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UMD-spaces

This lecture is devoted to the study of a class of Banach spaces, the so-called
UMD-spaces, which share many of the good properties of Hilbert spaces and
is sufficiently broad to include Lp-spaces for 1 < p < ∞.

Experience has shown that the class of UMD-spaces is precisely the ‘right’
one for pursuing vector-valued stochastic analysis as well as vector-valued
harmonic analysis. Indeed, many classical Hilbert space-valued results from
both areas can be extended to the UMD-valued case, and often this fact
characterises the UMD-property.

The relevant fact for our purposes is that the UMD-spaces are those Ba-
nach spaces E in which the Wiener integral of Lecture 6 can be extended
from L (H, E)-valued functions to L (H, E)-valued stochastic processes. This
is the subject matter of the next lecture. In the present lecture, we define
UMD-spaces in terms of Lp-bounds for signed E-valued martingale difference
sequences and study some of their elementary properties. At first sight, the
definition of the UMD-property depends on the parameter 1 < p < ∞. It is
a deep result of Maurey and Pisier that the UMD-property is independent
of 1 < p < ∞. This theorem, which is proved in detail, enables us to prove
that Lp-spaces are UMD-spaces for 1 < p < ∞.

12.1 UMDp-spaces

We begin with a definition.

Definition 12.1. Let (Mn)N
n=1 be an E-valued martingale. The sequence

(dn)N
n=1 defined by dn := Mn − Mn−1 (with the understanding that M0 = 0)

is called the martingale difference sequence associated with (Mn)N
n=1.

We call (dn)N
n=1 an Lp-martingale difference sequence if it is the difference

sequence of an Lp-martingale.
If (Mn)N

n=1 is a martingale with respect to the filtration (Fn)N
n=1, then

(dn)N
n=1 is adapted to (Fn)N

n=1 and E(dn|Fm) = 0 for 1 6 m < n 6 N .
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It is easy to see that these two properties characterise martingale difference
sequences.

Proposition 12.2. Every L2-martingale difference sequence with values in a
Hilbert space H is orthogonal in L2(Ω; H).

Proof. We use the notations introduced above. For 1 6 m < n 6 N , from
Edn = E(E(dn|Fn−1)) = 0 we deduce that

E[dm, dn] = E(E([dm, dn]|Fn−1)) = E([dm, E(dn|Fn−1)]) = 0.

The second identity follows from Proposition 11.6 (3) if dm is replaced by a
random variable in g ∈ L2(Ω, Fm)⊗H , and the general case follows from this
since L2(Ω, Fm) ⊗ H is dense in L2(Ω, Fm; H). ⊓⊔

This suggests that in the context of stochastic analysis in Banach spaces,
martingale difference sequences provide a substitute for orthogonal sequences.
To formalise this idea we note that in the situation of Proposition 12.2, for
any choice of signs εn = ±1 we have

E

∥∥∥
N∑

n=1

εndn

∥∥∥
2

= E

∥∥∥
N∑

n=1

dn

∥∥∥
2

. (12.1)

It is this property that is generalised in the next definition. The exponent 2
has no special significance in the context of Banach spaces, and therefore we
replace it by an exponent 1 < p < ∞.

Definition 12.3. Let 1 < p < ∞. A Banach space E is said to be a UMDp-
space if there exists a constant β such that for all E-valued Lp-martingale
difference sequences (dn)N

n=1 we have

E

∥∥∥
N∑

n=1

εndn

∥∥∥
p

6 βp
E

∥∥∥
N∑

n=1

dn

∥∥∥
p

.

If (dn)N
n=1 is an E-valued martingale difference sequence, then the same is

true for (εndn)N
n=1. This gives the reverse inequality

E

∥∥∥
N∑

n=1

dn

∥∥∥
p

6 βp
E

∥∥∥
N∑

n=1

εndn

∥∥∥
p

.

The term ‘UMD’ is an abbreviation for ‘unconditional martingale differ-
ences’. The least possible constant β in the above inequalities is called the
UMDp-constant of E, notation βp(E).

Every Hilbert space H is a UMD2-space, with β2(H) = 1; this is the
content of (12.1). It is a trivial consequence of the definition that every closed
subspace F of a UMDp-space is a UMDp-space, with βp(F ) 6 βp(E).
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As we shall see in the next section, if a Banach space is UMDp for some
1 < p < ∞, then it is UMDp for all 1 < p < ∞. In particular, Hilbert spaces
are UMDp for all 1 < p < ∞. Taking this for granted for the moment, the
next result implies that for 1 < p < ∞ the spaces Lp(A), and more generally
Lp(A; H) for Hilbert spaces H , are UMDp-spaces.

Theorem 12.4. Let (A, A , µ) be a σ-finite measure space and let 1 < p < ∞.
If E is a UMDp-space, then Lp(A; E) is a UMDp-space, with βp(L

p(A; E)) =
βp(E).

