{F}, \mathbb{P})$. The idea is approximate the d_{n} with simple functions as in the previous lemma.

Fixing $\varepsilon>0$, we can find \mathscr{F}_{n}-measurable simple functions $s_{n}: \Omega \rightarrow E$ such that $\left\|d_{n}-s_{n}\right\|_{p}<\frac{\varepsilon}{N}$. By repeated application of Lemma 12.8 we find a sequence of dyadic σ-algebras $\left(\widetilde{\mathscr{F}}_{n}\right)_{n=1}^{N}$ such that $\widetilde{\mathscr{F}}_{n-1} \subseteq \widetilde{\mathscr{F}}_{n} \subseteq \mathscr{F}_{n}$ (with the understanding that $\left.\widetilde{\mathscr{F}_{0}}=\{\varnothing, \Omega\}\right)$ and a sequence of step functions $\left(\widetilde{s}_{n}\right)_{n=1}^{N}$ such that each \widetilde{s}_{n} is $\widetilde{\mathscr{F}}_{n}$-measurable and satisfies $\left\|s_{n}-\widetilde{s}_{n}\right\|_{p}<\frac{\varepsilon}{N}$.

Consider the sequence $\left(\widetilde{d}_{n}\right)_{n=1}^{N}$ defined by $\widetilde{d}_{n}:=\mathbb{E}\left(d_{n} \mid \widetilde{\mathscr{F}}_{n}\right)$. To see that this is a martingale difference sequence with respect to the filtration $\left(\widetilde{\mathscr{F}}_{n}\right)_{n=1}^{N}$, note that for $1<n \leqslant N$,

$$
\begin{aligned}
\mathbb{E}\left(\widetilde{d}_{n} \mid \widetilde{\mathscr{F}}_{n-1}\right) & =\mathbb{E}\left(\mathbb{E}\left(d_{n} \mid \widetilde{\mathscr{F}}_{n}\right) \mid \widetilde{\mathscr{F}}_{n-1}\right) \\
& =\mathbb{E}\left(d_{n} \mid \widetilde{\mathscr{F}}_{n-1}\right)=\mathbb{E}\left(\mathbb{E}\left(d_{n} \mid \widetilde{F}_{n-1}\right) \mid \widetilde{\mathscr{F}}_{n-1}\right)=0 .
\end{aligned}
$$

Then, by the L^{p}-contractivity of conditional expectations,

$$
\begin{aligned}
\left\|d_{n}-\widetilde{d}_{n}\right\|_{p} & \leqslant \frac{2 \varepsilon}{N}+\left\|\widetilde{s}_{n}-\widetilde{d}_{n}\right\|_{p} \\
& =\frac{2 \varepsilon}{N}+\left\|\mathbb{E}\left(\widetilde{s}_{n}-\widetilde{d}_{n} \mid \widetilde{\mathscr{F}}_{n}\right)\right\|_{p} \\
& =\frac{2 \varepsilon}{N}+\left\|\mathbb{E}\left(\widetilde{s}_{n}-d_{n} \mid \widetilde{\mathscr{F}}_{n}\right)\right\|_{p} \leqslant \frac{2 \varepsilon}{N}+\left\|\widetilde{s}_{n}-d_{n}\right\|_{p}=\frac{4 \varepsilon}{N}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left\|\sum_{n=1}^{N} \varepsilon_{n} d_{n}\right\|_{p} & \leqslant 4 \varepsilon+\left\|\sum_{n=1}^{N} \varepsilon_{n} \widetilde{d}_{n}\right\|_{p} \\
& \leqslant 4 \varepsilon+\beta_{p}^{\text {dyad }}(E)\left\|\sum_{n=1}^{N} \widetilde{d}_{n}\right\|_{p} \leqslant 4 \varepsilon\left(1+\beta_{p}^{\text {dyad }}(E)\right)\left\|\sum_{n=1}^{N} d_{n}\right\|_{p} .
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary, this shows that E has the $\mathrm{UMD}_{p}^{\text {div }}$-property with $\beta_{p}^{\text {div }}(E) \leqslant \beta_{p}^{\text {dyad }}(E)$. Together with Lemma 12.7 this proves the result.

The final reduction consists of shrinking the class of difference sequences to Haar martingale difference sequences, which are defined as difference sequences of martingales with respect to a Haar filtration. This is a filtration $\left(\mathscr{F}_{n}\right)_{n=1}^{N}$, where $\mathscr{F}_{1}=\{\varnothing, \Omega\}$ and each \mathscr{F}_{n} (with $n \geqslant 1$) is obtained from \mathscr{F}_{n-1} by dividing precisely one atom of \mathscr{F}_{n-1} of maximal measure into two sets of equal measure (an atom of a σ-algebra \mathscr{G} is a set $G \in \mathscr{G}$ such that $H \subseteq G$ with $H \in \mathscr{G}$ implies $H \in\{\varnothing, G\})$. By construction, each \mathscr{F}_{n} is generated by n atoms, whose measures equal 2^{-k-1} or 2^{-k}, where k is the unique integer such that $2^{k-1}<n \leqslant 2^{k}$.

For $1<p<\infty$, let us say that E has the $U M D_{p}^{\text {Haar }}{ }^{\text {-property }}$ if there exists a constant $\beta_{p}^{\text {Haar }}(E)$ such that

$$
\mathbb{E}\left\|\sum_{n=1}^{N} \varepsilon_{n} d_{n}\right\|^{p} \leqslant\left(\beta_{p}^{\text {Haar }}(E)\right)^{p} \mathbb{E}\left\|\sum_{n=1}^{N} d_{n}\right\|^{p}
$$

holds for all E-valued Haar martingale difference sequences $\left(d_{n}\right)_{n=1}^{N}$ defined on a divisible probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Trivially, if E has the UMD_{p}-property, then it has the $\mathrm{UMD}_{p}^{\text {Haar }}$-property and $\beta_{p}^{\text {Haar }}(E) \leqslant \beta_{p}(E)$.

Lemma 12.10. Let $1<p<\infty$. If E has the $U M D_{p}^{\text {Haar }}$-property, then it has the $U M D_{p}$-property and $\beta_{p}^{\text {Haar }}(E)=\beta_{p}(E)$.

Proof. Suppose that $\left(d_{n}\right)_{n=1}^{N}$ is an E-valued L^{p}-martingale difference sequence with respect to a dyadic filtration $\left(\mathscr{F}_{n}\right)_{n=1}^{N}$ on a divisible probability space $(\Omega, \mathscr{F}, \mathbb{P})$. The idea is to 'embed' $\left(d_{n}\right)_{n=1}^{N}$ into a Haar martingale difference sequence. To be more precise, we shall construct an L^{p}-martingale difference sequence $\left(\widetilde{d}_{k}\right)_{k=1}^{K}$ with respect to a Haar filtration $\left(\widetilde{\mathscr{F}}_{k}\right)_{k=1}^{K}$ such that $M_{n}=$ $\widetilde{M}_{k_{n}}$ and $\mathscr{F}_{n}=\widetilde{\mathscr{F}}_{k_{n}}$ for some subsequence $k_{1}<\cdots<k_{N}$. Once this has been done, we note that $d_{n}=\sum_{j=k_{n-1}+1}^{k_{n}} \tilde{d}_{j}$ and

$$
\begin{aligned}
\left\|\sum_{n=1}^{N} \varepsilon_{n} d_{n}\right\|_{p} & =\left\|\sum_{n=1}^{N} \sum_{j=k_{n-1}+1}^{k_{n}} \varepsilon_{n} \widetilde{d}_{j}\right\|_{p}=\left\|\sum_{k=1}^{K} \widetilde{\varepsilon}_{k} \widetilde{d}_{k}\right\|_{p} \\
& \leqslant \beta_{p}^{\text {Haar }}(E)\left\|\sum_{k=1}^{K} \widetilde{d}_{k}\right\|_{p}=\beta_{p}^{\text {Haar }}(E)\left\|\sum_{n=1}^{N} d_{n}\right\|_{p}
\end{aligned}
$$

where $\widetilde{\varepsilon}_{k}=\varepsilon_{k_{n}}$ for $k=k_{n-1}+1, \ldots, k_{n}$.
Each \mathscr{F}_{n} is dyadic and therefore it is generated by $k_{n}:=2^{l_{n}}$ atoms of measure $2^{-l_{n}}$. Since each atom of \mathscr{F}_{n-1} is a finite union of atoms in \mathscr{F}_{n} we have $k_{1}<\cdots<k_{N}$. The σ-algebras $\widetilde{\mathscr{F}_{k}}$, with $k_{n-1}<k<k_{n}$ can now be constructed by splitting the atoms of $\widetilde{\mathscr{F}}_{k_{n-1}}$ one by one into two disjoint subsets of equal measure, so as to arrive at the atoms of $\widetilde{\mathscr{F}}_{k_{n}}$ by repeating this procedure $k_{n}-k_{n-1}$ times.

Now take $\widetilde{M}_{k_{n}}:=M_{n}$ and $\widetilde{M}_{k}:=E\left(\widetilde{M}_{k_{n}} \mid \widetilde{\mathscr{F}}_{k}\right)$ if $k_{n-1}<k \leqslant k_{n}$.

12.2.2 p-Independence for Haar martingales

By the reductions of the previous subsection, in order to prove the p independence of the UMD_{p}-property it suffices to consider Haar martingale difference sequences. Such sequences have a special property which is captured in the next lemma.