Proof. Let (dn)N
n=1 be an Lp-martingale difference sequence with values in

Lp(A; E). With Fubini’s theorem, for all choices of signs εn = ±1 we obtain

E

∥∥∥
N∑

n=1

εndn

∥∥∥
p

Lp(A)
=

∫

A

E

∥∥∥
N∑

n=1

εndn

∥∥∥
p

dµ

6 βp(E)p

∫

A

E

∥∥∥
N∑

n=1

dn

∥∥∥
p

dµ = βp(E)p
E

∥∥∥
N∑

n=1

dn

∥∥∥
p

Lp(A)
.

In this computation we used that for µ-almost all ξ ∈ A the sequences
(dn(ξ))N

n=1 is an E-valued martingale difference sequence; this follows from the
observation that under the identification Lp(Ω; Lp(A; E)) ≃ Lp(A; Lp(Ω; E))
we have ELp(A;E)(·|Fn) = I ⊗ ELp(A)(·|Fn). This proves that Lp(A; E) is a
UMDp-space, with βp(L

p(A; E)) 6 βp(E).
If f ∈ Lp(A) has norm 1, then x 7→ f⊗x defines an isometric embedding of

E into Lp(A; E); this gives the opposite inequality βp(E) 6 βp(L
p(A; E)). ⊓⊔

Duality provides another way to produce new UMD-spaces from old:

Proposition 12.5. Let 1 < p, q < ∞ satisfy 1
p

+ 1
q

= 1. Then E is a UMDp-

space if and only if E∗ is a UMDq-space, and in this situation we have βp(E) =
βq(E

∗).

Proof. Suppose E is a UMDp-space and let (d∗n)N
n=1 be an E∗-valued Lq-

martingale difference sequence with respect to (Fn)N
n=1. Fix an arbitrary Y ∈

Lp(Ω, FN ; E) of norm 1, and define the E-valued Lp-martingale (Mn)N
n=1 by

Mn := E(Y |Fn). Let (dn)N
n=1 be its difference sequence. Then Y =

∑N
m=1 dm.

If 1 6 m < n 6 N , then

E〈dm, d∗n〉 = EE(〈dm, d∗n〉|Fn−1) = E〈dm, E(d∗n|Fn−1)〉 = 0.

The second identity is justified as in the proof of Proposition 12.2. A similar
computation shows that E〈dm, d∗n〉 = 0 if 1 6 n < m 6 N . Hence,
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∣∣∣E
〈
Y,

N∑

n=1

εnd∗n

〉∣∣∣ =
∣∣∣E

〈 N∑

m=1

dm,

N∑

n=1

εnd∗n

〉∣∣∣

=
∣∣∣E

〈 N∑

m=1

εmdm,
N∑

n=1

d∗n

〉∣∣∣

6 βp(E)
(

E

∥∥∥
N∑

m=1

dm

∥∥∥
p) 1

p
(

E

∥∥∥
N∑

n=1

d∗n

∥∥∥
q) 1

q

= βp(E)
(

E

∥∥∥
N∑

n=1

d∗n

∥∥∥
q) 1

q

.

In the last identity we used the assumption that ‖Y ‖p = 1. Since Lp(Ω, FN ; E)
is norming for Lq(Ω, FN ; E∗) (see Exercise 1.5), by taking the supremum over
all Y of norm 1 we obtain the estimate

(
E

∥∥∥
N∑

n=1

εnd∗n

∥∥∥
q) 1

q

6 βp(E)
(

E

∥∥∥
N∑

n=1

d∗n

∥∥∥
q) 1

q

.

This proves that E∗ is a UMDq-space, with βq(E
∗) 6 βp(E).

If E∗ is a UMDq-space, the result just proved implies that E∗∗ is a UMDp-
space, with βp(E

∗∗) 6 βq(E
∗). Hence also E, being isometrically contained as

a closed subspace in E∗∗ (by the Hahn-Banach theorem each x ∈ E defines a
functional φx in E∗∗ of norm ‖φx‖ = ‖x‖ by the formula 〈x∗, φx〉 := 〈x, x∗〉),
is a UMDp-space, with βp(E) 6 βp(E

∗∗) 6 βq(E
∗).

Combining both parts, we obtain the equality βp(E) = βq(E
∗). ⊓⊔

Remark 12.6. It can be shown that every UMDp-space E is reflexive, that is,
the canonical mapping x 7→ φx from E to E∗∗ is surjective. This fact will not
be needed in what follows.

12.2 p-Independence of the UMDp-property

This section is devoted to the proof of the highly non-trivial fact, already
mentioned above, that the UMDp-property is independent of the parameter
1 < p < ∞. The work consists of two parts: a reduction of the problem
to difference sequences of so-called Haar martingales, and then proving the
p-independence for this class of martingales.

12.2.1 Reduction to Haar martingales

A probability space (Ω, F , P) is said to be divisible if for all F ∈ F and
0 < r < 1 we have F = F1 ∪ F2 with F1, F2 ∈ F and

P(F1) = rP(F ), P(F2) = (1 − r)P(F ).
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For 1 < p < ∞, let us say that E has the UMDdiv
p -property if there exists a

constant βdiv
p (E) such that

E

∥∥∥
N∑

n=1

εndn

∥∥∥
p

6 (βdiv
p (E))p

E

∥∥∥
N∑

n=1

dn

∥∥∥
p

for all E-valued Lp-martingale difference sequences (dn)N
n=1 defined on a di-

visible probability space. Trivially, if E has the UMDp-property, then it has
the UMDdiv

p -property and βdiv
p (E) 6 βp(E). The next lemma establishes the

converse.