Lemma 12.11. If $\left(d_{n}\right)_{n=1}^{N}$ is an E-valued Haar martingale difference sequence, then $\left\|d_{n+1}\right\|$ is \mathscr{F}_{n}-measurable for all $n=1, \ldots, N-1$.

Proof. Suppose that \mathscr{F}_{n+1} is obtained by splitting one of the $n+1$ generating atoms of \mathscr{F}_{n}, say A, into subsets A_{1} and A_{2} of equal measure. Then M_{n+1} and M_{n} only differ on A, so $d_{n+1}=0$ on $C A$. Also, d_{n+1} is constant on A_{1} and A_{2}, say with values x_{1} and x_{2}. Then,

$$
\mathbb{P}\left(A_{1}\right) x_{1}+\mathbb{P}\left(A_{2}\right) x_{2}=\int_{A} d_{n+1} d \mathbb{P}=\int_{A} \mathbb{E}\left(d_{n+1} \mid \mathscr{F}_{n}\right) d \mathbb{P}=0
$$

and from $\mathbb{P}\left(A_{1}\right)=\mathbb{P}\left(A_{2}\right)$ we deduce that $x_{1}+x_{2}=0$. Hence, $\left\|d_{n+1}\right\|=$ $1_{A_{1}}\left\|x_{1}\right\|+1_{A_{2}}\left\|x_{2}\right\|=1_{A}\left\|x_{1}\right\|$ is \mathscr{F}_{n}-measurable.

In what follows we let $f=\left(f_{n}\right)_{n=1}^{N}$ be an E-valued Haar martingale with difference sequence $\left(d_{n}\right)_{n=1}^{N}$. By the lemma, the non-negative random variables $\left\|d_{n+1}\right\|$ are \mathscr{F}_{n}-measurable for $n=1, \ldots, N-1$.

For a fixed sequence of signs $\varepsilon=\left(\varepsilon_{n}\right)_{n=1}^{N}$ we denote by $g=\left(g_{n}\right)_{n=1}^{N}$ the martingale transform $g_{n}=\sum_{j=1}^{n} \varepsilon_{j} d_{j}$. Further we let

$$
f^{*}(\omega):=\max _{1 \leqslant n \leqslant N}\left\|f_{n}(\omega)\right\|, \quad g^{*}(\omega):=\max _{1 \leqslant n \leqslant N}\left\|g_{n}(\omega)\right\|
$$

In the proof of the next lemma we use the following notation: if $\left(X_{n}\right)_{n=1}^{N}$ is a sequence of E-valued random variables and $\tau: \Omega \rightarrow\{1, \ldots, N\}$ is another random variable, we define the random variable $X_{\tau}: \Omega \rightarrow E$ by

$$
X_{\tau}(\omega):=X_{\tau(\omega)}(\omega)
$$

Lemma 12.12. Suppose that E is a $U M D_{q}$-space for some $1<q<\infty$. For all $\delta>0$ and $\beta>2 \delta+1$ and all $\lambda>0$ we have

$$
\mathbb{P}\left\{g^{*}>\beta \lambda, f^{*} \leqslant \delta \lambda\right\} \leqslant \alpha^{q} \mathbb{P}\left\{g^{*}>\lambda\right\}
$$

where $\alpha=4 \delta \beta_{q}(E) /(\beta-2 \delta-1)$.
Proof. Since $\mathscr{F}_{1}=\{\varnothing, \Omega\}$, the random variable $f_{1}=d_{1}$ is constant almost surely. If the constant value is greater than $\delta \lambda$, then the left hand side in the above inequality vanishes and there is nothing to prove. We may therefore assume that $f_{1} \leqslant \delta \lambda$ almost surely.

Let

$$
\begin{aligned}
\mu(\omega) & :=\min \left\{1 \leqslant n \leqslant N:\left\|g_{n}(\omega)\right\|>\lambda\right\} \\
\nu(\omega) & :=\min \left\{1 \leqslant n \leqslant N:\left\|g_{n}(\omega)\right\|>\beta \lambda\right\} \\
\sigma(\omega) & :=\min \left\{1 \leqslant n \leqslant N:\left\|f_{n}(\omega)\right\|>\delta \lambda \text { or }\left\|d_{n+1}\right\|>2 \delta \lambda\right\}
\end{aligned}
$$

with the convention that $\min \varnothing:=N+1$. In the third definition we further use the convention that $d_{N+1}:=0$.

Let v_{n} be the indicator function of the set $\{\mu<n \leqslant \min \{\nu, \sigma\}\}$. Since $d=$ $\left(d_{n}\right)_{n=1}^{N}$ is a Haar martingale difference sequence, the sequence $v=\left(v_{n}\right)_{n=1}^{N}$ is predictable by Lemma 12.11 and therefore

$$
F_{n}:=\sum_{j=1}^{n} v_{j} d_{j}
$$

defines a martingale $F=\left(F_{n}\right)_{n=1}^{N}$ by the result of Example 11.19 On the set $\{\sigma \leqslant \mu\}$ we have $v_{j} \equiv 0$ for all j and therefore $F_{N} \equiv 0$ there. In particular this is the case on the set $\{\mu=N+1\}=\left\{g^{*} \leqslant \lambda\right\}$. On the set $\{\sigma>\mu\}$ we have

$$
\left\|F_{N}\right\|=\left\|\sum_{\mu<j \leqslant \min \{\nu, \sigma\}} d_{j}\right\|=\left\|f_{\min \{\nu, \sigma\}}-f_{\mu}\right\| \leqslant 4 \delta \lambda .
$$

To see this, first note that $\mu(\omega)<\sigma(\omega)$ implies $\left\|f_{\mu}(\omega)\right\| \leqslant \delta \lambda$. Also, if $\min \{\nu(\omega), \sigma(\omega)\}=1$, then by the assumption above $\left\|f_{\min \{\nu, \sigma\}}(\omega)\right\|=$ $\left\|f_{1}(\omega)\right\| \leqslant \delta \lambda$; if $\min \{\nu(\omega), \sigma(\omega)\}>1$, then from $\left\|f_{\min \{\nu, \sigma\}-1}(\omega)\right\| \leqslant \delta \lambda$ and $\left\|d_{\min \{\nu, \sigma\}}(\omega)\right\| \leqslant 2 \delta \lambda$ it follows that $\left\|f_{\min \{\nu, \sigma\}}(\omega)\right\| \leqslant\left\|f_{\min \{\nu, \sigma\}-1}(\omega)\right\|+$ $\left\|d_{\min \{\nu, \sigma\}}(\omega)\right\| \leqslant 3 \delta \lambda$. This proves the claim.

We infer that

$$
\mathbb{E}\left\|F_{n}\right\|^{q} \leqslant(4 \delta \lambda)^{q} \mathbb{P}\left\{g^{*}>\lambda\right\}
$$

Now consider the martingale transform G of F by ε,

$$
G_{n}:=\sum_{j=1}^{n} \varepsilon_{j} v_{j} d_{j}
$$

On the set $\{\nu \leqslant N, \sigma=N+1\}$ we have $\min \{\nu, \sigma\}=\nu$ and

$$
\left\|G_{N}\right\|=\left\|\sum_{\mu<j \leqslant \nu} \varepsilon_{j} d_{j}\right\|=\left\|g_{\nu}-g_{\mu}\right\|>\beta \lambda-2 \delta \lambda-\lambda
$$

where the last inequality uses that on the set $\{\nu \leqslant N, \sigma=N+1\}$ we have $\left\|g_{\nu}(\omega)\right\|>\beta \lambda$ and $\left\|g_{\mu}(\omega)\right\| \leqslant\left\|g_{\mu-1}(\omega)\right\|+\left\|d_{\mu}(\omega)\right\| \leqslant \lambda+2 \delta \lambda$.

By Chebyshev's inequality and the UMD_{q}-property,

$$
\begin{aligned}
\mathbb{P}\left\{g^{*}>\beta \lambda, f^{*} \leqslant \delta \lambda\right\} & \leqslant \mathbb{P}\{\nu \leqslant N, \sigma=N+1\} \\
& \leqslant \mathbb{P}\left\{\left\|G_{N}\right\|>\beta \lambda-2 \delta \lambda-\lambda\right\} \\
& \leqslant \frac{1}{(\beta \lambda-2 \delta \lambda-\lambda)^{q}} \mathbb{E}\left\|G_{N}\right\|^{q} \\
& \leqslant \frac{\left(\beta_{q}(E)\right)^{q}}{(\beta \lambda-2 \delta \lambda-\lambda)^{q}} \mathbb{E}\left\|F_{N}\right\|^{q} \\
& \leqslant \frac{(4 \delta)^{q}\left(\beta_{q}(E)\right)^{q}}{(\beta-2 \delta-1)^{q}} \mathbb{P}\left\{g^{*}>\lambda\right\}
\end{aligned}
$$

In the first inequality we used that $f^{*}(\omega) \leqslant \delta \lambda$ implies that $\left\|d_{j}(\omega)\right\| \leqslant 2 \delta \lambda$ for all j. This proves the lemma.

Theorem 12.13. If E is a $U M D_{q}$-space for some $1<q<\infty$, then it is a $U M D_{p}$-space for all $1<p<\infty$.