Lemma 12.7. Let 1 < p < ∞. If E has the UMDdiv
p -property, then it has the

UMDp-property and βp(E) = βdiv
p (E).

Proof. Suppose that (dn)N
n=1 is an E-valued Lp-martingale difference se-

quence with respect to a filtration (Fn)N
n=1 on an arbitrary probability space

(Ω, F , P). The idea is to enlarge the probability space in such a way that
it becomes divisible, without affecting the Lp-estimates for the martingale
differences.

Consider Ω̃ := Ω × [0, 1], F̃ := F × B([0, 1]), and P̃ := P × m, where
m is the Lebesgue measure on the Borel σ-algebra B([0, 1]). The probability

space (Ω̃, F̃ , P̃) is divisible: this follows from the intermediate value theorem

applied to the continuous function t 7→ P̃(F̃ ∩ (Ω × [0, t])), where F̃ ∈ F̃ .

Let (Mn)N
n=1 be the martingale associated with (dn)N

n=1. Define M̃n(ω, t) :=

Mn(ω) and F̃n := Fn ×B([0, 1]). It is easily checked that (M̃n)N
n=1 is a mar-

tingale with respect to (F̃n)N
n=1 and, for every sequence of signs (εn)N

n=1, its

difference sequence (d̃n)N
n=1 satisfies

E

∥∥∥
N∑

n=1

εndn

∥∥∥
p

= Ẽ

∥∥∥
N∑

n=1

εnd̃n

∥∥∥
p

6 (βdiv
p (E))p

Ẽ

∥∥∥
N∑

n=1

d̃n

∥∥∥
p

= (βdiv
p (E))p

E

∥∥∥
N∑

n=1

dn

∥∥∥
p

using the UMDdiv
p -property of E. ⊓⊔

In the next step we restrict the class of probability spaces even further. If
(Ω, F , P) is a probability space, we call a sub-σ-algebra G of F dyadic if it
is generated by 2m sets of measure 2−m for some integer m > 0. We call a
filtration in (Ω, F , P) dyadic if each of its constituting σ-algebras is dyadic.
For 1 < p < ∞, let us say that E has the UMDdyad

p -property if there exists a

constant βdyad
p (E) such that

E

∥∥∥
N∑

n=1

εndn

∥∥∥
p

6 (βdyad
p (E))p

E

∥∥∥
N∑

n=1

dn

∥∥∥
p
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holds for all E-valued Lp-martingale difference sequences (dn)N
n=1 with re-

spect to a dyadic filtration (Fn)N
n=1 on a divisible probability space (Ω, F , P).

Trivially, if E has the UMDp-property, then it has the UMDdyad
p -property and

βdyad
p (E) 6 βp(E). In order to establish the converse we need a simple ap-

proximation result. The proof appears somewhat technical, but by drawing a
picture one sees that it is nearly trivial.

Lemma 12.8. Let 1 6 p < ∞ and ε > 0 be given. If f is a simple random
variable on a divisible probability space (Ω, F , P) and G is a dyadic sub-σ-
algebra of F , there exists a dyadic sub-σ-algebra G ⊆ H ⊆ F and an H -
measurable simple random variable h such that ‖f − h‖p < ε.

Proof. Suppose G is generated by 2m sets of measure 2−m.
It suffices to prove the lemma for indicator functions f = 1F with F ∈ F .

Considering F ∈ F as fixed, we write 1F =
∑

G 1F∩G where the sum extends
over the 2m generating sets G of G .

Take one such G and let (bG
j )∞j=1 denote the digits in the binary expansion

of the real number P(F ∩ G). Informally, we use the digits to write F ∩ G
inductively as a union, up to a null set, of disjoint ‘dyadic’ subsets of maximal
measure.

To be more precise, inductively define sets AG
j and BG

j by AG
0 = F ∩ G

and BG
0 = ∅, and requiring, for j > 1, that BG

j ⊆ AG
j−1 satisfies BG

j ∈ F and

P(BG
j ) = bG

j 2−j (we may take BG
j := ∅ if bG

j = 0). Then put AG
j := AG

j−1\BG
j

and continue.
The sets BG

j ∈ F thus constructed are disjoint, contained in G, and satisfy

P
(
(F ∩ G) \

⋃∞
j=1 BG

j

)
= 0. Let n > 1 be the first integer such that

P
(
(F ∩ G) \

n⋃

j=1

BG
j

)
<

εp

2m
.