Proof. By the results of the previous subsection it suffices to show that E has the $\mathrm{UMD}_{p}^{\text {Haar }}$-property for all $1<p<\infty$. Thus we find ourselves in the situation of the previous lemma and need to prove the estimate

$$
\mathbb{E}\left\|g_{N}\right\|^{p} \leqslant b^{p} \mathbb{E}\left\|f_{N}\right\|^{p}
$$

with a constant $b \geqslant 0$ depending only on p, q, and E, but not on f, g and N.
Fix an arbitrary number $\beta>1$. For $\delta>0$ so small that $\beta>2 \delta+1$, let $\alpha=\alpha_{\beta, \delta, q, E}$ be as in the lemma. Then, by an integration by parts and Doob's maximal inequality,

$$
\begin{aligned}
\mathbb{E}\left\|g_{N}\right\|^{p} \leqslant \mathbb{E}\left\|g^{*}\right\|^{p}= & \beta^{p} \int_{0}^{\infty} p \lambda^{p-1} \mathbb{P}\left\{g^{*}>\beta \lambda\right\} d \lambda \\
\leqslant & \alpha^{q} \beta^{p} \int_{0}^{\infty} p \lambda^{p-1} \mathbb{P}\left\{g^{*}>\lambda\right\} d \lambda \\
& \quad+\beta^{p} \int_{0}^{\infty} p \lambda^{p-1} \mathbb{P}\left\{f^{*}>\delta \lambda\right\} d \lambda \\
\leqslant & \alpha^{q} \beta^{p} \mathbb{E}\left\|g^{*}\right\|^{p}+\frac{\beta^{p}}{\delta^{p}} \mathbb{E}\left\|f^{*}\right\|^{p} \\
\leqslant & C_{p}^{p} \alpha^{q} \beta^{p} \mathbb{E}\left\|g_{N}\right\|^{p}+\frac{C_{p}^{p} \beta^{p}}{\delta^{p}} \mathbb{E}\left\|f_{N}\right\|^{p}
\end{aligned}
$$

where $C_{p}=p /(p-1)$. Since $\lim _{\delta \downarrow 0} \alpha_{\beta, \delta, q, E}=0$, by taking $\delta>0$ small enough we may arrange that $C_{p}^{p} \alpha^{q} \beta^{p}<1$. Noting that $\mathbb{E}\left\|g_{N}\right\|^{p}<\infty$ since g_{N} is simple (recall that \mathscr{F}_{N} is a finite σ-algebra) it follows that

$$
\mathbb{E}\left\|g_{N}\right\|^{p} \leqslant \frac{C_{p}^{p} \beta^{p}}{\left(1-C_{p}^{p} \alpha^{q} \beta^{p}\right) \delta^{p}} \mathbb{E}\left\|f_{N}\right\|^{p}
$$

This concludes the proof.
This theorem justifies the following definition.
Definition 12.14. A Banach space is called a UMD-space if it is a $U M D_{p^{-}}$ space for some (and hence, for all) $1<p<\infty$.

By combining Theorem 12.13 with the results of the previous section we see that all Hilbert spaces and all spaces $L^{p}(A)$ with $1<p<\infty$ are UMDspaces.

12.3 The vector-valued Stein inequality

In this final section we prove an extension, due to Bourgain, of a beautiful result of STEIN which asserts that conditional expectation operators corresponding to the σ-algebras of a filtration form an R-bounded family.

Theorem 12.15 (Vector-valued Stein inequality). Let E be a UMDspace and fix $1<p<\infty$. If $\left(\mathscr{F}_{t}\right)_{t \in[0, T]}$ is a filtration on a probability space $(\Omega, \mathscr{F}, \mathbb{P})$, then the family of conditional expectation operators $\left\{\mathbb{E}\left(\cdot \mid \mathscr{F}_{t}\right): t \in\right.$ $[0, T]\}$ is R-bounded (and hence γ-bounded) on $L^{p}(\Omega ; E)$.

Proof. Let $\left(\widetilde{r}_{n}\right)_{n=1}^{N}$ be a Rademacher sequence on a second probability space $(\widetilde{\Omega}, \widetilde{\mathscr{F}}, \widetilde{\mathbb{P}})$ and define $\widetilde{\mathscr{F}}_{n}=\sigma\left(\widetilde{r}_{1}, \ldots, \widetilde{r}_{n}\right), n=1, \ldots, N$. Fix $t_{1}<\cdots<t_{N}$ in $[0, T]$. On the product space $\Omega \times \widetilde{\Omega}$ define the filtration $\left(\mathscr{G}_{m}\right)_{m=1}^{2 N}$ by

$$
\begin{aligned}
\mathscr{G}_{2 n-1} & :=\mathscr{F}_{t_{n}} \times \widetilde{\mathscr{F}}_{n-1}, & & n=1, \ldots, N \\
\mathscr{G}_{2 n} & :=\mathscr{F}_{t_{n}} \times \widetilde{\mathscr{F}}_{n}, & & n=1, \ldots, N .
\end{aligned}
$$

For a random variable $X \in L^{p}(\Omega \times \widetilde{\Omega} ; E)$ define the martingale $\left(M_{m}\right)_{m=1}^{2 M}$ by

$$
M_{m}:=\mathbb{E}\left(X \mid \mathscr{G}_{m}\right), \quad m=1, \ldots, 2 N
$$