For each 1 6 j 6 n such that bG
j = 1 we have P(BG

j ) = 2−j. If follows that
we can split G into disjoint subsets of measure 2−n in such a way that each
BG

j , 1 6 j 6 n, is a finite union of these subsets.
We subdivide each of the 2m generating sets G in this way. The number

n varies over G, but by considering further subdivisions we may assume it
to be independent of G. Let H be the σ-algebra generated by the 2n sets of
measure 2−n thus obtained. This σ-algebra is dyadic, it contains G , and the
simple function

h :=
∑

G

∑

16j6n

bG
j =1

1BG
j

is H -measurable and satisfies ‖f − h‖p < ε. ⊓⊔

Lemma 12.9. Let 1 < p < ∞. If E has the UMDdyad
p -property, then it has

the UMDp-property and βp(E) = βdyad
p (E).
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Proof. Suppose that (dn)N
n=1 is an E-valued Lp-martingale difference sequence

with respect to a filtration (Fn)N
n=1 on a divisible probability space (Ω, F , P).

The idea is approximate the dn with simple functions as in the previous lemma.
Fixing ε > 0, we can find Fn-measurable simple functions sn : Ω → E

such that ‖dn − sn‖p < ε
N

. By repeated application of Lemma 12.8 we find a

sequence of dyadic σ-algebras (F̃n)N
n=1 such that F̃n−1 ⊆ F̃n ⊆ Fn (with the

understanding that F̃0 = {∅, Ω}) and a sequence of step functions (s̃n)N
n=1

such that each s̃n is F̃n-measurable and satisfies ‖sn − s̃n‖p < ε
N

.

Consider the sequence (d̃n)N
n=1 defined by d̃n := E(dn|F̃n). To see that this

is a martingale difference sequence with respect to the filtration (F̃n)N
n=1, note

that for 1 < n 6 N ,

E(d̃n|F̃n−1) = E(E(dn|F̃n)|F̃n−1)

= E(dn|F̃n−1) = E(E(dn|Fn−1)|F̃n−1) = 0.

Then, by the Lp-contractivity of conditional expectations,

‖dn − d̃n‖p 6
2ε

N
+ ‖s̃n − d̃n‖p

=
2ε

N
+ ‖E(s̃n − d̃n|F̃n)‖p

=
2ε

N
+ ‖E(s̃n − dn|F̃n)‖p 6

2ε

N
+ ‖s̃n − dn‖p =

4ε

N
.

Hence,

∥∥∥
N∑

n=1

εndn

∥∥∥
p

6 4ε +
∥∥∥

N∑

n=1

εnd̃n

∥∥∥
p

6 4ε + βdyad
p (E)

∥∥∥
N∑

n=1

d̃n

∥∥∥
p

6 4ε(1 + βdyad
p (E))

∥∥∥
N∑

n=1

dn

∥∥∥
p
.

Since ε > 0 was arbitrary, this shows that E has the UMDdiv
p -property with

βdiv
p (E) 6 βdyad

p (E). Together with Lemma 12.7 this proves the result. ⊓⊔

The final reduction consists of shrinking the class of difference sequences
to Haar martingale difference sequences, which are defined as difference se-
quences of martingales with respect to a Haar filtration. This is a filtration
(Fn)N

n=1, where F1 = {∅, Ω} and each Fn (with n > 1) is obtained from
Fn−1 by dividing precisely one atom of Fn−1 of maximal measure into two
sets of equal measure (an atom of a σ-algebra G is a set G ∈ G such that
H ⊆ G with H ∈ G implies H ∈ {∅, G}). By construction, each Fn is gener-
ated by n atoms, whose measures equal 2−k−1 or 2−k, where k is the unique
integer such that 2k−1 < n 6 2k.

For 1 < p < ∞, let us say that E has the UMDHaar
p -property if there exists

a constant βHaar
p (E) such that
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E

∥∥∥
N∑

n=1

εndn

∥∥∥
p

6 (βHaar
p (E))p

E

∥∥∥
N∑

n=1

dn

∥∥∥
p

holds for all E-valued Haar martingale difference sequences (dn)N
n=1 defined on

a divisible probability space (Ω, F , P). Trivially, if E has the UMDp-property,
then it has the UMDHaar

p -property and βHaar
p (E) 6 βp(E).

Lemma 12.10. Let 1 < p < ∞. If E has the UMDHaar
p -property, then it has

the UMDp-property and βHaar
p (E) = βp(E).

Proof. Suppose that (dn)N
n=1 is an E-valued Lp-martingale difference sequence

with respect to a dyadic filtration (Fn)N
n=1 on a divisible probability space

(Ω, F , P). The idea is to ‘embed’ (dn)N
n=1 into a Haar martingale difference

sequence. To be more precise, we shall construct an Lp-martingale difference

sequence (d̃k)K
k=1 with respect to a Haar filtration (F̃k)K

k=1 such that Mn =

M̃kn
and Fn = F̃kn

for some subsequence k1 < · · · < kN . Once this has been

done, we note that dn =
∑kn

j=kn−1+1 d̃j and

∥∥∥
N∑

n=1

εndn

∥∥∥
p

=
∥∥∥

N∑

n=1

kn∑

j=kn−1+1

εnd̃j

∥∥∥
p

=
∥∥∥

K∑

k=1

ε̃kd̃k

∥∥∥
p

6 βHaar
p (E)

∥∥∥
K∑

k=1

d̃k

∥∥∥
p

= βHaar
p (E)

∥∥∥
N∑

n=1

dn

∥∥∥
p
,

where ε̃k = εkn
for k = kn−1 + 1, . . . , kn.

Each Fn is dyadic and therefore it is generated by kn := 2ln atoms of
measure 2−ln . Since each atom of Fn−1 is a finite union of atoms in Fn

we have k1 < · · · < kN . The σ-algebras F̃k, with kn−1 < k < kn can now

be constructed by splitting the atoms of F̃kn−1
one by one into two disjoint

subsets of equal measure, so as to arrive at the atoms of F̃kn
by repeating

this procedure kn − kn−1 times.

Now take M̃kn
:= Mn and M̃k := E(M̃kn

|F̃k) if kn−1 < k 6 kn. ⊓⊔

12.2.2 p-Independence for Haar martingales

By the reductions of the previous subsection, in order to prove the p-
independence of the UMDp-property it suffices to consider Haar martingale
difference sequences. Such sequences have a special property which is captured
in the next lemma.

Lemma 12.11. If (dn)N
n=1 is an E-valued Haar martingale difference se-

quence, then ‖dn+1‖ is Fn-measurable for all n = 1, . . . , N − 1.
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Proof. Suppose that Fn+1 is obtained by splitting one of the n+1 generating
atoms of Fn, say A, into subsets A1 and A2 of equal measure. Then Mn+1

and Mn only differ on A, so dn+1 = 0 on ∁A. Also, dn+1 is constant on A1

and A2, say with values x1 and x2. Then,

P(A1)x1 + P(A2)x2 =

∫

A

dn+1 dP =

∫

A

E(dn+1|Fn) dP = 0,

and from P(A1) = P(A2) we deduce that x1 + x2 = 0. Hence, ‖dn+1‖ =
1A1

‖x1‖ + 1A2
‖x2‖ = 1A‖x1‖ is Fn-measurable. ⊓⊔

In what follows we let f = (fn)N
n=1 be an E-valued Haar martingale with

difference sequence (dn)N
n=1. By the lemma, the non-negative random variables

‖dn+1‖ are Fn-measurable for n = 1, . . . , N − 1.
For a fixed sequence of signs ε = (εn)N

n=1 we denote by g = (gn)N
n=1 the

martingale transform gn =
∑n

j=1 εjdj . Further we let

f∗(ω) := max
16n6N

‖fn(ω)‖, g∗(ω) := max
16n6N

‖gn(ω)‖.

In the proof of the next lemma we use the following notation: if (Xn)N
n=1

is a sequence of E-valued random variables and τ : Ω → {1, . . . , N} is another
random variable, we define the random variable Xτ : Ω → E by

Xτ (ω) := Xτ(ω)(ω).

Lemma 12.12. Suppose that E is a UMDq-space for some 1 < q < ∞. For
all δ > 0 and β > 2δ + 1 and all λ > 0 we have

P{g∗ > βλ, f∗ 6 δλ} 6 αq
P{g∗ > λ},

where α = 4δβq(E)/(β − 2δ − 1).

Proof. Since F1 = {∅, Ω}, the random variable f1 = d1 is constant almost
surely. If the constant value is greater than δλ, then the left hand side in the
above inequality vanishes and there is nothing to prove. We may therefore
assume that f1 6 δλ almost surely.

Let

µ(ω) := min{1 6 n 6 N : ‖gn(ω)‖ > λ},

ν(ω) := min{1 6 n 6 N : ‖gn(ω)‖ > βλ},

σ(ω) := min{1 6 n 6 N : ‖fn(ω)‖ > δλ or ‖dn+1‖ > 2δλ}

with the convention that min ∅ := N + 1. In the third definition we further
use the convention that dN+1 := 0.

Let vn be the indicator function of the set {µ < n 6 min{ν, σ}}. Since d =
(dn)N

n=1 is a Haar martingale difference sequence, the sequence v = (vn)N
n=1

is predictable by Lemma 12.11 and therefore
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Fn :=
n∑

j=1

vjdj

defines a martingale F = (Fn)N
n=1 by the result of Example 11.19. On the set

{σ 6 µ} we have vj ≡ 0 for all j and therefore FN ≡ 0 there. In particular
this is the case on the set {µ = N + 1} = {g∗ 6 λ}. On the set {σ > µ} we
have

‖FN‖ =
∥∥∥

∑

µ<j6min{ν,σ}

dj

∥∥∥ = ‖fmin{ν,σ} − fµ‖ 6 4δλ.

To see this, first note that µ(ω) < σ(ω) implies ‖fµ(ω)‖ 6 δλ. Also,
if min{ν(ω), σ(ω)} = 1, then by the assumption above ‖fmin{ν,σ}(ω)‖ =
‖f1(ω)‖ 6 δλ; if min{ν(ω), σ(ω)} > 1, then from ‖fmin{ν,σ}−1(ω)‖ 6 δλ
and ‖dmin{ν,σ}(ω)‖ 6 2δλ it follows that ‖fmin{ν,σ}(ω)‖ 6 ‖fmin{ν,σ}−1(ω)‖+
‖dmin{ν,σ}(ω)‖ 6 3δλ. This proves the claim.