Let $\left(d_{m}\right)_{m=1}^{2 M}$ be the associated martingale difference sequence. Then by the UMD_{p}-property of E,

$$
\begin{equation*}
\left\|\sum_{n=1}^{N} d_{2 n}\right\|_{L^{p}(\Omega ; E)} \leqslant \beta_{p}(E)\left\|\sum_{m=1}^{2 N} d_{m}\right\|_{L^{p}(\Omega ; E)} \tag{12.2}
\end{equation*}
$$

Indeed, the sum on the left hand side equals $\frac{1}{2}\left(\sum_{m=1}^{2 N} d_{m}+\sum_{m=1}^{2 N}(-1)^{m} d_{m}\right)$.
Now fix $f_{1}, \ldots, f_{N} \in L^{p}(\Omega ; E)$ and put $X:=\sum_{n=1}^{N} \widetilde{r}_{n} f_{n}$. For this choice of X we have

$$
\begin{aligned}
M_{2 n-1} & =\sum_{j=1}^{N} \mathbb{E}\left(\widetilde{r}_{j} f_{j} \mid \mathscr{F}_{t_{n}} \times \widetilde{\mathscr{F}}_{n-1}\right)=\sum_{j=1}^{n-1} \widetilde{r}_{j} \mathbb{E}\left(f_{j} \mid \mathscr{F}_{t_{n}}\right), \\
M_{2 n} & =\sum_{j=1}^{N} \mathbb{E}\left(\widetilde{r}_{j} f_{j} \mid \mathscr{F}_{t_{n}} \times \widetilde{\mathscr{F}}_{n}\right)=\sum_{j=1}^{n} \widetilde{r}_{j} \mathbb{E}\left(f_{j} \mid \mathscr{F}_{t_{n}}\right) .
\end{aligned}
$$

Therefore $d_{2 n-1}=0$ and $d_{2 n}=\widetilde{r}_{n} \mathbb{E}\left(f_{j} \mid \mathscr{F}_{t_{n}}\right)$. It then follows from (12.2) that

$$
\begin{aligned}
\widetilde{\mathbb{E}}\left\|\sum_{n=1}^{N} \widetilde{r}_{n} \mathbb{E}\left(f_{n} \mid \mathscr{F}_{t_{n}}\right)\right\|_{L^{p}(\Omega ; E)}^{p} & =\widetilde{\mathbb{E}}\left\|\sum_{n=1}^{N} d_{2 n}\right\|_{L^{p}(\Omega ; E)}^{p} \\
& \leqslant\left(\beta_{p}(E)\right)^{p} \widetilde{\mathbb{E}}\left\|\sum_{m=1}^{2 N} d_{m}\right\|_{L^{p}(\Omega ; E)}^{p} \\
& =\left(\beta_{p}(E)\right)^{p} \widetilde{\mathbb{E}}\left\|\sum_{n=1}^{N} \widetilde{r}_{n} f_{n}\right\|_{L^{p}(\Omega ; E)}^{p}
\end{aligned}
$$

12.4 Exercises

1. Prove that a Banach space E is a UMD_{p}-space E if and only if for some (and hence, for all) $1<p<\infty$ there exist constants $\beta_{p}^{ \pm}(E)$ such that for all E-valued L^{p}-martingale difference sequences $\left(d_{n}\right)_{n=1}^{N}$ and all Rademacher sequences $\left(\widetilde{r}_{n}\right)_{n=1}^{N}$ independent of $\left(d_{n}\right)_{n=1}^{N}$ we have

$$
\frac{1}{\left(\beta_{p}^{-}(E)\right)^{p}} \mathbb{E}\left\|\sum_{n=1}^{N} d_{n}\right\|^{p} \leqslant \mathbb{E}\left\|\sum_{n=1}^{N} \widetilde{r}_{n} d_{n}\right\|^{p} \leqslant\left(\beta_{p}^{+}(E)\right)^{p} \mathbb{E}\left\|\sum_{n=1}^{N} d_{n}\right\|^{p}
$$

2. Let $1<p<\infty$. Prove that if H is a Hilbert space and $\left(d_{n}\right)_{n=1}^{N}$ is an H-valued L^{p}-martingale difference sequence, then

$$
\frac{1}{c_{p}^{p}} \mathbb{E}\left\|\sum_{n=1}^{N} d_{n}\right\|^{p} \leqslant \mathbb{E}\left(\sum_{n=1}^{N}\left\|d_{n}\right\|^{2}\right)^{\frac{p}{2}} \leqslant C_{p}^{p} \mathbb{E}\left\|\sum_{n=1}^{N} d_{n}\right\|^{p}
$$

with constant depending only on p.
Hint: Combine Exercise with the Kahane-Khintchine inequalities.
3. Prove that if X is a UMD-space and Y is a closed subspace, then X / Y is a UMD-space and give an estimate for its UMD constant.
4. A sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in a Banach space E is called a Schauder basis if every $x \in E$ admits a unique representation $x=\sum_{n=1}^{\infty} a_{n} x_{n}$ with convergence in E. Using a closed graph argument one can show that the projections

$$
D_{N} \sum_{n=1}^{\infty} a_{n} x_{n}:=\sum_{n=1}^{N} a_{n} x_{n}
$$

are bounded. In fact, by the uniform boundedness theorem we even have $\sup _{N \geqslant 1}\left\|D_{N}\right\|<\infty$.
A Schauder basis is called unconditional if there exists a constant $0<$ $C<\infty$ such that for all $N \geqslant 1$, all scalars a_{1}, \ldots, a_{N}, and all signs $\varepsilon_{1}, \ldots, \varepsilon_{N} \in\{-1,+1\}$ we have

$$
\frac{1}{C}\left\|\sum_{n=1}^{N} a_{n} x_{n}\right\| \leqslant\left\|\sum_{n=1}^{N} \varepsilon_{n} a_{n} x_{n}\right\| \leqslant C\left\|\sum_{n=1}^{N} a_{n} x_{n}\right\|
$$

The least admissible constant C is called the unconditionality constant of $\left(x_{n}\right)_{n=1}^{\infty}$.
Let $\left(x_{n}\right)_{n=1}^{\infty}$ be an unconditional Schauder basis of E with unconditionality constant C.
a) Show that if $\left(r_{n}\right)_{n=1}^{\infty}$ is a Rademacher sequence, then for all $N \geqslant 1$ and all scalars a_{1}, \ldots, a_{N} we have

$$
\frac{1}{C^{2}}\left\|\sum_{n=1}^{N} a_{n} x_{n}\right\|^{2} \leqslant \mathbb{E}\left\|\sum_{n=1}^{N} r_{n} a_{n} x_{n}\right\|^{2} \leqslant C^{2}\left\|\sum_{n=1}^{N} a_{n} x_{n}\right\|^{2}
$$

b) Show that $\sup _{N \geqslant 1}\left\|D_{N}\right\| \leqslant C$.

Assume next that E is a UMD-space.
c) Show that the sequence $\left(D_{N}\right)_{N=1}^{\infty}$ is R-bounded. Hint: Use a) and the vector-valued Stein inequality.
5. In this exercise we prove a vector-valued version of a multiplier theorem due to Marcinkiewicz. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a Schauder basis of the UMD Banach space E which has an unconditional blocking, meaning that there is a sequence $0=N_{0}<N_{1}<\ldots$ and a constant $0<C<\infty$ such that the corresponding block projections $\Delta_{j}:=D_{N_{j}}-D_{N_{j-1}}\left(\right.$ where $\left.D_{0}=0\right)$ satisfy

$$
\frac{1}{C}\left\|\sum_{j=1}^{k} \Delta_{j} x\right\| \leqslant\left\|\sum_{j=1}^{k} \varepsilon_{j} \Delta_{j} x\right\| \leqslant C\left\|\sum_{j=1}^{k} \Delta_{j} x\right\|
$$

for all choices $\varepsilon_{n} \in\{-1,1\}$. Suppose that $\left(\lambda_{n}\right)_{n=1}^{N}$ is a scalar sequence such that:
(i) $\sup _{n \geqslant 1}\left|\lambda_{n}\right|<\infty$;
(ii) $\sup _{j \geqslant 1} \sum_{n=N_{j-1}+1}^{N_{j}-1}\left|\lambda_{n+1}-\lambda_{n}\right|<\infty$.
where $\lambda_{0}=0$. Prove that the multiplier

$$
M \sum_{n=1}^{\infty} a_{n} x_{n}:=\sum_{n=1}^{\infty} \lambda_{n} a_{n} x_{n}
$$

is bounded.
Hint: Write

$$
M x=\sum_{j=1}^{\infty} \lambda_{N_{j}} \Delta_{j} x+\sum_{j=1}^{\infty} \sum_{n=N_{j-1}+1}^{N_{j}-1}\left(\lambda_{n}-\lambda_{n+1}\right) D_{n} \Delta_{j} x .
$$

Now use a randomisation argument, the result of the previous exercise, and Proposition 9.6
Remark. It can be shown that the trigonometric system $\left(e_{n}\right)_{n \in \mathbb{Z}}$, where $e_{n}(\theta)=e^{i n \theta}$, is a Schauder basis in $L^{p}(\mathbb{T})$ for all $1<p<\infty$, but this basis is unconditional only for $p=2$. However, it is a classical result of Littlewood and Paley that the dyadic blocking of $\left(e_{n}\right)_{n \in \mathbb{Z}}$ is unconditional in $L^{p}(\mathbb{T})$ for all $1<p<\infty$ (in this blocking, the j-th block runs over the indices $2^{j-1} \leqslant|n|<2^{j}$). In combination with the exercise, this gives the classical formulation of the Marcinkiewicz multiplier theorem.