We infer that
E‖Fn‖

q 6 (4δλ)q
P{g∗ > λ}.

Now consider the martingale transform G of F by ε,

Gn :=

n∑

j=1

εjvjdj .

On the set {ν 6 N, σ = N + 1} we have min{ν, σ} = ν and

‖GN‖ =
∥∥∥

∑

µ<j6ν

εjdj

∥∥∥ = ‖gν − gµ‖ > βλ − 2δλ − λ,

where the last inequality uses that on the set {ν 6 N, σ = N + 1} we have
‖gν(ω)‖ > βλ and ‖gµ(ω)‖ 6 ‖gµ−1(ω)‖ + ‖dµ(ω)‖ 6 λ + 2δλ.

By Chebyshev’s inequality and the UMDq-property,

P{g∗ > βλ, f∗ 6 δλ} 6 P{ν 6 N, σ = N + 1}

6 P{‖GN‖ > βλ − 2δλ − λ}

6
1

(βλ − 2δλ − λ)q
E‖GN‖q

6
(βq(E))q

(βλ − 2δλ − λ)q
E‖FN‖q

6
(4δ)q(βq(E))q

(β − 2δ − 1)q
P{g∗ > λ}.

In the first inequality we used that f∗(ω) 6 δλ implies that ‖dj(ω)‖ 6 2δλ
for all j. This proves the lemma. ⊓⊔

Theorem 12.13. If E is a UMDq-space for some 1 < q < ∞, then it is a
UMDp-space for all 1 < p < ∞.
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Proof. By the results of the previous subsection it suffices to show that E
has the UMDHaar

p -property for all 1 < p < ∞. Thus we find ourselves in the
situation of the previous lemma and need to prove the estimate

E‖gN‖p 6 bp
E‖fN‖p

with a constant b > 0 depending only on p, q, and E, but not on f , g and N .
Fix an arbitrary number β > 1. For δ > 0 so small that β > 2δ + 1, let

α = αβ,δ,q,E be as in the lemma. Then, by an integration by parts and Doob’s
maximal inequality,

E‖gN‖p 6 E‖g∗‖p = βp

∫ ∞

0

pλp−1
P{g∗ > βλ} dλ

6 αqβp

∫ ∞

0

pλp−1
P{g∗ > λ} dλ

+ βp

∫ ∞

0

pλp−1
P{f∗ > δλ} dλ

6 αqβp
E‖g∗‖p +

βp

δp
E‖f∗‖p

6 Cp
pαqβp

E‖gN‖p +
Cp

pβp

δp
E‖fN‖p,

where Cp = p/(p− 1). Since limδ↓0 αβ,δ,q,E = 0, by taking δ > 0 small enough
we may arrange that Cp

pαqβp < 1. Noting that E‖gN‖p < ∞ since gN is
simple (recall that FN is a finite σ-algebra) it follows that

E‖gN‖p 6
Cp

pβp

(1 − Cp
pαqβp)δp

E‖fN‖p.

This concludes the proof. ⊓⊔

This theorem justifies the following definition.

Definition 12.14. A Banach space is called a UMD-space if it is a UMDp-
space for some (and hence, for all) 1 < p < ∞.

By combining Theorem 12.13 with the results of the previous section we
see that all Hilbert spaces and all spaces Lp(A) with 1 < p < ∞ are UMD-
spaces.

12.3 The vector-valued Stein inequality

In this final section we prove an extension, due to Bourgain, of a beautiful
result of Stein which asserts that conditional expectation operators corre-
sponding to the σ-algebras of a filtration form an R-bounded family.
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Theorem 12.15 (Vector-valued Stein inequality). Let E be a UMD-
space and fix 1 < p < ∞. If (Ft)t∈[0,T ] is a filtration on a probability space
(Ω, F , P), then the family of conditional expectation operators {E(·|Ft) : t ∈
[0, T ]} is R-bounded (and hence γ-bounded) on Lp(Ω; E).

Proof. Let (r̃n)N
n=1 be a Rademacher sequence on a second probability space

(Ω̃, F̃ , P̃) and define F̃n = σ(r̃1, . . . , r̃n), n = 1, . . . , N . Fix t1 < · · · < tN in

[0, T ]. On the product space Ω × Ω̃ define the filtration (Gm)2N
m=1 by

G2n−1 := Ftn
× F̃n−1, n = 1, . . . , N,

G2n := Ftn
× F̃n, n = 1, . . . , N.

For a random variable X ∈ Lp(Ω × Ω̃; E) define the martingale (Mm)2M
m=1 by

Mm := E(X |Gm), m = 1, . . . , 2N.

Let (dm)2M
m=1 be the associated martingale difference sequence. Then by the

UMDp-property of E,

∥∥∥
N∑

n=1

d2n

∥∥∥
Lp(Ω;E)

6 βp(E)
∥∥∥

2N∑

m=1

dm

∥∥∥
Lp(Ω;E)

. (12.2)

Indeed, the sum on the left hand side equals 1
2

( ∑2N
m=1 dm +

∑2N
m=1(−1)mdm

)
.