Notes. The importance of UMD-spaces extends far beyond the domain of stochastic analysis. In fact, the subject was created in an effort to extend
classical Fourier multiplier theorems to Banach-space valued functions. On the unit circle \mathbb{T}, an important Fourier multiplier is the Riesz projection

$$
\sum_{n \in \mathbb{Z}} c_{n} e^{i n \theta} \mapsto \sum_{n=0}^{\infty} c_{n} e^{i n \theta}
$$

This projection, which corresponds to the multiplier $1_{\{n \geqslant 0\}}$, is bounded in $L^{p}(\mathbb{T})$ for all $1<p<\infty$. On the real line, the Hilbert transform defined by the principle value integral

$$
H f(x):=\frac{1}{\pi} \mathrm{PV} \int_{-\infty}^{\infty} \frac{f(y)}{x-y} d y
$$

is bounded on $L^{p}(\mathbb{R})$ for all $1<p<\infty$; it can be shown that this operator corresponds to the multiplier $\frac{1}{i}\left(1_{\mathbb{R}_{+}}-1_{\mathbb{R}_{-}}\right)$. Both results are classical theorems of M. Riesz. In the Banach space-valued situation the validity of these results characterise the UMD-property:
Theorem 12.16. Let $1<p<\infty$. For a Banach space E the following assertions are equivalent:
(1) E is a $U M D_{p}$-space;
(2) The Riesz projection is bounded on $L^{p}(\mathbb{T} ; E)$;
(3) The Hilbert transform is bounded on $L^{p}(\mathbb{R} ; E)$.

The implications $(1) \Rightarrow(2)$ and $(1) \Rightarrow(3)$ are due to BURKHOLDER 18 and McConnell [74, and their converses to Bourgain [10]. We refer to the review papers [20, 97] for more details. Recently, far-reaching generalisations of Theorem 12.16 to the boundedness of Fourier multipliers and singular integral operators in vector-valued L^{p}-spaces have been proved by several authors. We refer to the excellent lecture notes by Kunstmann and Weis 61] for an overview and references to the literature.

The independence of the UMD_{p}-property of the parameter $1<p<\infty$ (Theorem 12.13) was first proved by Maurey [73, who gives credit to Pisier. The proof via Lemma 12.12 presented here is adapted from Burkholder [19]. The reductions of Section 12.2 .1 are a variation of those proposed in 73 and carried out in detail in the lecture notes of De Pagter 87] and the M.Sc. thesis of Hytönen [50].

Several alternative proofs of the p-independence exist; some of them characterise the UMD_{p}-property in terms of some other property not involving the parameter p. In order to state two such characterisations, due to BURKHOLDER [17, 20], we need to introduce the following terminology.

A Banach space is called a weak UMD-space if there exists a constant β such that for all L^{1}-martingale difference sequences $\left(d_{n}\right)_{n=1}^{N}$, all sequences of signs $\left(\varepsilon_{n}\right)_{n=1}^{N}$, and all $r>0$ we have

$$
r \mathbb{P}\left\{\left\|\sum_{n=1}^{N} \varepsilon_{n} d_{n}\right\|>r\right\} \leqslant \beta \mathbb{E}\left\|\sum_{n=1}^{N} d_{n}\right\|
$$

A Banach space E is called ζ-convex if there exists a function ζ on $E \times E$, convex in both variables separately, satisfying $\zeta(0,0)>0$ and $\zeta(x, y) \leqslant\|x+y\|$ if $\|x\|=\|y\|=1$.

Theorem 12.17. For a Banach space E the following assertions are equivalent:
(1) E is a UMD-space;
(2) E is a weak UMD-space;
(3) E is ζ-convex.

For Hilbert spaces one may take $\zeta(x, y):=1+[x, y]$. For L^{p}-spaces an explicit expression for a function ζ appears to be unknown.

The scalar version of Theorem 12.15 is due to Stein 100. Its extension to UMD-spaces is due to Bourgain, who stated the result without proof in 12. The proof presented here is taken from 24.

The result of Exercise 4 is due to Clément, De Pagter, Sukochev, Witvliet [24] and Berkson and Gillespie 6]. Exercise 5] is an abstract version of Bourgain's version of the Marcinkiewicz multiplier theorem [12]. Other classical multiplier theorems, such as the Mihlin multiplier theorem, can be extended to UMD-spaces as well. As was first shown by Weis 108 it is even possible to consider operator-valued multipliers; typically one has to replace boundedness assumptions by suitable R-boundedness assumptions. We refer to Kunstmann and Weis 61] for an overview and further references.