Now fix f1, . . . , fN ∈ Lp(Ω; E) and put X :=
∑N

n=1 r̃nfn. For this choice
of X we have

M2n−1 =

N∑

j=1

E(r̃jfj|Ftn
× F̃n−1) =

n−1∑

j=1

r̃jE(fj |Ftn
),

M2n =

N∑

j=1

E(r̃jfj|Ftn
× F̃n) =

n∑

j=1

r̃jE(fj |Ftn
).

Therefore d2n−1 = 0 and d2n = r̃nE(fj |Ftn
). It then follows from (12.2) that

Ẽ

∥∥∥
N∑

n=1

r̃nE(fn|Ftn
)
∥∥∥

p

Lp(Ω;E)
= Ẽ

∥∥∥
N∑

n=1

d2n

∥∥∥
p

Lp(Ω;E)

6 (βp(E))p
Ẽ

∥∥∥
2N∑

m=1

dm

∥∥∥
p

Lp(Ω;E)

= (βp(E))p
Ẽ

∥∥∥
N∑

n=1

r̃nfn

∥∥∥
p

Lp(Ω;E)
. ⊓⊔
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12.4 Exercises

1. Prove that a Banach space E is a UMDp-space E if and only if for
some (and hence, for all) 1 < p < ∞ there exist constants β±

p (E) such

that for all E-valued Lp-martingale difference sequences (dn)N
n=1 and all

Rademacher sequences (r̃n)N
n=1 independent of (dn)N

n=1 we have

1

(β−
p (E))p

E

∥∥∥
N∑

n=1

dn

∥∥∥
p

6 E

∥∥∥
N∑

n=1

r̃ndn

∥∥∥
p

6 (β+
p (E))p

E

∥∥∥
N∑

n=1

dn

∥∥∥
p

.

2. Let 1 < p < ∞. Prove that if H is a Hilbert space and (dn)N
n=1 is an

H-valued Lp-martingale difference sequence, then

1

cp
p
E

∥∥∥
N∑

n=1

dn

∥∥∥
p

6 E

( N∑

n=1

‖dn‖
2
) p

2

6 Cp
pE

∥∥∥
N∑

n=1

dn

∥∥∥
p

,

with constant depending only on p.
Hint: Combine Exercise 1 with the Kahane-Khintchine inequalities.

3. Prove that if X is a UMD-space and Y is a closed subspace, then X/Y is
a UMD-space and give an estimate for its UMD constant.

4. A sequence (xn)∞n=1 in a Banach space E is called a Schauder basis if every
x ∈ E admits a unique representation x =

∑∞
n=1 anxn with convergence

in E. Using a closed graph argument one can show that the projections

DN

∞∑

n=1

anxn :=

N∑

n=1

anxn,

are bounded. In fact, by the uniform boundedness theorem we even have
supN>1 ‖DN‖ < ∞.
A Schauder basis is called unconditional if there exists a constant 0 <
C < ∞ such that for all N > 1, all scalars a1, . . . , aN , and all signs
ε1, . . . , εN ∈ {−1, +1} we have

1

C

∥∥∥
N∑

n=1

anxn

∥∥∥ 6
∥∥∥

N∑

n=1

εnanxn

∥∥∥ 6 C
∥∥∥

N∑

n=1

anxn

∥∥∥.

The least admissible constant C is called the unconditionality constant of
(xn)∞n=1.

Let (xn)∞n=1 be an unconditional Schauder basis of E with unconditional-
ity constant C.

a) Show that if (rn)∞n=1 is a Rademacher sequence, then for all N > 1
and all scalars a1, . . . , aN we have

1

C2

∥∥∥
N∑

n=1

anxn

∥∥∥
2

6 E

∥∥∥
N∑

n=1

rnanxn

∥∥∥
2

6 C2
∥∥∥

N∑

n=1

anxn

∥∥∥
2

.
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b) Show that supN>1 ‖DN‖ 6 C.

Assume next that E is a UMD-space.

c) Show that the sequence (DN )∞N=1 is R-bounded.
Hint: Use a) and the vector-valued Stein inequality.

5. In this exercise we prove a vector-valued version of a multiplier theorem
due to Marcinkiewicz. Let (xn)∞n=1 be a Schauder basis of the UMD
Banach space E which has an unconditional blocking, meaning that there
is a sequence 0 = N0 < N1 < . . . and a constant 0 < C < ∞ such that
the corresponding block projections ∆j := DNj

− DNj−1
(where D0 = 0)

satisfy

1

C

∥∥∥
k∑

j=1

∆jx
∥∥∥ 6

∥∥∥
k∑

j=1

εj∆jx
∥∥∥ 6 C

∥∥∥
k∑

j=1

∆jx
∥∥∥

for all choices εn ∈ {−1, 1}. Suppose that (λn)N
n=1 is a scalar sequence

such that:

(i) sup
n>1

|λn| < ∞;

(ii) sup
j>1

Nj−1∑

n=Nj−1+1

|λn+1 − λn| < ∞.

where λ0 = 0. Prove that the multiplier

M

∞∑

n=1

anxn :=

∞∑

n=1

λnanxn

is bounded.
Hint: Write

Mx =

∞∑

j=1

λNj
∆jx +

∞∑

j=1

Nj−1∑

n=Nj−1+1

(λn − λn+1)Dn∆jx.

Now use a randomisation argument, the result of the previous exercise,
and Proposition 9.6.

Remark. It can be shown that the trigonometric system (en)n∈Z, where
en(θ) = einθ, is a Schauder basis in Lp(T) for all 1 < p < ∞, but this
basis is unconditional only for p = 2. However, it is a classical result of
Littlewood and Paley that the dyadic blocking of (en)n∈Z is uncondi-
tional in Lp(T) for all 1 < p < ∞ (in this blocking, the j-th block runs
over the indices 2j−1 6 |n| < 2j). In combination with the exercise, this
gives the classical formulation of the Marcinkiewicz multiplier theorem.

Notes. The importance of UMD-spaces extends far beyond the domain of
stochastic analysis. In fact, the subject was created in an effort to extend
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classical Fourier multiplier theorems to Banach-space valued functions. On
the unit circle T, an important Fourier multiplier is the Riesz projection

∑

n∈Z

cneinθ 7→

∞∑

n=0

cneinθ.

This projection, which corresponds to the multiplier 1{n>0}, is bounded in
Lp(T) for all 1 < p < ∞. On the real line, the Hilbert transform defined by
the principle value integral

Hf(x) :=
1

π
PV

∫ ∞

−∞

f(y)

x − y
dy

is bounded on Lp(R) for all 1 < p < ∞; it can be shown that this operator
corresponds to the multiplier 1

i
(1R+

−1R
−

). Both results are classical theorems
of M. Riesz. In the Banach space-valued situation the validity of these results
characterise the UMD-property:

Theorem 12.16. Let 1 < p < ∞. For a Banach space E the following asser-
tions are equivalent:

(1) E is a UMDp-space;
(2) The Riesz projection is bounded on Lp(T; E);
(3) The Hilbert transform is bounded on Lp(R; E).

The implications (1)⇒(2) and (1)⇒(3) are due to Burkholder [18] and
McConnell [74], and their converses to Bourgain [10]. We refer to the
review papers [20, 97] for more details. Recently, far-reaching generalisations of
Theorem 12.16 to the boundedness of Fourier multipliers and singular integral
operators in vector-valued Lp-spaces have been proved by several authors.
We refer to the excellent lecture notes by Kunstmann and Weis [61] for an
overview and references to the literature.

The independence of the UMDp-property of the parameter 1 < p < ∞
(Theorem 12.13) was first proved by Maurey [73], who gives credit to Pisier.
The proof via Lemma 12.12 presented here is adapted from Burkholder [19].
The reductions of Section 12.2.1 are a variation of those proposed in [73] and
carried out in detail in the lecture notes of De Pagter [87] and the M.Sc.
thesis of Hytönen [50].

Several alternative proofs of the p-independence exist; some of them char-
acterise the UMDp-property in terms of some other property not involving the
parameter p. In order to state two such characterisations, due to Burkholder

[17, 20], we need to introduce the following terminology.
A Banach space is called a weak UMD-space if there exists a constant β

such that for all L1-martingale difference sequences (dn)N
n=1, all sequences of

signs (εn)N
n=1, and all r > 0 we have

r P

{∥∥∥
N∑

n=1

εndn

∥∥∥ > r
}

6 βE

∥∥∥
N∑

n=1

dn

∥∥∥.
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A Banach space E is called ζ-convex if there exists a function ζ on E ×E,
convex in both variables separately, satisfying ζ(0, 0) > 0 and ζ(x, y) 6 ‖x+y‖
if ‖x‖ = ‖y‖ = 1.

Theorem 12.17. For a Banach space E the following assertions are equiva-
lent:

(1) E is a UMD-space;
(2) E is a weak UMD-space;
(3) E is ζ-convex.

For Hilbert spaces one may take ζ(x, y) := 1 + [x, y]. For Lp-spaces an
explicit expression for a function ζ appears to be unknown.

The scalar version of Theorem 12.15 is due to Stein [100]. Its extension
to UMD-spaces is due to Bourgain, who stated the result without proof in
[12]. The proof presented here is taken from [24].

The result of Exercise 4 is due to Clément, De Pagter, Sukochev,
Witvliet [24] and Berkson and Gillespie [6]. Exercise 5 is an abstract
version of Bourgain’s version of the Marcinkiewicz multiplier theorem [12].
Other classical multiplier theorems, such as the Mihlin multiplier theorem,
can be extended to UMD-spaces as well. As was first shown by Weis [108]
it is even possible to consider operator-valued multipliers; typically one has
to replace boundedness assumptions by suitable R-boundedness assumptions.
We refer to Kunstmann and Weis [61] for an overview and further references.


